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We present non-perturbative renormalization factors for ∆S = 2 four-quark operators in quenched
domain-wall QCD using the Schrödinger functional method. Non-perturbative renormalization
factor for BK is evaluated at hadronic scale. Combined with the non-perturbative RG running
obtained by the Alpha collaboration, our result yields renormalization factor which converts lat-
tice bare BK to the renormalization group invariant one. We apply the renormalization factor
to bare BK previously obtained by the CP-PACS collaboration with the quenched domain-wall
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1. Introduction

The Kaon B parameter

BK =
〈K0|s̄γµ(1− γ5)d · s̄γµ(1− γ5)d|K0〉
(8/3)〈K0|s̄γµγ5d|0〉〈0|s̄γµγ5d|K0〉

(1.1)

is one of the fundamental weak matrix elements which have to be determined theoretically for de-
ducing CP violation phase of the Cabibbo-Kobayashi-Maskawa matrix from experiments. Lattice
QCD calculation may be an ideal tool to determine the matrix element precisely from the first prin-
ciple. An essential step towards precise determination of BK is to control systematic error in the
renormalization factor. Recently non-perturbative renormalization factor is preferably employed to
remove errors in the perturbative one. Among several non-perturbative schemes on the lattice the
Schrödinger functional (SF) scheme [1] has an advantage that systematic errors can be evaluated
in a controlled manner.

A few years ago the CP-PACS collaboration calculated BK using quenched domain-wall QCD
(DWQCD) with Iwasaki gauge action [8]. Their result was renormalized perturbatively at one loop
and have shown a good scaling behavior with small statistical errors. A main purpose of this paper
is to derive a non-perturbative renormalization factor ZBK which convert the bare BK of the CP-
PACS collaboration to the renormalization group invariant (RGI) B̂K . We adopt the SF scheme
as an intermediate scheme to avoid systematic uncertainties due to the finite lattice spacing. The
renormalization factor ZBK (g0) is given at a fixed bare coupling and its non-perturbative evaluation
is decomposed into three steps in the SF scheme as

ZBK (g0) = ZPT
VA+AV (∞,µmax)ZNP

VA+AV (µmax,µmin)ZNP
BK

(g0,µmin). (1.2)

We start from a renormalization factor at a low energy hadronic scale µmin

ZNP
BK

(g0,µmin) =
ZVV+AA(g0,µmin)

Z2
A(g0)

, (1.3)

where ZVV+AA is a renormalization factor for the parity even part of the left-left four-quark operator
and ZA is that for the axial vector current. A reason why we define the renormalization factor at
the hadronic scale is to suppress lattice artifacts by a condition aµmin ≪ 1. This factor depends on
both renormalization scheme and lattice regularization. Multiplying it with a lattice bare operator,
the regularization dependence is canceled and only the scheme dependence remains.

ZNP
VA+AV (µmax,µmix) represents non-perturbative RG running of the parity odd part of the left-

left four-quark operators from the low energy scale µmin to a high energy scale µmax = 27µmin,
where perturbation theory can be safely applied. Among three steps this requires the most exten-
sive calculation. Since this factor evaluated in the continuum limit does not depend on a specific
lattice regularization, we can employ ZNP

VA+AV (µmax,µmin) evaluated previously by the Alpha col-
laboration with the improved Wilson fermion action[2], instead of calculating it by ourselves. Even
though renormalization factors for the parity even and parity odd parts differ on the lattice without
chiral symmetry, the difference disappears in the continuum limit, where the chiral symmetry is
recovered.
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The last factor ZPT
VA+AV (∞,µmax) is the RG evolution from the high energy scale µmax to infinity,

which absorb the scale dependence to give the RGI operator. Since we are already deep in a
perturbative region at µmax we can evaluate this factor perturbatively. Two loop calculation is given
in Ref. [3]. Note that scheme dependence is also canceled at this stage and the RGI operator
becomes scheme independent.

Our target in this study is the calculation of the first factor ZNP
BK

(g0,µmin). In order to further
reduce the computational cost we use a relation that ZV = ZA implied by the chiral symmetry
of DWQCD in SF scheme [4], together with another one that ZVV+AA = ZVA+AV , which will be
numerically checked later, and adopt the following definition throughout this paper,

ZBK (g0,µ) =
ZVA+AV (g0,µ)

Z2
V (g0)

. (1.4)

2. Renormalization conditions for four-quark operator

Since we utilize the step scaling function (SSF) obtained by the Alpha collaboration [2] as
an intermediate RG running factor from µmin to µmax, the same renormalization scheme should
be adopted for our calculation of ZNP

BK
(g0,µmin). The renormalization condition is given by the

following correlation function [2]

FΓAΓBΓC(x0) =
1
L3 〈O21[ΓA]O45[ΓB]OVA+AV (x)O ′

53[ΓC]〉, (2.1)

where subscripts 1 ∼ 5 represent quark flavours and OVA+AV is the parity odd four quark operator
which consists of four different flavours from 1 to 4. Boundary operators Oi j and O ′

i j are given in
terms of boundary fields ζ and ζ ′ [1] as

Oi j[Γ] = a6 ∑⃗
x⃗y

ζ̄i(⃗x)Γζ j (⃗y), O ′
i j[Γ] = a6 ∑⃗

x⃗y
ζ̄ ′

i (⃗x)Γζ ′
j (⃗y). (2.2)

Due to the SF boundary condition for fermion fields the boundary operator should be parity odd
and we have two independent choices Γ = γ5 and Γ = γk (k = 1,2,3). For the correlation function to
be totally parity-even we need at least three boundary operators in (2.1). Logarithmic divergences
in boundary fields ζ ’s can be removed by the boundary-boundary correlation functions;

f1 = − 1
2L6 〈O

′
12[γ5]O21[γ5]〉, k1 = − 1

6L6

3

∑
k=1

〈O ′
12[γk]O21[γk]〉. (2.3)

We adopt the following three choices [2], whose perturbative expansions behave reasonably well
[3]:

h±1 (x0) =
F[γ5,γ5,γ5](x0)

f 3/2
1

, h±3 (x0) =
1
3 ∑3

k=1 F[γ5,γk,γk](x0)

f 3/2
1

, h±7 (x0) =
1
3 ∑3

k=1 F[γ5,γk,γk](x0)

f 1/2
1 k1

. (2.4)

We call three renormalization schemes defined through these correlation functions as scheme 1, 3,
7 according to the Alpha collaboration [2].

We impose the following renormalization condition

Z±
VA+AV ;s(g0,µ)h±s (x0 = L/2;g0) = h±(tree)

s (x0 = L/2) (2.5)
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NL 6 8 10 12 14 16 18
β 2.4446 2.6339 2.7873 2.9175 3.0313 3.1331 3.2254

ZBK ;1(g0) 1.22(2) 1.32(2) 1.35(2) 1.39(2) 1.40(2) 1.41(3) 1.42(3)

Table 1: β values which gives the same box size 2Lmax for each lattice sizes NL.

where s labels the scheme. This means that the renormalized correlation function should coincides
with that at tree level in the continuum at the middle of the box x0 = L/2. The renormalization scale
at the low energy (hadronic scale) is introduced by the maximum box size 1/µmin = 2Lmax, where
Lmax is defined through renormalized coupling ḡ2(1/Lmax) = 3.480 in the SF scheme. This box
size corresponds to Lmax/r0 = 0.749(18) [5] in the continuum limit, so that µmin = 1/2Lmax ∼ 263
MeV using the Sommer scale r0 = 0.5 fm.

3. Numerical simulation details

The CP-PACS collaboration has calculated the lattice bare BK in quenched DWQCD with
Iwasaki gauge action at the domain wall height M = 1.8 and the fifth dimensional length N5 = 16
[8]. In order to renormalize this BK we adopted the same lattice formulation as in the above. The
SF formalism for Iwasaki gauge action is given in Ref. [5]. For a domain-wall quark we adopted
the orbifolding construction [6] to realize the SF boundary condition. We employ the same size for
the temporal and the spatial directions T = L. We take the mass independent scheme in massless
limit where all the physical quark masses are set to zero.

Three lattice spacings β = 2.6, 2.9 and 3.21 are employed corresponding to a−1 ∼ 2, 3 and 4
GeV in the previous simulation [8]. In order to cover these three β ’s we take 7 lattice sizes. At
each lattice size we tune β to satisfy aNL = 2Lmax = 1.498r0 using the following fit formula [5]

ln
(

a
r0

)
= −2.193−1.344(β −3)+0.191(β −3)2, (3.1)

which covers 2.456 ≤ β ≤ 3.53. Lattice sizes and corresponding β values are listed in Table 1.
Quenched gauge configurations are generated by using the HMC algorithm. First 2000 trajec-

tories were discarded for thermalization. We calculate the correlation functions on each configura-
tion separated by 200 trajectories. We employed 500 to 1000 configurations in this paper.

4. Non-perturbative renormalization of BK

In this section we evaluate the renormalization factor ZBK ;s(g0), which convert the lattice bare
BK(g0) in DWQCD to the RGI B̂K . Combining our renormalization factor ZNP

BK ;s(g0,µmin) with
the RG running factor ZPT

VA+AV (∞,µmax)ZNP
VA+AV (µmax,µmin) given by the Alpha collaboration, we

obtain the renormalization factor ZBK ;s(g0) at each β . A result is given in Table 1 for scheme 1. In
order to obtain the renormalization factors at β = 2.6, 2.9 and 3.2 we fit it in a polynomial form,
ZBK ;s(g0) = as +bs(β −3)+ cs(β −3)2.

1The data at β = 3.2 is new and not published in [8]
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Figure 1: Scaling behavior of RGI B̂K (left panel) and BK(MS,2GeV) (right panel). Our results are shown
by open circle (scheme 1), open up triangle (scheme 3) and open diamond (scheme 7). Previous results with
tmQCD [2] and DWF [9] are also shown by open down and right triangles. In the right panel result of the
KS fermion [7] and DWF [8] with perturbative renormalizations are also given. The continuum results are
slightly shifted to avoid overlaps.

Multiplying it to the bare BK(g0) we obtain the RGI B̂K , whose scaling behavior is shown
in the left panel of Fig. 1. We also evaluate the renormalized BK in MS scheme with naive di-
mensional regularization (NDR) at a scale µ = 2 GeV. The scaling behavior of BMS

K (NDR,2GeV)
is given in the right panel of Fig. 1. Since the scaling violation is negligible, it is reasonable
to take the continuum limit by a constant extrapolation. We arrival at B̂K = 0.773(7)( +5

−13) and
BMS

K (NDR,2GeV) = 0.557(5)( +4
−10), where central values are taken from the scheme 1, the first

parenthesis gives statistical error, and upper(lower) error in the second parenthesis denotes differ-
ence between schemes 1 and 7(1 and 3). These are main results in this study.

5. Additional investigations

We perform two additional calculations. One is to study the scaling behavior of SSF defined

by Σ±
VA+AV ;s(u,a/L) =

Z±
VA+AV ;s(g0,a/2L)

Z±
VA+AV ;s(g0,a/L)

∣∣
ḡ2(1/L)=u in DWQCD. The other is to investigate a size of

chiral symmetry breaking effects in renormalization factors.

5.1 Scaling behavior of SSF at u = 3.480

We investigate the SSF at strong coupling, u = ḡ2(1/Lmax) = 3.480, for four different β ’s. In
the left panel of Fig. 2 we show a dependence of our SSF (open square) and the continuum limit of
the Alpha collaboration [2] (star). We find that scaling violation of our SSF is large and oscillating
at M = 1.8. We speculate that this bad scaling behavior is caused by the O(a) boundary effect in
the SF scheme of DWQCD, not by the O(a) bulk chiral symmetry breaking effect. To see this we
calculate the SSF at tree level, where N5 → ∞ limit is already taken. We plot its scaling behavior
by open circles in the left panel of Fig 3, where the similar sort of oscillating behavior is observed
at M = 1.8. To exclude a possibility that the large scaling violation is caused by the bulk chiral
symmetry breaking effect, we calculate N5 dependence directly at u = 3.480. Indeed comparisons
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Figure 2: Scaling behavior of SSF for ZVA+AV ;1(left panel) and for ZBK (right panel). Open squares are
results for M = 1.8 and open circles are for M = 1.4 without improvement. Filled diamonds denote results
for M = 1.8 with tree level improvement. Star symbol denotes the continuum limit.

between N5 = 8 and N5 = 16 for ΣVA+AV ;s(u,L/a = 4) and between N5 = 32 and N5 = 16 for
ΣVA+AV ;s(u,L/a = 6) show no N5 dependence within statistical errors.

We find that the scaling behavior of the tree SSF is much improved at M = 0.9, as shown in
the left panel of Fig 3. This suggests that the scaling behavior of the non-perturbative SSF is also
improved when the renormalized domain-wall height is nearly equal to unity. We first evaluate the
SSF at M = 1.4, where tadpole improved domain-wall height is nearly equal to unity. Result is
given by open circles in the left panel of Fig 2. We find good scaling behavior at M = 1.4, and the
linear continuum extrapolation is consistent with the continuum limit of the Alpha collaboration.

For another improvement we introduce a tree level improvement, where the continuum tree
level correlation function h±(tree)

s (x0) in the renormalization condition (2.5) is replaced to that on
the lattice h±(tree)

s (x0)LAT. We expect that the large scaling violation of the SSF is partly canceled by
the tree SSF. We calculate the tree level improved SSF , where the tadpole improved value M ∼ 1.5
of M = 1.8 at each β is used for h±(tree)

s (x0). The result is given by the filled diamond in the
left panel of Fig 2. We find that the scaling behavior is improved, so that we can perform a linear
extrapolation to the continuum limit, whose value is consistent with that of the Alpha collaboration.

Furthermore we calculate the SSF of BK , defined by ΣBK (u,a/L) = ZBK (g0,a/2L)
ZBK (g0,a/L) . The result is

plotted in the right panel of Fig 2 by open square (M = 1.8) and open circle (M = 1.4). We find that
a large scale violation in Σ+

1 is partly canceled in ΣBK at M = 1.8. Linear continuum extrapolations
using data at finest three lattice spacings give consistent values between M = 1.4 and M = 1.8.

5.2 Chiral symmetry breaking effect

We check whether the chiral relation that ZVV+AA = ZVA+AV we assumed is realized or not in
our DWQCD. If the chiral symmetry were exact we would have a chiral WT identity

〈OVA+AV O[ζ ]〉S = 〈OVV+AAÕ[ζ ]〉S (5.1)

under chiral rotation of the first flavour δq1 = −iγ5q̃, δζ1 = iγ5ζ̃1, δζ ′
1 = iγ5ζ̃ ′

1, where Õ[ζ ] is a
chiral rotation of some boundary operator (2.2). We get a relation ZVV+AA = ZVA+AV from this
WT identity. On the other hand, the domain-wall fermion action is not invariant under the chiral
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Figure 3: Left panel is a scaling behavior of tree level SSF. Open circle shows results with M = 1.8 and
open square shows those with M = 0.9. Right panel is a comparison between ZVA+AV (g0,µmin) (open circle)
and ZVV+AA;1(g0,µmin) (open triangle) as a function of time t. We adopt scheme 1 at the hadronic scale µmin

on L/a = 16 lattice.

rotation as Sdwf → Sdwf +Y , where Y = ψ̄Xψ is the chiral symmetry breaking term at the middle of
the fifth dimension. Therefore the WT identity becomes 〈OVA+AV O[ζ ]〉S = 〈OVV+AAÕ[ζ ]〉S+Y ̸=
〈OVV+AAÕ[ζ ]〉S, and we estimate a possible chiral symmetry breaking effect by directly comparing
〈OVA+AV O[ζ ]〉S with 〈OVV+AAÕ[ζ ]〉S. We evaluate the renormalization factor ZVV+AA(g0,µmin)
using the chirally rotated correlation function with 100 configurations at each β . The right panel of
Fig 3 shows a time dependence of ZVA+AV and ZVV+AA at L/a = 16. We observe a good agreement
between them, and similar results are obtained at other L/a. Therefore the relation ZVV+AA =
ZVA+AV is realized in our simulations.
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