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1. Introduction and simulation parameters

Despite enormous theoretical efforts the very nature and order of the QCD finite temperature
transition is still under debate and subject of current research (see e.g. [1] at this conference). To
investigate confinement related aspects of the transition, during the last six years the DIK collabo-
ration has generated dynamical configurations withNf = 2 flavours ofO(a) improved Wilson sea
quarks on a163×8 lattice atβ = 5.2and 5.25 [2], a243×10lattice atβ = 5.20[3] and recently also
a243×12lattice atβ = 5.29[4]. Based on the Polyakov loop susceptibility the critical temperature
extrapolated to the continuum limit at physicalmπ is determined asr0Tc = 0.438(6)(+13

−7 ) [4].

Around three years ago we began to include the chiral symmetry breaking/restoration aspects
of the QCD finite temperature transition to the topics of interest. Since overlap fermions implement
exact chiral symmetry and the index theorem on the lattice, they are specially suited to study various
chiral symmetry and topology related properties of the transition. First results using valence overlap
fermions as a probe for dynamical163×8 configurations atβ = 5.2 were reported at LATTICE
2005 [5]. Meanwhile, we have developed a couple of tools based on the overlap Dirac operator and
its eigenmodes and learned to use them for the investigation of the vacuum structure of quenched
QCD atT = 0 1.

In this paper we present results obtained by applying these methods in a hybrid approach to the
243×10dynamical DIK configurations at finiteT. We try to work out those signals which exhibit
a remarkable difference between the low- and high-temperature phase of QCD. Using the Arnoldi
algorithm we have computed the 50 lowest eigenvaluesiλi and eigenvectors|ψi(x)〉 (normalised
as〈ψi |ψi〉= 1) of the massless improved overlap operatorD(mq = 0) for seven ensembles withκ
values in the vicinity of the transition region. In [3] the critical value ofκ marking the transition,
κt , for this set of lattice configurations at fixedβ = 5.2 has been determined from the peak of the
Polyakov loop susceptibilityχL shown in Fig.1 (a) asκt = 0.13542(6) and assigned tor0Tc =
0.499(5) using interpolated QCDSF values for the Sommer parameterr0/a found atT = 0. The
number of configurations used in our overlap analysis together with the values forT/Tc andr0/a
are shown in Table1.

κ # confs T/Tc r0/a

0.1348 131 0.91 4.561
0.1352 86 0.97 4.832
0.1353 131 0.98 4.902
0.1354 97 1.00 4.973
0.1355 118 1.01 5.045
0.1358 122 1.06 5.265
0.1360 97 1.09 5.417

Table 1: Simulation parameters for the configurations on the243×10 lattice generated atβ = 5.2.

1See [6] for a more detailed description of our tools and methods used throughout this paper.
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2. Fermionic spectral approaches to locate the transition
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Figure 1: (a) The Polyakov loop〈L〉 and its susceptibilityχL shown together with the chiral condensates
Σq,RMT and the chiral susceptibilityχq. Σq(mq) andχq are computed from the spectral representation of the
chiral condensate using 50 eigenmodes, whileΣRMT is obtained from the fits of the spectral density shown
on the right. The two chiral condensatesΣq andΣRMT agree quite well as functions ofκ without further
rescaling. To present the other curves in the same picture, they have been scaled appropriately. (b) The
spectral densitiesρ(λ ) together with fits using quenched random matrix theory predictions.

To determine the critical value ofκ by fermionic means, we calculate the disconnected part of
the chiral susceptibilityχq = 1/V (〈(Tr D−1(mq))2〉−〈Tr D−1(mq)〉2) using a spectral decomposi-
tion of the chiral condensateΣq(mq) = 1/V 〈Tr D−1(mq)〉= 1/V 〈∑i 1/(iλi +mq)〉. Truncating the
decomposition acts as an UV-filter by removing short-distance fluctuations from the local conden-
sate. We match the overlap valence and the Wilson sea quark masses by demanding that the corre-
sponding pion masses be equal. The resulting quark masses range fromamq = 0.045atκ = 0.1348
to amq = 0.006at κ = 0.1360. In Fig. 1 (a) one can see thatχq shows a peak atκ ≈ 0.1352. This
value is significantly lower thanκt = 0.13542(6) as determined by the Polyakov loop susceptibility
χL.

According to the Banks-Casher relationΣ =−πρ(0) the appearance of a gap in the spectrum
is a criterion for a chiral symmetry restoring phase transition. We show in Fig.1 (b) the spectral
densityρ(λ ) of nonzero modes among the 50 lowest overlap operator eigenmodes for the seven
analysed ensembles together with fits using quenched random matrix theory.2 One can see that a
gap in the spectrum does not appear belowκ ≈ 0.1358. As we have already observed on the163×8
lattice [5], even for the highest analysedκ value some eigenvalues, which in fact exclusively belong
to the first pair of nonzero modes, fall into the would-be gap.

Due to the hypothetic pinning-down of the lowest modes on singular confining defects [7]
and their changing structure it is tempting to investigate the localisation properties of the low-lying
modes. In Fig.2 we plot for all considered ensembles the average Inverse Participation Ratio
(IPR) I = V ∑x pi(x)2, with the scalar densitypi(x) = 〈ψi(x)|ψi(x)〉, for λi in the respective bin.
While the higher modes in the bulk of the spectrum are delocalised (i.e. have small IPR) in both
phases, the zero modes and low-lying modes are strongly localised (i.e. have large IPR) in the

2Since the general formulae of RMT forNf = 2 flavours converge to the quenched expressions for large quark
masses, quenched RMT can be used as an approximation in the confined phase.
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Figure 2: The average IPR for zero modes and for nonzero modes in bins ofr0λ with a width 0.125.

confined phase. The transition is preceded by the lowest modes becoming even more localised
before a gap finally opens. For the two largestκ-values the isolated modes which fall into the gap
are extremely localised.

While the zero modes of the overlap operator are exactly chiral,i.e. p5 i(x) := 〈ψi(x)|γ5|ψi(x)〉
= ±pi(x), the nonzero modes have globally vanishing chirality,∑x p5 i(x) = 0, but still exhibit a
rich local chirality structure correlated with the underlying gauge fields. To visualise the changes
of the local chirality of the nonzero modes in the vicinity of the transition, in Fig.3 we show

histograms of the local chirality variable characterising a mode atx, X(x) = 4
π arctan

(√
p+(x)
p−(x)

)
−1

with p± i(x) = 〈ψi(x)|12(1± γ5)|ψi(x)〉 introduced in [8]. X(x) clusters near±1 in the confined
phase for the low modes when one selects lattice points near the peaks of the scalar densityp(x),
signalling a high amount of local chirality. Asλ increases, the signal for local chirality weakens.
On the other hand, in the high-temperature phase the signal completely vanishes for modes outside
the spectral gap. Only the modes which fall into the gap show a remanent strong local chirality.
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Figure 3: Normalised histograms of the local chiralityX(x) averaged over all configurations forκ = 0.1352
(left) andκ = 0.1360(right). In both cases the left subpanel shows the chiralityX(x) for the lowesti =
1, . . . ,20 nonzero modes, whereas the right subpanel shows it for all nonzero modes averaged over bins in
r0λ with bin width 0.125. Only 1 % of the lattice sites with largest scalar densityp(x) are considered.
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Figure 4: Normalised histograms with respect to the local (anti-)selfdualityX(x) of the UV-filtered field
strength tensor in theQ = 0 subsample forκ = 0.1352(left) andκ = 0.1360(right) taken over all lattice
sites in dependence of the number of nonzero modes included in the “filter”.

Similar changes happen with the distribution ofR(x) = 4
π arctanr(x)−1, with r(x) = (s̃(x)−

q̃(x))/(s̃(x)+ q̃(x)) , a measure proposed by Gattringer [9] to describe the local degree of (anti-)
selfduality of the gluonic field strength tensor. Using a spectral decomposition of the gluonic field

strength tensor, an UV-filtered version of the action densitys̃(x) = ∑n
i, j=1

λ 2
i λ 2

j

2 f a
µν(x)i f a

µν(x) j and of

the charge densitỹq(x) = ∑n
i, j=1

λ 2
i λ 2

j

2 f a
µν(x)i f̃ a

µν(x) j (with f a
µν(x)i =− i

2 〈ψi(x)|γµγνTa|ψi(x)〉) can
be obtained from the overlap eigenmodes.R(x) clusters near (+1) -1 for approximately (anti-)self-
dual fields. In Fig.4 we show that the contribution of the lowest modes to the spectral decomposi-
tion of the UV-filtered gluonic field strength tensor is highly (anti-)selfdual in the low-temperature
phase, whereas in the high-temperature phase the coherence in the spectral decomposition which
is necessary to build up an (anti-)selfdual UV-filtered field strength is almost completely lost.

Traditionally, the chiral symmetry restoration has been explained by pairing of instantons and
antiinstantons. To describe the changes in the (anti-)selfdual structure in more detail and in a
model-independent manner, we perform a cluster-analysis with respect toR(x). Fig. 5 (a) shows
the number of clusters consisting of link-connected sitesx with |R(x)| ≥ Rcut as a function of the
lower cutoffRcut. One can see that forκ < 0.1355in the confinement phase the number of clusters
is surprisingly stable with increasingRcut, whereas for the largest twoκ values in the deconfined
phase the number of clusters decreases rapidly towards large cutoffs,i.e. a high degree of (anti-)
selfduality. In Fig.5 (b) we show the connectivityf (rmax) of these clusters,i.e. the probability
for two lattice points, separated by the maximal possible distance, to belong to the same cluster.
Generally one can see that the larger theκ values are, the smaller this probability is. For the largest
two κ values, percolation (i.e. f (rmax) > 0) completely disappears atRcut ≈ 0.97. Clusters that
are more (anti-)selfdual than that are well isolated. On the other hand, in the low-temperature
phase percolation exists almost up toRcut = 0.999, indicating that perfectly (anti-)selfdual objects
penetrate throughout the whole lattice volume. The average size of the largest cluster and the
average size of all clusters, shown in Fig.5 (c) and (d), respectively, as function ofRcut strongly
decreases with higher temperatures.
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Figure 5: Results of the cluster analysis with respect to the local degree of (anti-)selfdualityR(x): (a) the
number of clusters, (b) their connectivity, (c) the average size of the largest cluster and (d) the average size
of all clusters, all as function of the cutoffRcut.

3. Topological properties in the vicinity of the phase transition

Since overlap fermions offer an exact realisation of the Atiyah-Singer index theorem at finite
cutoff a, the global topological charge is given asQ = ∑i∈ zeromodes∑x p5 i(x). The topological sus-
ceptibility χtop = 〈Q2〉/V obtained from this fermionic definition ofQ is displayed in Fig.6 (a)
and shows a rapid drop3 in the analysed temperature interval[0.91 Tc,1.09 Tc]. The susceptibility
can be expressed as the integralχtop =

∫
dx Cq(x) over the topological charge density correlator

Cq(x) = 〈q(0)q(x)〉. Here we use the truncated eigenmode expansion of the topological charge den-
sity, qIR(x) =−∑n

i=1(1− λi
2 ) p5 i(x), includingn = 50 eigenmodes in the “filter”. The topological

charge correlatorCq(x) presented in Fig.6 (b) shows a gradual change at the transition, revealing
a short range charge compensation (traditionally interpreted as instanton-antiinstanton pairing) in
the high-temperature phase.

4. Summary

We have complemented the efforts of the DIK collaboration to locate the confinement / decon-
finement transition using gluonic signals (the Polyakov loop susceptibility) by a fermionic approach
using valence overlap fermions as a probe. We observe that the chiral susceptibility shows a peak
at a valueκ ≈ 0.1352which is lower thanκt = 0.13542(6) as determined by the Polyakov loop
method. On the other hand, a gap in the spectrum does not open belowκ ≈ 0.1358. The opening
of the gap is preceded by the low-lying modes becoming more and more localised. When the gap

3The data for the lowest twoκ values is likely to change with increased statistics. TheQ-distributions (not shown
here) for these twoκ values exhibit strong deviation from Gaussian shape.
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Figure 6: (a) The topological susceptibilityχtop vs. κ. (b) The correlatorCq(x) of the UV-filtered topo-
logical charge density computed from the lowest 50 eigenmodes. The plot focusses on the region where the
correlator turns negative.

opens (apart from a few modes in the sample falling into the gap, which exclusively belong to the
first pair of nonzero modes) the local chirality of the near-zero modes and the (anti-)selfduality
which they contribute to the field strength tensor is almost completely lost. Only belowκ ≈ 0.1358
extended, approximately (anti-)selfdual domains (say withRcut ' 0.97) percolate throughout the
whole lattice volume. The disappearance of such extended structures in the high-temperature phase
is also reflected in the topological charge correlator, which signals some short-range charge com-
pensation in the high-temperature phase. Thus it seems that different observables used to locate the
transition yield different critical values forκt . This could be a hint that inNf = 2 clover-improved
QCD the finite temperature transition is realised as a crossover where various transition phenom-
ena take place [10]. The nature of the real transition to the quark-gluon plasma remains an open
question and requires further investigation.
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