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1. Introduction

The renormalised coupling in the Schrödinger functional (SF) scheme has been defined in [1,
2] and its scale evolution has been studied in QCD with zero and two quark flavours [3, 4]. We
here discuss the set-up for studying the running coupling with four quark flavours, in the lattice
regularisation with staggered quarks [5, 6]. This writeup is organized as follows. We start with
a reminder of the basic definition of the renormalised coupling in a formal continuum notation.
Its lattice formulation with staggered quarks will requirea modification at O(a) of the standard
framework, even in the pure gauge theory.The correspondingtree-level and one-loop computations
are then described and we end with an outlook to future work.

2. The renormalised Schrödinger functional coupling

The Schrödinger functional is a useful tool to study the scaling properties of QCD. It is defined
as the Euclidean time evolution kernel for a state at timex0 = 0 to another state at Euclidean time
x0 = T. Using the transfer matrix formalism, it can be written as a path integral over fields which
satisfy Dirichlet boundary conditions at Euclidean timesx0 = 0 andT andL-periodic boundary
conditions in space. More precisely, one imposes homogeneous boundary conditions on the quark
fields,

(1+ γ0)ψ
∣

∣

x0=0 = 0 = (1− γ0)ψ
∣

∣

x0=T

ψ̄(1− γ0)
∣

∣

x0=0 = 0 = ψ̄(1+ γ0)
∣

∣

x0=T , (2.1)

while the spatial components of the gluon fields satisfy

Ak(x)
∣

∣

x0=0 = Ck Ak(x)
∣

∣

x0=T = C′
k. (2.2)

The SF is considered a functional of these boundary gauge fields,

Z [C′,C] =

∫

D [A,ψ , ψ̄ ]e−S[A,ψ ,ψ̄]. (2.3)

To define the SF coupling we follow[1] and choose Abelian and spatially constant gauge boundary
fieldsC andC′,

Ck =
i
L

diag(φ1,φ2,φ3), C′
k =

i
L

diag(φ ′
1,φ ′

2,φ ′
3). (2.4)

Under mild conditions on these angular variables, the absolute minimum of the action is uniquely
determined up to gauge equivalence. Denoting this minimal action configuration byBµ(x), one
may thus unambiguously define the effective action

Γ[B] = − lnZ [C,C′]. (2.5)

In the weak coupling domain, the SF can be computed by performing a saddle point expansion of
the functional integral about the induced background fieldB, leading to an asymptotic series of the
form,

Γ[B]
g0→0
−→

1

g2
0

Γ0[B]+ Γ1[B]+g2
0Γ2[B]+ . . . . (2.6)
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The leading term of the series is given by the classical action, while the higher order contributions
are sums of vacuum bubble Feynman diagrams with an increasing number of loops.

The finite size scaling technique is based on the idea of a renormalized coupling that runs with
the box sizeL. In order forL to be the only external scale in the system all dimensionful parameters
are taken proportional toL. In particular, one setsT = L and the quark masses are set to zero. Then
one lets the background fieldB depend on a dimensionless parameterη and defines a renormalized
coupling,

1
ḡ2(L)

=
Γ′

0

Γ′
, (2.7)

where the prime indicates differentiation with respect toη at η = 0,

Γ′ =
∂

∂η
Γ [B(η)]

∣

∣

η=0. (2.8)

Note that the numeratorΓ′
0 merely serves as a normalization constant to ensure ¯g= g0 at tree level.

When initially defined with the lattice regularisation in place the coupling is well-defined beyond
perturbation theory, In particular, its non-perturbativerunning has been previously computed for a
pure Yang Mills theory in [3] and for QCD with two flavours in [4]. Here, we prepare the set-up
for similar studies in QCD with 4 flavours. Staggered fermions seem to be a natural choice, as they
come in multiples of 4 species, due to the incomplete elimination of the doubler modes.

3. Subtleties with staggered fermions

As observed previously in [5, 6], the SF with staggered fermions requires lattices where the
time extentT/a is odd while the spatial extentL/a has to be even. This is illustrated in Fig. 1. As
the Dirac spinors are reconstructed from the one-componentfields on the corners of a hypercube
(indicated by different colours) the constraint arises from having the degrees of freedom for a
multiple of 4 Dirac spinors fit on the lattice, taking into account that half the Dirac spinors satisfy
Dirichlet conditions at the time boundaries.

The continuum limit for the SF coupling is usually taken setting T = L already at finite values
of the lattice spacing. Obviously, with staggered fermionsthis can only be done up to terms of
O(a). In order to define the continuum limit, it is convenient to imagine a dual lattice, as indicated
in Fig.1. For the spatial directions, the dual lattice has the same number of points as the original
lattice. However, in the time direction, the number of points is reduced by one. Denoting the
temporal length of the dual lattice byT ′/a one then hasT ′ = L. A further justification may be
obtained by looking at the fermionic degrees of freedom: thefour Dirac spinors are reconstructed
from the 24 one-component spinors of the corners of a hypercube and may be assumed to live on
a lattice with nodes in the center of each hypercube. This is nothing but the dual lattice where
every second node is eliminated in each direction. In order to get an integer multiple of 4 Dirac
spinor fields, it is thus necessary that bothL/a andT ′/a are even. Finally, the caseT = L−a can
be treated the same way, if one imagines a modified dual lattice overlapping bya/2 in both time
directions. In conclusion, lattices withT = L± a are interpreted as having physical time extent
T ′ with T ′ = T + sa with s= ±1, and it is then possible to setT ′ = L. This modification affects
even the pure gauge theory, so that we have to revisit the O(a) effects there before turning to the
fermionic contributions.

3
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Figure 1: 2d fermionic degrees of freedom on ad = 2 dimensional lattice.

4. Pure gauge theory

On the lattice we choose the usual Wilson plaquette gauge action,

S[U ] =
1

g2
0
∑
p

w(p)tr{1−U(p)} , (4.1)

where the sum runs over all oriented plaquettesp, andU(p) denotes the parallel transporter around
p. The coefficientsw(p) are weight factors to be specified shortly. Due to the abeliannature of the
boundary fieldsC andC′ the lattice version of Eqs. (2.2) for the link variablesU(x,µ) reads

U(0,x,k) = exp(aCk), U(T,x,k) = exp(aC′
k). (4.2)

With these boundary conditions it is known that the O(a) effects generated by the presence of the
boundary are encoded in a single operator,

a
∫

x0=0,T
d3xtr{F0kF0k} . (4.3)

An O(a) improved lattice action can thus be obtained from Eq. (4.1),by settingw(p) equal to 1
except for the time-like plaquettes attached to one of the time boundaries, where one setsw(P) =

ct(g0). The coefficientct then multiplies a lattice version of (4.3), and, if chosen appropriately, the
O(a) effects in observables are cancelled.

4.1 Tree-level considerations

In perturbation theory,ct is expanded

ct(g0) = c(0)
t +c(1)

t g2
0 +O(g4

0). (4.4)

In the standard framework withT = L one hasc(0)
t = 1 and the next two coefficients are known,

too [7]. However, when taking the continuum limit at fixedT ′/L = 1, a modification of the tree-
level coefficientc(0)

t is required. To calculate it, we first need to determine the minimal action
configuration as a function ofc(0)

t .
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4.2 Equations of motion

In order to be able to write the equations of motion concisely, we follow [1] and introduce the
covariant divergence of the plaquette, slightly modified bythe inclusion of the weight factors,

d∗
wP(x,µ) =

3

∑
ν=0

{

w[Pµν(x)]Pµν(x)

− w[Pµν(x− ν̂)]U†(x− ν̂,ν)Pµν(x− ν̂)U(x− ν̂,ν)
}

. (4.5)

The lattice action will be stationary if and only if the traceless antihermitian part ofd∗
wP(x,µ)

vanishes,

d∗
wP(x,µ)−d∗

wP†(x,µ)−
1
N

tr
{

d∗
wP(x,µ)−d∗

wP†(x,µ)
}

= 0. (4.6)

We make an ansatz of the form,

V(x,µ) = exp
(

aBµ(x0)
)

, (4.7)

with a spatially constant and Abelian fieldBµ(x0). Up to gauge equivalence, the equations of
motion are then solved by,

B0(x0) = 0, Bk(x0) =











(

x0−
T
2

)

f +
Ck+C′

k
2 x0 ∈ [a,T −a]

Ck x0 = 0
C′

k x0 = T

(4.8)

where f can be computed either numerically or as a power series ina. To check whether the
above ansatz really leads to the absolute minimum gauge configuration, a cooling procedure has
been applied to random gauge configurations. While this doesnot constitute a proof, the apparent
absence of configurations with lower action for various lattice sizes lends further support to our
assumptions.

4.3 Choice ofc(0)
t

The tree-level coefficientc(0)
t is to be chosen such that O(a) effects in observables are can-

celled. To this order we may just require the lattice action to coincide with its continuum counter-
part up to O(a2) terms. Expanding the lattice action to O(a)

Slatt = Scont

{

1+
a
L

[

−2+s+
4c(0)

t −2

c(0)
t

]

+O(a2)

}

. (4.9)

we thus conclude

c(0)
t =

2
2+s

. (4.10)

A closer look then reveals that this choice even removes the lattice artefacts in the action up to
ordera4.
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4.4 One-loop calculation

Working in a renormalisable gauge, the first two terms in the effective action, Eq. (2.5), are
given by

Γ0[B] = g2
0S[V], Γ1[B] =

1
2

lndet∆1− lndet∆0, (4.11)

where∆0 and∆1 are the fluctuation operators for the ghost fields and gauge fields respectively. The
SF coupling to this order then becomes

ḡ2(L) = g2
0 +m1(L/a)g4

0 + . . . , m1(L/a) = −Γ′
1/Γ′

0. (4.12)

To compute the quantities,

∂η(lndet∆ j)
/

Γ′
0, j = 0,1, (4.13)

we have followed the strategy used in [1]. One expects thatm1(L/a) has an asymptotic expansion
of the form,

m1(L/a)
a/L→0
∼

∞

∑
n=0

(a/L)n(Bn +An ln(L/a)). (4.14)

The results obtained form1(L) have been confirmed by an independent calculation performedby
S. Takeda and U. Wolff [8]. The (preliminary) results obtained forB0 andB1 are shown in Table 1,
where we have setA0 andA1 to their expected values (after having confirmed them numerically).

s A0 B0 A1 B1

−1 22/(4π)2 0.368283(1) 0 −0.2318(3)

0 22/(4π)2 0.3682817(7) 0 −0.1779(3)

1 22/(4π)2 0.3682818(7) 0 0.1232(4)

Table 1: Preliminary results for the coefficients in the asymptotic expansion (in collaboration with S. Takeda
and U. Wolff).

4.5 Determination ofc(1)
t

To determine the one-loop coefficient, we expand the latticeaction as a Taylor series about
ct = c(0)

t ,

Slatt = Slatt
∣

∣

ct=c(0)
t

+g2
0

∂Slatt

∂ct

∣

∣

ct=c(0)
t

c(1)
t . (4.15)

Inserting this expansion in the definition of the coupling wearrive at,

ḡ2(L) = g2
0 +

(

m1(L/a)−c(1)
t ∂ct Γ

′
0

∣

∣

ct=c(0)
t

/

Γ′
0

∣

∣

ct=c(0)
t

)

g4
0 +O(g6

0) (4.16)

The factor multiplyingc(1)
t behaves like O(a/L), and can thus remove the contribution ofB1, if we

adjustc(1)
t properly. We obtain

c(1)
t =

B1

2

(

c(0)
t

)2
. (4.17)

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
4
9

SF with 4 flavours of staggered quarks Paula Pérez Rubio

5. Staggered fermion action

The fermionic part of the action takes the form,

Sf = a4∑
x

T−a

∑
x0=a

1
2a

ηµ(x)χ̄(x)
[

λµU(x,µ)χ(x+ µ̂)−λ †
µU†(x− µ̂ ,µ)χ(x− µ̂)

]

+S(0)
B +S(T)

B , (5.1)

where the last two terms encode fermionic boundary terms [6]. The coefficientc(1)
t also receives

a contribution from the fermionic part of the action. We haveobtained preliminary results for the
contribution tom1(L/a); in particular, we find thatA0 andB0 coincide with the results obtained by
Heller [6]. However, before we can quote a value for the staggered one-loop contribution toc(1)

t , a
more detailed analysis of the fermionic O(a) boundary counterterm needs to be carried out.

6. Conclusions

First steps have been taken in a study of the SF running coupling in QCD with four quark
flavours. Staggered fermions are a natural choice but require some revision of the standard frame-
work, due to the fact thatL = T can only be imposed up to O(a) terms. Our proposal to take the
continuum limit at fixedT ′ = L with T ′ = T ±a modifies the O(a) improvement counterterm pro-
portional toct , which we then determined perturbatively at the tree and theone-loop level. As a
byproduct this yields an alternative definition of the pure gauge SF which is currently being tested
in simulations (in collaboration with S. Takeda and U. Wolff). In the near future, this will hopefully
be followed by numerical simulations including staggered fermions.
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