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which are by now run on apeNEXT. As a first issue, we discussategly to tackle finite size
effects which can be quite sizeable in the computation o&iitigmically divergent renormal-
ization constants. Our first high loop determination of uaitinears for Wilson fermions was
limited to finite constants and finite ratios. A precise deteation ofZp andZs (and hence of
Zmy) now becomes possible. We also give an account of composatoy actions different from
the standard regularization we have taken into accountrsWison gauge action and Wilson
fermions). In particular, we present the status of compmriatfor the Lattice QCD regularization
defined by tree level Symanzik improved gauge action anddvilsrmions, which became quite
popular in recent times. We also take the chance to discasgldted topic of the computation of
the gluon and ghost propagators (which we undertook in lcottaion with another group). This
is relevant in order to better understand non-perturbativeputations of propagators aiming at
qualitative/quantitative understanding of confinement.
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1. Introduction

Numerical Stochastic Perturbation Theory (NSPT) provegkta viable tool to compute high
loop renormalization constants (RC) for Lattice QCD [1]. the following we address a couple
of the current issues in this subject. One is a problem: inppewious work we pointed out that
finite volume effects can be quite important for quantitiesihg an anomalous dimension (i.e.
displaying log-divergencies). A second one is an oppaigumaking into account different actions
(both for gluons and for fermions) does not imply a real oearh (there are no Feynman rules
to derive). In the following we will report on these items,daty as an interesting aside a brief

account on the gluon and ghost propagators, which, as amoéfeect, had not yet been looked at
by NSPT.

2. Computation of renor malization constants

RI-MOM' is a convenient scheme to compute RC by NSPT. A usetalmple is the compu-
tation of quark bilinears. First of all we compute them (imbdau gauge) between external quark
states at fixed (off-shell) momentum

[ x(pIBOT W) p) = Cr(pa

This step is taken in NSPT much the same way as in non-petitwgtsimulations. One then
amputatesg(pa) is the quark propagator) and projects out the tree-levetsitre

Mr(pa) =S *(pa) Gr(pa) S *(pa) Or(pa) = Tr (Po, I'r(pa))

Renormalization conditions now read,(is the quark field renormalization constant)

Zo, (Ha,g(a)) Z;*(1a,g(a)) Or(pa)

o =1 2.1)

3. Dealing with anomalous dimensions

In NSPT one would like to take anomalous dimensions for g@ntFor RI-MOM’ this is
actually the case [2]. Let us keep this in mind while writingr anaster formula for the scalar
current

(1) @) Dioal B2 O p?
a-A g e B RR), q BEPD ) a
3 B B p?=u

We explicitly wrote both the constant and the logarithmiatcibutions to renormalization con-
stants (at first order the only log comes fra@®since one-loop quark-field anomalous dimension
is zero in Landau gauge())él)(ﬁz) is what is actually numerically measured. At one-loop oxder
can solve the previous relation to

2P — 2" = ol (p?) — iV log(P). (3.1)
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Figure 1: On the left: computation of one loop renormalization consfar the scalar current. In the

notation of Eq. (3.1), upper points are the unsubtra@élei(ﬁz), while lower (circled crosses) stand for

the subtracte®{” (p?) — 1A log(p?). Analytic result (darker symbol) is missed. On the righte #ame

computation subtracting ttamed-logcontribution referred to in the text. Analytic result is got

The quantity on l.h.s. is now finite and the only dependencepars p is an irrelevant
one, which can be wiped out by extrapolating to zero by meamghat we call an Hypercubic-
symmetric Taylor expansion. Unfortunately this prograsutts in a failure: see Fig. (1) (left).

IR problems do not come as a surprise, due to finite size sffétfig. (2) we display results
on sizes 32and 16. Results perfectly agree for the ratioffandZ, (which is a finite quantity).
On the other hand, the smaller the lattice, the bigger thefi&cts one gets for log-divergent
guantities. These are one loop results, but the picture stawch the same at higher loops.
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Figure 2: Computations OD%”(F“JZ) (the equivalent of Eq. (3.1) for the pseudoscalar current))(and
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o (p?) (bottom) on 32 (circles) and 16 (diamonds). In the middle the rat;ﬁ%.
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Circumventing the problem is not so hard at one loop. Defire Na. Let us now write
down for the quantity at hand the momentum sk(p,a,L) of conventional Lattice Perturbation
Theory, making use of the same regularization of zero mddgste use in NSPT (zero momentum
removed from the sum). In the same spirit of [3] let us nowtspiis

l(p,a,L) =1(0,a,L)+ (I(p,aL)—1(0,aL)) =1(0,aL)+I(p,aL). (3.2)

The divergence is logarithmic so that by subtracti@,a,L) we makeJ(p,a,L) UV finite. IR
divergences will pop up and cancel with thosé (@,a,L):

1(0,a,L) = c1+ylog(a/L)+H(a/L) (3.3)
J(p,a,L) = c2+ylog(pL) +G(pa a/L, pL).

Now we look forpL = PN effects. These should be looked forGipa a/L, pL) — G(pL), which

we computed from the formal continuum limit of our suifp, a,L): this means — 0 withL = Na
fixed (as we pointed outl(p,a,L) is UV finite). Again, we need the sana& hocregularization

of zero modes. We call this contributiortamed-log It is supposed to resemble the expected log,
but with pL = pN effects on top of it: it indeed approaches a log for> 1. By subtracting this
tamed-logwe got the right one loop result.

4. Dealing with anomalous dimensions. a new strategy.

The above method has got obvious drawbacks. First of allhagdo go back to diagramatic
computations we would have liked to get rid of by means of NSFfile one is happy enough
with the one loop picture, at higher loops the situation gslelear and it is for sure much more
cumbersome. Moreover, one is not actually making use of dnepatations on different lattice
sizes, but has to revert instead to a continuum computaltiotine following we present a strategy
which is currently under investigation (we do not yet digplasults). This method is a very close
relative of the one which is employed in an NSPT 3-d applicatvith a mass in play [4].

It can be better understood having in mind figure 2. An obvivay of looking at it is the
following: on 32 and 16 one gets results at the same physical momerdrom points affected
by different pL = PN effects. Moreover, fopL large enough one can get results substatially free
of finite volume effects. Having measurements on at leastdifferent sizes K1, N2, N1 > Np),
this suggests to proceed as follows:

e Go to a momentunp high enough: the measuremeiit, pN; >> 1) ~ f(, ) on the big
lattice will be substantially free of finite size effects.

¢ Read the deviatiod(pNy) = (P, PNp) — (P, ) =~ f (P, pPN2) — f(P, PNy) (i.e. the deviation
from the result you got on the little lattice at the same valtip).

¢ This deviation defines thpL = PN effect you have to correct for at the point having the same
value ofpL = pN.

The strategy is promising and first results are encouraging.
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Figure 3: Computations of the Wilson fermions one loop critical mds#)(and self-energy (right) for
tree-level Symanzik improved gauge action. For the sedfr@npoints come in "families" corresponding to
different violations of Lorents symmetry, depending on légreght of momentum along the gamma matrix
one traces with. Results from the measurement on a singfegooation. See text for an important caveat.

5. NSPT computationsfor different actions

Changing the action can be quite cumbersome for Latticaifation Theory: deriving Feyn-
man rules for propagators and (both relevant and irrel@wesmtices can require hard work (this is
usually a computer-aided task). Life is by far easier in NSR@& are working on different Lattice
QCD regularizations resulting from taking different gawgel fermionic actions. For the gauge
action we consider plain Wilson, lwasaki or (tree-levelngyzik. For fermionic action we take
plain Wilson or Clover. From the computational point of vjewtice that all the combinations are
fairly well implemented on apeNEXT (as compared to APEnitlecause of the larger amount of
available memory.

Fig. (3) displays one loop benchmark computations of @itinass and fermion self-energy
for the tree-level Symanzik improved gauge action with rpMfilson fermions. At the time of
the conference we were still in a bit embarassing situatfoym Fig. (3) one can inspect results
were (slightly) off the analytic results available in theetature [5, 6] (a wrong normalization is
now being fixed). Notice with this respect that a one loop bemark is a very safe one for NSPT:
since everything is implemented order by order, once yodiggttorder right you are standing on
a quite safe ground. Apart from the actual results, notiaelots are measurements from a single
configuration. Fermionic measurements are remarkablyes{abrves are smooth enough): keep
this in mind now that we move to the Gluon Propagator.

6. Gluon (and Ghost) Propagator

Gluon and ghost propagators are the subject of a new co#itibor. The framework for this
work is the qualitative/quantitative investigation of fioement via Schwinger-Dyson equations
for the fundamental degrees of freedom of the theory.

IF. Di Renzo, C. Torrero, M. ligenfritz, M. Muller-Preussket. Perlt, A. Schiller.
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Figure4: Tree level (left) and one loop (right) computation of theayiypropagator. Notation i$1,, (k) =

ke k
Suv—+~ . . . o
D(k) (H—WL) The analytically known constants are recovered in theisoai limit (at one loop the log
dictated by anomalous dimension has to be subtracted).il\tbis case data arrange themselves in families
according to different patterns of violation of Lorentz sywtry.

The gluon propagator in NSPT is a really straightforward potation. One first fixes the gauge:
once again, Landau is the obvious choice (FFT acceleratiarpowerful tool at hand). One then
goes to momentum space, takes the product of fields and tfElseghost propagator is measured
much the same way as the fermion propagator, by invertingrdogt order the Faddeev-Popov
matrix on a (momentum space) source. The technology forltbstgvas derived in the context of
another application [7].

In figure 4 we display tree-level and one loop benchmark cdatjmns of the gluon propa-
gator. Notice that this time we present also a tree level edatjpn as a benchmark. The gluon
propagator is with this respect quite different from tharfiem (or ghost) propagator: there is no
inversion on a source, but simply the computation of a catoel(in momentum space). While this
is straightforward, one now gets much more noise. Even & tomes from an actual measure-
ment: first fluctuations around the vacuum are the Lie algelfree fields whose correlatator gives
the free Feynman propagator. Itis funny to compare the pusvplots (which come out @(100)
configurations) with the (one configuration) measuremehEg (3). Still, although noisy, this is
a doable computation. Both for the gluon and for the ghostpregide measurements from fairly
big lattices (18 and 32). These measurements are taken on the same configuratioed &t mea-
sure the QCD fermionic quantities. Our German collabogaf8} provide instead huge statistics
measurements from smaller lattices.

7. Conclusions

We have presented a new method to correct for finite voluneesfin NSPT renormalization
constants computations. The method is much less cumbetbaméhe one we applied to one loop
computations.
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We are computing renormalization constants for differegutarizations of Lattice QCD:

computations for lwasaki and tree level Symanzik improvadgg actions are on their way.

We also reported on the computation of the gluon (and ghasf)ggator. While the gluon

propagator is the most straightforward to measure, it isahail the best one with respect to the
statistical fluctuations.
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