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1. Introduction

In the light of the expected progress in flavour physics thanks to the inmpemBdphysics
experiments [1, 2], precision lattice QCD more and more becomes to playialefile for a quan-
titative and accurate interpretation of these experimental results in the frakteithe Standard
Model and beyond, since it provides a theoretically sound approadntperturbatively compute
the contributing matrix elements of operators among hadronic states.

A particular problem of dealing with heavy-light systems involving the b-kjaesrthe heavy
flavour by means of lattice QCD consists in the two disparate intrinsic scalesdizily accom-
pany any lattice calculation: the lattice spaciaghas to be much smaller thariry, in order to
allow for a fine enough resolution of the B-meson states in question, and &z kmtent of the
lattice volume,L, has to be large enough for finite-size effects to be under control. yHeasrk
Effective Theory (HQET) on the lattice [3, 4], however, which reliesmp systematic expansion
of the QCD action and correlation functions in inverse powers of the hgaagk massrf) around
the static limit, offers a formally reliable solution to this problem. Still, for lattice HQEW &g
numerical applications to lead to precise results with controlled systematis @rrpractice, two
shortcomings had to be left behind first.

One is the exponential growth of the noise-to-signal ratio in static-light letiwa functions,
which is a consequence of the appearance of power divergencesefightive theory. As demon-
strated in studies in the quenched approximation [5—9] as well as in the thitbriNs = 2 dy-
namical quarks [10], this problem can be overcome by a clever modificafidhe traditional
Eichten-Hill discretization of the static action.

Another difficulty, more serious on the theoretical level, is associated witaftmiementioned
power divergences. Since in the effective theory mixings among opsiattdifferent dimensions
are present, already the static limit of HQET is affected by a power-lawgbwne (~ gg /a) additive
mass renormalization. Unless the theory is renormalized non-perturbdtiig)yit follows from
this power-law divergence of lowest-order HQET — and, of coumsenffurther ones- gcz)/an+l
that arise at Q1/m"), n > 1 — that the continuum limit does not exist owing to a remainder, which,
at any finite order [12 —14] in perturbation theory, diverges in the cantmlimit.

In ref. [15] a general solution to the latter has been worked out and meatg implemented
for a determination of the b-quark’s mass in the static and quenched apptmns as a test case.
The method is based onnan-perturbative matching of HQET and QCD in finite voluritavas
subsequently extended to also include théd &n) terms into the quenched computations of the
mass of the b-quarlmom(ﬁb) [16] (see refs. [17, 18] for recent reviews in broader context)l, a
of the B-meson decay constant [19].

An attractive property of the strategy, briefly summarized in Section 2, isrthat parts of the
actual calculation do not involve very large lattices. Hence, it is naturartwove the quenched
approximation as the dominating remaining systematic uncertainty in our previmks wsing
this method. The additional computational effort required if dynamicalkguare included is
only moderate, except for the last step that involves the extraction of Brm@®perties from
simulations in physically large volumes (with spatial extentszdtfm or more) and thus will be
computationally much more demanding than the finite-volume simulations for thearturiative
renormalization part.
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In the present report we outline the various steps towards an HQET ¢atigouof the mass of
the b-quark including the @/m) correction along the lines of refs. [15, 16] in two-flavour lattice
QCD, where most of the emphasis is put on the renormalization of the effdbory through
the non-perturbative matching to QCD in finite volume in order to perform theepdivergent
subtractions. This step requires, in particular, a determination of the relettoreen the renormal-
ization group invariant (RGI) and the subtracted bare heavy quark iméiss relevant parameter
region of Nf = 2 QCD, which we present together with numerical results on the corrdspmpn
renormalization constant and improvement coefficients in some detail in S&ctiRasults from
the matching itself, which has just been started at the time of writing, as webmasifre necessary
simulations of the effective theory in small and intermediate volumes will only hitadole at later
stages of our project.

2. Survey of the computational steps

HQET
in large
volume: 0.5fm
mp
Fp
P O (L, My,)
it
matching
Ok
(DEQET(LQ, M) (DEQET(L], M)

Figure 1: The strategy for performing computations in lattice HQE®& &inon-perturbative determination
of the HQET parameters from QCD simulations in a small voluthés designed such that steps indicated
by arrows are to be repeated at smaller lattice spacingsid re continuum limit.

Let us briefly recall the general strategy, introduced in [15]. It alléersa formulation of
(zero-velocity) HQET in the framework of lattice QCD, where all steps ottiraputations includ-
ing the renormalization are carried out non-perturbatively and the camidimit can be taken.

The basic idea is illustrated in figure 1 and starts from a finite volume of ekfent0.5fm.
There, one chooses lattice spacimgsufficiently smaller than Am, such that the b-quark propa-
gates correctly up to controllable discretization errors of oederSince the relation between the
RGI mass and the bare mass in QCD is known [20], suitable finite-volumevalxesd, (L1, Mp)
can be calculated as a function of the RGI b-quark milgs,and extrapolated to the continuum
limit. The next step is to perform the power-divergent subtractions motugbatively by a set of
matching conditions, in which the results obtained 4y are equated to their representation in
HQET (r.h.s. of figure 1). At the same physical valued_gfbut for resolutiond.; /a = O(10), the
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previously computed heavy-quark mass dependengg @f;, Mp) in finite-volume QCD may be
exploited to determine the bare parameters of the effective theoy40(0.025— 0.05)fm. In
order to evolve the HQET observables to large volumes, where contacexptriments can be
made, one also computes them at these lattice spacings in a larger viojJumal, ;. The resulting
relation betweer(L1) and®dy(L2) is encoded in associated step scaling functmnss indicated
in figure 1 as well. Finally, the knowledge @ (L2, M) and employing resolutiors,/a = O(10)
fixes the bare parameters of the effective theoryafer (0.05— 0.1)fm so that a connection to
those lattice spacings is established, where large-volume observaldlesgssthe B-meson mass
or decay constant, can be calculated (I.h.s. of figure 1).

Having in mind the computation &fl, as the specific application, this sequence of steps yields
an expression afg (taken to be the physical input) as a functionyf via the quark mass depen-
dence ofdy(L1,Mp), which eventually can be inverted to arrive at the desired physical wdlue
the RGI b-quark mass extracted from the effective theory. As pointetefore, the whole con-
struction is such that its various pieces separately have a continuum limit. Witiedhzation
of this strategy for the quenched case it was shown in ref. [16] thateardimation ofMy, in-
cluding Q(1/m) in HQET only requires up to three matching observables,®, and®s, if the
spin-averaged B-meson mass is used as physical input. That is alsdhiveepaill follow in our
present extension to the case of two-flavour QCD.

2.1 Definition of the matching volume

We consider QCD withNs = 2 mass-degenerate dynamical quarks, which are identified with up
and down. All other quarks are treated in the quenched approximatioartésydarly convenient
renormalization scheme, in which finite-volume observables suitable for-perurbative match-
ing of the effective theory with QCD can readily be constructed [15, 2],,i8 the Schrédinger
functional (SF) [23]. Relativistic and static quarks were introduced 43 §d [25], respectively,
where in the latter reference it was found that the HQET expansion obilnedary quark fields is
trivial up to and including Im-terms! Adopting any unexplained notation from refs. [15, 25], we
only mention the periodicity phag®of the fermion fields as a further kinematic parameter and the
fact that homogeneous Dirichlet boundary conditions in timeat 0 andxg = T are employed.
Since the paramete® and masses of the quenched quarks can be set independently of those o
the sea quarks, the basic situation for extracting heavy-light physics3#o correlation functions
is the same as in the quenched approximation [15, 16]. Moreover, in thevolitene simulations
we setf = 0.5 for the dynamical light quarks and their PCAC mass to zeres 0.

The quantitiegpy that enter the non-perturbative matching procedure described aboee h
to be evaluated in the continuum limit. To this end we want to compute them for & sdrie
bare parameterd./a, 3, k) such that the renormalized parameters in the light quark sector are
fixed and thereby physics is kept constant along the approach to thiewzon limit. Here, K
denotes the hopping parameter of the dynamical light quarks.c@nstant physics conditioon
the renormalized SF coupling?(L), and the light quark mass reads

o L
G(Lo)=2989, Lo=—, Lom(Lo)=0. (2.2)

1From now onm generically denotes the mass parameter of the heavy quark treated ffethiwetheory, while
the masses of the non-degenerate quark flavours in the relativistiy #reodistinguished explicitly where necessary.
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This choice nowdefineghe spatial extert; of the volume, in which the matching between HQET
and QCD is performed. Although an exact knowledgé pin physical units in not yet needed at
this stage, one can already infer from the known running of the SF caufdir\; = 2 [26] that

L1 ~ 0.5fm. Hence, we will finally havé, = 2L; ~ 1fm and thud.., = 4L ~ 2fm for the large
volume, which is well consistent with the envisaged strategy, figure 1.

We have fixed)?(L1/2) = 2.989 by a new simulation &fy/a= 20, T = Lo, and made tentative
interpolations i3 = 6/95 for givenLo/a < 16 to this target value, based on the known dependence
of the SF coupling and the current quark mass on the bare pararf@tessavailable from the data
of ref. [26]. Using the knowr—function and our experience from the quenched calculation [16],
we can estimate that an uncertainty of abaQ#dn the coupling will translate via the resulting one
in L1 into an uncertainty in the b-quark mass of at mas&%0. The condition of zero light quark
mass in eq. (2.1) is met by settimg= k; to the critical hopping parametex;, estimated again
on basis of published data [26], whereby a slight mismatdhgf (Lo)| < 0.05 of this condition
is tolerable in practice. The triplé&o/a, B, k), which approximately define the extdnt of the
matching volume through eq. (2.1) and which are used in our subsedqudgtcf improvement
and renormalization factors, are collected in columns 2 — 4 of table 1 in Section 3

The preliminary interpolation procedure fg#(B) underlying thesg—values is currently be-
ing checked (and refined) by direct simulations, in order to avoid a rgfigible systematic error
from small violations of the condition (2.1) on the final results. Yet, this wiketffour estimates
of b, andZ in Section 3 only at a negligible level, because there any deviation from thefline
constant physics only entails a small change of tha?Deffects.

2.2 Fixing the heavy quark mass in finite-volume QCD

Having fixedL; via enforcing constant physics by = L1/2, the computation of the heavy
guark mass dependence of the finite-volume observablewhich is the key element in the non-
perturbative matching step within our strategy, will amount to evaluate higgwySF correlation
functions in a volumé3 x T, T = L,, for a series of precisely fixed values of the renormalized
heavy quark mass covering the b-quark mass region.

This is achieved by exploiting the(@) improved relation between the (subtracted) bare heavy
quark massng and the RGI mass [20, 27], viz.

M = h(Lo) Zm(Go. Lo/@) Mgn (1+ bm(go) amyn) + O(a?) , (2.2)
where . . 1/1 1
Zm(Qo,Lo/a) = %a amyh = > <K_h - K_c> (2.3)

andZy is known non-perturbatively from ref. [28]. The scale dependenbrmalization constant
Zp may be calculated for the relevant couplingsL@rx T lattices withT = Lo in the same way as
in ref. [20]. The factor

M 1 2
h(Lg) = —— =1.521(14 =—=— 2.4
( 0) r_n(IJO) 1( ) »  Ho L Ll 3 ( )
represents the universal, regularization independent ratio of the vlylguark massdy, to the
running quark massin the SF scheme at the renormalization s¢aleh(Lo) was evaluated by a

reanalysis of thé&; = 2 non-perturbative quark mass renormalization data published in réf. [20
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Therefore, in order to specify the hopping parameters of the heawuflas,, which according
to eq. (2.2) for giverh; /a= 2Lo/aandB = 6/g3 correspond to a series of dimensionless RGI quark
mass valueg = L1M in the b-quark region, it remains to accurately determine the improvement
coefficientby, and the renormalization constafit We discuss this computation for the relevant
weak coupling range (cf. table 1) of(& improved two-flavour lattice QCD in the next section.

2.3 Preparing for the finite-volume computations

2.3.1 Matching to QCD

As mentioned in the foregoing subsection, on the QCD side this step consiskslitatiag the
quark mass dependence of the quantitigs®, and®s in the volumeL . For the exact definitions
of these effective heavy-light meson energies in terms of SF correlatrsfer to ref. [16]. In
addition toL3 x T, T = Ly, lattices withT = L1 /2 will also be needed (cf. Appendix C of [16]).

The aforesaid fine-tuning ¢8 for L;/(2a) < 16 to satisfy the conditiog?(L;/2) = 2.989,
eq. (2.1), with a precisiong? < 0.04 requires up toL/a)* = (2Lo/a)* = 40* lattices withN; = 2
at sea quark parameters close to those quoted in table 1 in order to reachtiheum limit.

2.3.2 Parameters for HQET simulations inL% x Twith T=Lj,L1/2

For the determination of the step scaling functibas— L, = 2L; belonging to theby’s coun-
terparts in HQET, we must fix the simulation parameters for resolutiond.§/a < 16. The cor-
responding constraint on the renormalized couplingas g?(L;1) = 0(2.989) = 4.484(48) [26].

As a starting point for the tuning af?(L;) at eachlL;/a, we introduce another low-energy
scale L*, defined viag?(L*) = 5.5 and obeying [29]

In(L*/a) = 2.3338+1.4025(8 —5.5), B <[53,58], L*/ac|[7.8,161], (2.5)

which allows to estimate the ratrg = L1 /L* ~ 0.8 in the continuum limit. Trial3—estimates for
the range ol.;/a in question are then obtained from the parameterization (2.5) and improved by
further simulations, aiming at a precision&d? < 0.1. This will be finished soon.

Small mismatches of the simulation results w.r.t. the target valuesg?(ke;) = 4.484 and
Lym(L;) =0, may be corrected by the non-perturbagBsfunction and the mass derivative of the
coupling [26, 29].

2.3.3 Parameters for HQET simulations inLg x T with T =Ly, Lp/2

To prepare for the power-divergent subtractions in the volume of exten 211 ~ 1fm within
the effective theory that eventually provide the link to HQET observablésarphysically large
volume (of extentL), the two-flavour theory will have to be simulated at typical resolutions of
aboutl,/a= 8,12 16 and lattice spacings corresponding 85 3 < 5.9.

For fixing the necessary simulation parameters by means of the conditioredfdoupling
g?(Lz), one can rely again on the scaleand its ratio to_y, r2 = Lo/L*| continuum= 1.6, and infer
the wanted pairéL,/a, B) from eq. (2.5).
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3. Computation of the missing improvement and renormalizaiton factors

We now present our non-perturbative determination of the improvemefftaentb,, and the
renormalization constarzt in the B—range relevant for the matching of HQET to QCD in small
volume, such that the RGI heavy quark mass can be set to desired xalugd/.

Our generation of unquenched gauge configurations with SF boundadjtions forNy = 2
O(a) improved massless Wilson quarks employs the hybrid Monte Carlo (HMC)itdgof30] in
its variant used in the study of autocorrelation times in ref. [31]. It compnsalti-time-scale inte-
gration schemes [32, 33] with mass preconditioning [34 — 36] on top of-eddmpreconditioning.

3.1 Non-degenerate current quark masses and estimators ftm — bp, by, and Z

We proceed following the idea of imposing improvement conditions at congtgstcs, which
was first advocated in [27] and already applied to the present situatidartik = 0 in [21].

Since the definition (2.1) df; via the renormalized couplingf(L1/2) = §%(Lo), respectively
the bare parameters in columns 2 — 4 of table 1 complying with it, have such taebphysics
condition built in from the start, we can directly work at those pairslgf/a, 3). With this as our
choice of improvement condition, supplemented by the SF-specific settingsmtboundary fields,
6 = 0.5 and — just for the purpose of this section Ly = 3/2, the improvement coefficients
ba — bp andby, and the renormalization constahitoecome smooth functions gf in the region
where they are needéd.

Taking over any unexplained notations and details from refs. [21,&2i] (eferences therein),
ba — bp, by andZ can be determined by studying QCD with non-degenerate valence quiaeks-
ing the latter in the quenched approximation, the structure of tlag idproved theory in conjunc-
tion with a massless renormalization scheme retains the relative simplicity f th@ case elabo-
rated in ref. [27]. For instance, the improvement of the off-diagonaldsliriieldsX* = X1 +iX?,

X = Ay, P, emerging as a consequence of the broken isospin symmetry in flavaer; spthe same
as in the degenerate case, except thabtoeefficients now multiply the averagg¢amy, +any,j)

of the subtracted bare quark masseg; = mg; — m¢, which themselves are separately improved
for each quark flavour:

qu = My (1+ bmamm) . (3.1

(Here and below the indiceésj label the different quark flavours.) Identifying the valence flavours
in the isospin doublet with a light (strange) and a heavy (bottom) quark otinesponding PCAC
relation reads

OuA; (X) = (my +my)PE(x) (3.2)

and the renormalization constarig and Zp that come into play upon renormalization are just
those known in the theory with two mass-degenerate quarks.

Accordingly, the SF correlation functions involving the axial current #mel pseudoscalar
density generalize td, (x0) = —2 (A{(X)O~) and fJ (xo) = —1 (P*(x)O™), with pseudoscalar
boundary sources decomposedais= O'+i0? whereO* = a®y, ,{(y)y 3 12 (z). Then the

2Although the difference of coefficientsy — bp is actually not needed for fixing the RGI mass through eq. (2.2),
we include it in the present discussion.
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improved bare PCAC (current) quark massas functions of the timeslice locatiog are given by

ot (x0) + acad§do £
mj(XO;LO/aaT/Lan): 0 A(XO) ijA = P(XO>
215 (Xo)

where only here we explicitly indicate their additional dependenceogn, T /Lo and6. In the
degenerate casesw |, the correlators assume the standard form,rapnglst reduces to the current
guark mass of a single quark flavour that is prepared by a corresygpeitbice of equal values for
the associated hopping parametass= Kj. Also the precise definition of the lattice derivatives in
eg. (3.3) matters. As itis written ther;Q) = %(doJr d%) denotes the average of the ordinary forward
and backward derivatives, but as in refs. [21, 27] we have useniiproved derivatives

, (3.3)

o — 0o (1— 2a20%50) , 9600 — 9500 (1— & 82050) (3.4)

as well, which (when acting on smooth functions) havega?,a*) errors only.
For their numerical calculation, the coefficiebis— bp, by, and the finite facto? = ZnZp/Za
(see eq. (2.3)) are isolated by virtue of the identity

M =Z | § (Mqi+Mgj) +3bm (an,; +an, ) — § (ba—be)a(myi +my;)° | +0() . (35)

It is obtained by equating the expression for th@Qmproved renormalized quark mass in terms
of the bare PCAC mass with the alternative expression in terms of the sutitb@ctequark mass.
Forming ratios of suitable combinations of degenerate and non-degeoenast quark masses in
the representation (3.5) then enables to derive direct estimatdg fobp, by, andZ [27]:

2(2mg2 — My — M)
(M1 — Mp2) (a1 — any,2)
4(my2 — mga)

Rn = = by + O(amy1+amy2), 3.7

(My1 — mp2) (amy,1 — amy,2) " (amy +amy2) S

with mp 3 = %(mql + Mg 2), neglecting other quark mass independent lattice artifactg @f. Gor
the renormalization constadtan analogous formula holds even up ta corrections,

Rap = = ba—bp+ O(amy1+amy2), (3.6)

= M1 — My

Mg,1 — Mg 2
if the correct value foba — bp — by, = Rap — R (0nly involving correlation functions with mass
degenerate quarks) is inserted. Note that generically the combiratioB,Zp/Zx is a function
of the improved bare couplingg = g3 (1+ bgamy,). Since, however, we only consider light sea
quarks that are massless (i.e. such thatz 0) and the valence quarks are anyway treated in the
guenched approximation, this fact can be ignored here.

Still, to complete our definition of the line of constant physics, values for tle BEAC

masses of the valence quarks must be selected. As in [21], we considpaits,

+ (ba — bp—bm) (@M1 +amp) = Z+ 0 (a?) (3.8)

choicel: Lgmp~0, Lgnpo=0.5, (3.9)
choice2: Lomi~0, Lompyr~24. (3.10)

3This expression for the PCAC masses is onfpOmproved up to a factor % %(bA —bp) (amy,i +amy ;) for quark
mass dependent cutoff effects.
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set Lp/a B K| Kh Lompo ba —bp bm Z

1 10 61906 0136016 0134318 049296) —0.00069) —0.66439) 1.10461
12 63158 0135793 0134378 049529) -0.0032) —0.6682) 1.10502
16 65113 0135441 0134387 04921) —0.0062) —0.6673) 1.10442

)
)
)
20 66380 0135163 0134356 050059) —0.0053) —0.6693) 1.10382)

2 10 61906 0136016 0127622 229095) -+0.07274) —056553) 1.09541)
12 63158 0135793 0128755 234757) +0.05135) —0.57855) 1.09741)
16 65113 0135441 0130146 2407(1) +0.02977) —0.59648) 1.09951)
20 66380 0135163 0130965 244338) -+0.02156) —0.60768) 1.10021)

Table 1: Lattice parameters and numerical results on the improveowificientsba — bp andby, and on
the renormalization constad@t The parameterfio/a, 3,k) referring to the light (sea) quark sector have
fixed SF couplingg?(Lo) = 2.9(1), and vanishing quark mass such as to meet the constant glegsidition

of Section 2.1. Our results fdm, — bp, by, andZ are based on statistics varying front300) measurements
(Lo/a= 20) to 2000 measurementd_g/a = 10). The upper set refers to “choice 1", eq. (3.9), where
the heavy quark mass is keptlaimyz = 0.5, while the lower set belongs to “choice 2" witlymy, ~ 2.4,

eg. (3.10). The conditiohgmy; = 0 is fulfilled up to negligible deviations of aboutd15 at most.

The first choice or.gmy, is motivated by the quenched investigation [27], where it was argued to
be advantageous w.r.t. the size dfa@Dambiguities encountered, while with the second choice one
is closer to the typical b-quark region itself. Satisfying these conditiorigon; for all (Lo/a, )

in table 1 demands to properly adjust the hopping parameter, cajlabove, that is responsible
for the mass value of the heavy valence quark flavour. This in turn amtwupt#r evaluations of

the relevant correlation functions on the dynamical gauge backgraursdme trial guesses &f,,

in order to estimate the heavy flavour's PCAC mass through eq. (3.3) anddattio the values
dictated by egs. (3.9) and (3.10) up to a few peréefihe resulting hopping parameters are given
in the fifth column of table 1.

3.2 Results

The technical aspects of the analysis to compute the estimators (3.6) —¢&8h& numerical
data on the heavy-light SF correlation functions by means of the PCAC sragder the various
(degenerate and non-degenerate) valence quark mass combinaitdressame as in refs. [21, 27].
The correlators have been evaluated on our dynamical gauge fielduatibns, which were gen-
erated orLg x T lattices withT = 3L/2 and massless sea quarks (thus complying with the above
requiremenk; = K. resp.Lohm 1 ~ 0 for the light valence quark flavour) and which were separated
by 5 — 10 HMC trajectories of length one. As for thg themselves, they have been calculated
from the local masses, eq. (3.3), using improved derivatives (3.4)ghaut and averaging over
the central timeslicekg/(2a), ..., (T —Lo/2)/ato increase statistics. Being secondary quantities
in particular, the statistical errors of the masses and oRheX = AP, m,Z, obtained from them
were estimated by the-method [37], which directly analyzes autocorrelation functions.

4Similar to the situation in refs. [21, 27], this is to sufficient precision edaiveto keeping fixed the corresponding
renormalized masségZam/Zp, as for the considered couplings the entering renormalization consteely lvaries.
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Figure 2: Two sets of non-perturbative results fog — bp in the considered region of bare couplings,
referring to our two choices of quark masses, together \uittprediction from one-loop perturbation theory.
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Figure 3: The same as in figure 2 but for the improvement coeffidignt

Our non-perturbative results dm — bp, by, andZ are also listed in table 1. As a consequence
of the underlying constant physics condition (2.1), the estinfateX = AP,m, Z, become smooth
functions of the bare coupling3 = 6/B. This is well reflected in figures 2 — 4, where our results
are shown in comparison with the one-loop perturbative predictions g7, 3

The overallg%—dependence of our results is qualitatively similar to the quenched stufly [21
and even comparable on the quantitative level. WheRaass compatible with a nearly vanishing
ba — bp, as predicted by leading-order perturbation theory, for “choice 1§u#Hrk masses and
appears to approach this line quite rapidlygds- O for “choice 2", one observes for both choices
significant deviations of the sets of estimateslfigrandZ from the leading perturbative behaviour
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Figure 4: The same as in figure 2 but for the renormalization congtant
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Figure 5: Left: Difference of the two sets of results in table 1 on theorenalization constar® versus
(a/Lo)?. Right: The same for the improvement coefficibptwhere, however, the ambiguity inherent in any
improvement condition imposed is of(8). The open black triangles display the corresponding queshch
results from [21] for comparison.

in the weak coupling region considered. Since one expects the penterbatives eventually to be
approached in the Iimiyg — 0 also in case db,, andZ, the curvature seen in our numbers hints
at a more complicated structure of (unknown) higher-order terms. Heviedave to conclude
that if an improvement condition were used in a region of stronger couplimgieh would no
doubt lead to a rather different set of data points, simple one-loop patiomn theory would not
be an adequate guide for the continuatiorb@fandZ to weak couplings. On the contrary, this
would induce a source of uncertainty in results deriving from them thaffisudt to control and,
therefore, highlights the importance of employing improvement conditions iA-th@nge relevant
to the actual application.

Of course, any other estimai (i.e. stemming from a different choice of renormaliza-
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tion/improvement condition) may yield a different functional dependencm g@, but its differ-
ences are again smooth functions that vanish in the continuum limit with a rggerpomal toa/Lo
(for improvement coefficients) dfa/Lo)? (for renormalization constants). These intrinsita®)
ambiguities (= 1,2) imply that rather than a numerical value at some gf¥etine important infor-
mation lies in the correcg%—dependencef the estimatorfx, X = AP, m, Z, obtained atonstant
physics To demonstrate this, we also investigated a few alternative improvemernticoagwhich
are either provided by defining the estimatBgswith standard instead of improved derivatives or
by the two quark mass choices, egs. (3.9) and (3.10), themselves. Asuaple we plot in the
left panel of figure 5 the differenchZ(g3) = Z(g3)| choice1— Z(G3)| choice 2 Versus(a/Lo)?, which
clearly exhibits a linear approach towards zero. Other cases behavelgimilg. the @a) ambi-
guities forAbm(g3) = bm(g3)| choice 1— Bm(03)| choice2in the right panel of figure 5 are found to be
quite small, and their magnitude rapidly decreases/as — O.

4. Outlook

Apart from the elements sketched at the end of Section 2, which parthjraeglgin progress,
the computation of the b-quark mass at thentorder of HQET along our strategy illustrated in
figure 1 still requiredNs = 2 simulations inL, ~ 1fm as well as in physically large volumes of
aboutL., = 2fm. Particularly for the latter we plan to switch to QCD with periodic boundary
conditions and to use the technigue of low-mode deflation [39] in connecitbrali+to-all quark
propagators [40] for the numerical evaluation of correlation functions.

As further interesting directions for future work let us mention the nomdpleative tests of the
HQET expansion in the spirit of ref. [22] and the extension of our detatian of improvement
coefficients an@—factors to the parameter range relevant for (large volume) charnicghys
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