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1. Introduction

The renormalised coupling in the Schrodinger function®)(&heme has been defined in [1,
2] and its scale evolution has been studied in QCD with zembtawo quark flavours [3, 4]. We
here discuss the set-up for studying the running coupling Waur quark flavours, in the lattice
regularisation with staggered quarks [5, 6]. This writesipliganized as follows. We start with
a reminder of the basic definition of the renormalised cagpln a formal continuum notation.
Its lattice formulation with staggered quarks will requaemodification at Of) of the standard
framework, even in the pure gauge theory.The corresporideeglevel and one-loop computations
are then described and we end with an outlook to future work.

2. The renormalised Schrodinger functional coupling

The Schrddinger functional is a useful tool to study theiaggbroperties of QCD. It is defined
as the Euclidean time evolution kernel for a state at tigre O to another state at Euclidean time
Xo = T. Using the transfer matrix formalism, it can be written asathpntegral over fields which
satisfy Dirichlet boundary conditions at Euclidean timgs= 0 andT and L-periodic boundary
conditions in space. More precisely, one imposes homogenieoundary conditions on the quark
fields,

1+¥[, o =0= 1-w¥| _;
P(1—1)|,_o =0= P(1+w)|, 7. (2.1)

while the spatial components of the gluon fields satisfy
A(X) |>@:0 =Cx Ac(X) \m:T =Cy. (2.2)
The SF is considered a functional of these boundary gaugs fiel
2(C.l = [ 7IA g, Gle ST, (23)

To define the SF coupling we follow[1] and choose Abelian gratially constant gauge boundary
fieldsC andC/,

Co= L diag(@, . @),  Ci=diag(f, o5, ¢h) (2.4)

Under mild conditions on these angular variables, the absohinimum of the action is uniquely
determined up to gauge equivalence. Denoting this minirci@bm configuration byB(x), one
may thus unambiguously define the effective action

r([B] = —InZ[C,C]. (2.5)

In the weak coupling domain, the SF can be computed by peitfigransaddle point expansion of
the functional integral about the induced background flading to an asymptotic series of the

form, L
—0
] = ?rO[B]+r1[B]+ggr2[B]+.... (2.6)
0
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The leading term of the series is given by the classical actidile the higher order contributions
are sums of vacuum bubble Feynman diagrams with an incgeasimber of loops.

The finite size scaling technique is based on the idea of amaiized coupling that runs with
the box sizd.. In order forL to be the only external scale in the system all dimensiordrhmeters
are taken proportional to. In particular, one seff = L and the quark masses are set to zero. Then
one lets the background fieRldepend on a dimensionless parametend defines a renormalized
coupling,

1 Ty

L 0
where the prime indicates differentiation with respecytatn = 0,
7}
M= %r B(M)]],—o- (2.8)

Note that the numeratdr, merely serves as a normalization constant to engure) at tree level.
When initially defined with the lattice regularisation irapk the coupling is well-defined beyond
perturbation theory, In particular, its non-perturbatiuening has been previously computed for a
pure Yang Mills theory in [3] and for QCD with two flavours in][4Here, we prepare the set-up
for similar studies in QCD with 4 flavours. Staggered fernsiseem to be a natural choice, as they
come in multiples of 4 species, due to the incomplete elitionaof the doubler modes.

3. Subtleties with staggered fermions

As observed previously in [5, 6], the SF with staggered fermirequires lattices where the
time extentT /a is odd while the spatial exteht/a has to be even. This is illustrated in Fig. 1. As
the Dirac spinors are reconstructed from the one-compdiedds on the corners of a hypercube
(indicated by different colours) the constraint arisegrfrbaving the degrees of freedom for a
multiple of 4 Dirac spinors fit on the lattice, taking into acat that half the Dirac spinors satisfy
Dirichlet conditions at the time boundaries.

The continuum limit for the SF coupling is usually takenisgtfl = L already at finite values
of the lattice spacing. Obviously, with staggered fermitinis can only be done up to terms of
O(@). In order to define the continuum limit, it is convenient maeigine a dual lattice, as indicated
in Fig.1. For the spatial directions, the dual lattice hasthme number of points as the original
lattice. However, in the time direction, the number of psirg reduced by one. Denoting the
temporal length of the dual lattice By /a one then ha’ = L. A further justification may be
obtained by looking at the fermionic degrees of freedom:f¢iue Dirac spinors are reconstructed
from the 2 one-component spinors of the corners of a hypercube and magsumed to live on
a lattice with nodes in the center of each hypercube. Thi®ikimg but the dual lattice where
every second node is eliminated in each direction. In ordeet an integer multiple of 4 Dirac
spinor fields, it is thus necessary that bbjta andT’/a are even. Finally, the ca§e=L —acan
be treated the same way, if one imagines a modified dualdattierlapping bya/2 in both time
directions. In conclusion, lattices with = L 4+ a are interpreted as having physical time extent
T’ with T" =T + sawith s= +1, and it is then possible to s& = L. This modification affects
even the pure gauge theory, so that we have to revisit tlag €fects there before turning to the
fermionic contributions.
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Figure 1: 29 fermionic degrees of freedom orda= 2 dimensional lattice.

4. Pure gauge theory

On the lattice we choose the usual Wilson plaquette gaugenact
1
S[U]zyzwm)tr{l—U(p)}, (4.1)
0 °p

where the sum runs over all oriented plaquetieandU ( p) denotes the parallel transporter around
p. The coefficientsv(p) are weight factors to be specified shortly. Due to the abeléuare of the
boundary field€ andC’ the lattice version of Egs. (2.2) for the link variablésx, 1) reads

U (0,x,k) = exp(aG,), U (T,x,k) = exp(aG,). (4.2)

With these boundary conditions it is known that theaCéffects generated by the presence of the
boundary are encoded in a single operator,

a / d3xtr { FocFoc) . 4.3)
Xo=0,T

An O(a) improved lattice action can thus be obtained from Eq. (d¥)settingw(p) equal to 1
except for the time-like plaquettes attached to one of the thoundaries, where one setd) =
¢ (go)- The coefficient; then multiplies a lattice version of (4.3), and, if choseprapriately, the
O(a) effects in observables are cancelled.

4.1 Tree-level considerations

In perturbation theoryg; is expanded

c(g0) = ¥ + Vg3 +O(ad). (4.4)

In the standard framework with = L one ha&t(O> =1 and the next two coefficients are known,
too [7]. However, when taking the continuum limit at fix@d/L = 1, a modification of the tree-
level coeﬂ‘icientct(0> is required. To calculate it, we first need to determine theimml action
configuration as a function m:fo).
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4.2 Equations of motion

In order to be able to write the equations of motion concjsesyfollow [1] and introduce the
covariant divergence of the plaquette, slightly modifiedhsyinclusion of the weight factors,

3
diP(X, 1) = Zo {W[Pyy (X)]Pyy (x)

— WPy (x— U T (x— 0, v)Puy(x— D)U (x— D,v) } . (4.5)

The lattice action will be stationary if and only if the tréess antihermitian part aod;,P(x, 1)
vanishes,

* * l * *
dyP(x, 1) — dyPT(x, 1) — Ny {diP(x, 1) —diPT(x, )} = 0. (4.6)
We make an ansatz of the form,

V(x, 1) = exp(aBy(xo)) , (4.7

with a spatially constant and Abelian fieB,(xp). Up to gauge equivalence, the equations of
motion are then solved by,

(o-3) f+%** wec@T-a
Bo(x) =0, Bk(x0) = { C« X0 =0 (4.8)
C xo=T

where f can be computed either numerically or as a power series ifio check whether the
above ansatz really leads to the absolute minimum gaugegcoafion, a cooling procedure has
been applied to random gauge configurations. While this doesonstitute a proof, the apparent
absence of configurations with lower action for variousidatsizes lends further support to our
assumptions.

4.3 Choice ofc(”

The tree-level coefficiem:t(o) is to be chosen such that(&) effects in observables are can-
celled. To this order we may just require the lattice actmudincide with its continuum counter-
part up to O&) terms. Expanding the lattice action toa)(

(0)
a -2
Satt = S:ont{1+ — |—2+s+ fa 0 + O(az)} . (4.9)
L Ct( )
we thus conclude
0 _ 2
G = S (4.10)

A closer look then reveals that this choice even removesdttied artefacts in the action up to
ordera®.
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4.4 One-loop calculation

Working in a renormalisable gauge, the first two terms in tfecdve action, Eq. (2.5), are
given by

Mo[Bl=g3SV], T1[B]= %In detA; — IndetAy, (4.11)

wherel\ andA; are the fluctuation operators for the ghost fields and gaulgis fiespectively. The
SF coupling to this order then becomes

(L) = gg+m(L/a)gg +. .., my(L/a) = —T/T. (4.12)

To compute the quantities,
dy (Indetdj) /o, j=0,1, (4.13)

we have followed the strategy used in [1]. One expectsrthét /a) has an asymptotic expansion
of the form,

[ee]

Z)(a/L)”(BnJrAnln(L/a)). (4.14)

n=

ml(l_/a) a/l/_\/—»O

The results obtained fam (L) have been confirmed by an independent calculation perfobyed
S. Takeda and U. Wolff [8]. The (preliminary) results ob&drfor By andB; are shown in Table 1,
where we have s&y andA; to their expected values (after having confirmed them nwaky).

S Ao Bo A B1

—122/(4m)? | 0.3682831) | 0 | —0.23183)
0 | 22/(4m)? | 0.36828177) | 0 | —0.17793)
1 | 22/(4m)? | 0.36828187) | 0 | 0.12324)

Table 1: Preliminary results for the coefficients in the asymptotipansion (in collaboration with S. Takeda
and U. Wolff).

4.5 Determination ofct(1>

To determine the one-loop coefficient, we expand the latd@®n as a Taylor series about
(0)
G=C,

20Satt

Satt = Satt |q:c§o> 9050 ‘q:CI(O)Ct(l)- (4.15)

Inserting this expansion in the definition of the couplingaveve at,
(L) = GG+ (mu(L/a) — 4 V0uTo| o /Tl g0 ) 8+ 0(eH) (4.16)

The factor multiplyingct(l) behaves like @a/L), and can thus remove the contributionBaf if we
adjustct(l) properly. We obtain

b= % (c{"))z. (4.17)
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5. Staggered fermion action

The fermionic part of the action takes the form,

T-a
s=a'y ¥ 2—1anu<x>)?<x> (AU (%, )X (x+ ) = AJU T (x— ) x (x— )] +55 +55, (5.1)
X Xo=a
where the last two terms encode fermionic boundary termsT&g coeﬁicienk:t(l) also receives
a contribution from the fermionic part of the action. We halxtained preliminary results for the
contribution tomy (L/a); in particular, we find tha#y andBy coincide with the results obtained by
Heller [6]. However, before we can quote a value for the stagd one-loop contribution mﬁ”, a
more detailed analysis of the fermionicd&)poundary counterterm needs to be carried out.

6. Conclusions

First steps have been taken in a study of the SF running caupli QCD with four quark
flavours. Staggered fermions are a natural choice but regoime revision of the standard frame-
work, due to the fact thdt = T can only be imposed up to &(terms. Our proposal to take the
continuum limit at fixedT’ = L with T’ = T + a modifies the @a) improvement counterterm pro-
portional toc;, which we then determined perturbatively at the tree andtieeloop level. As a
byproduct this yields an alternative definition of the puaeige SF which is currently being tested
in simulations (in collaboration with S. Takeda and U. Wplff the near future, this will hopefully
be followed by numerical simulations including staggeredrfions.
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