PROCEEDINGS

OF SCIENCE

The lattice gluon propagator in stochastic
perturbation theory

Ernst-Michael llgenfritz
Humboldt-Universitat zu Berlin, Institut fir Physik, Nenstr. 15, 12489 Berlin, Germany
E-mail:J | genfri @hysi k. hu-berlin. dg

Holger Perlt and Arwed Schiller*
Universitat Leipzig, Institut fir Theoretische Physik, P60 920, 04009 Leipzig, Germany
E-mail: Hol ger. Perlt @t p. uni -l ei pzig.d

E-mail: [Ar wed. Schi I | er @t p. uni - | ei pzi g. dg

We calculate loop contributions up to four loops to the Langauge gluon propagator in numeri-
cal stochastic perturbation theory. For different lattiolumes we carefully extrapolate the Euler
time step to zero for the Langevin dynamics derived from thisé action. The one-loop result

for the gluon propagator is compared to the infinite volumatlof standard lattice perturbation

theory.

The XXV International Symposium on Lattice Field Theory
July 30 - August 4, 2007
Regensburg, Germany

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre&@dmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:ilgenfri@physik.hu-berlin.de
mailto:Holger.Perlt@itp.uni-leipzig.de
mailto:Arwed.Schiller@itp.uni-leipzig.de

The lattice gluon propagator in stochastic perturbatioediy Arwed Schiller

1. Introduction

To relate observables measured in lattice QCD to their physical countarpiaetcontinuum,
renormalisation is needed. Besides non-perturbative renormalisatiopeatsobative approaches
are useful. In addition, it is useful to know as precisely as possiblebpatiue contributions to
lattice observables assumed to show confinement properties in ordeiatrateepon-perturbative
effects (condensates etc.). The gluon and the ghost propagatog beltrese observables.

It is well known that lattice perturbation theory (LPT) is much more involvechgared to
its continuum QCD counterpart. The complexity of diagrammatic approachesases rapidly
beyond the one-loop approximation. By now only a limited number of results wwddoop
accuracy have been obtained.

Applying the standard Langevin dynamigs [IL, 2] to the problem of weaklazyiexpansions
for lattice QCD, a powerful numerical approach for higher loop calcutatie called numerical
stochastic perturbation theory (NSPT) — has been proposdd in [3]. @shather results un-
quenchedV; = 2 Wilson loops up to 3-loop ordef][4], plaquettes up to 8-loop order in pure
QCD [B] and renormalisation constants related to the QCD presfure [6] ieen calculated.
There is ongoing progress in calculating high-loop perturbative rerimatian constant§[7]. As a
new application we report here on a higher-loop calculation of the patiueacontributions to the
gluon propagator in Landau gauge. For a similar related studylsee [8f tdailed results will
be presented elsewhere.

2. The Langevin equation

The basis of stochastic quantisation is the Langevin equation derivedeoBuclidean action
that generates a (quasi-continuous) sequence of Euclidean fieldwatifins. For gauge theories
some special aspects related to the gauge redundancy have to be takeccouant. Lett the
Langevin time, then the Langevin equation reads

0

aUa:,u(@ 77) =1 [v:z:,MSG[U} - Ux,u(t)] Ux,u(t§ 77) ) (2.1)

wheren = " n*T* is a random noise field with a Gaussian distribution satisfying

(M), =0 (O, () =20 Gy Gyt~ 1) (22)
The notation. . .>77 denotes an average over the (external) Gaussian stochastic meastoealh
Gaussian processes, higher cumulants varii$hare the (anti-hermitian) generators of the gauge
group SU(N). The differential operatoV .., = >, T*V3 , is the left Lie derivative for any
function on the group and a partial derivative with respect to the linkseolfttice.

It can be proven that the gauge fields, in the limit of latrder the continuous-time Langevin
equation, are distributed according to the Gibbs meagitg o exp(—Si[U]). In practice,
the Langevin equation is solved by discretisation of time; ne, with running step numbet.
Therefore, in order to extract correct physical information, it is mdy mecessary to go to large
but also to do the extrapolatien— 0. For the solution of the Langevin equation we use the Euler
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scheme in a way that guarantees all the libks, € SU (V) not to leave the group manifold:

Upp(n+15n) = exp (1 FouU, ) Ug,p(nin) (2.3)
Fx,u[U7 77] =€ Vz,,uSG[U] + \/E N - (24)
For S¢[U] we take here the standard plaquette Wilson gauge action.

For the stochastic perturbation theory it is substantial to consider each liink ms an ex-
pansion in the bare coupling constgniSince3 = 2N/g?, the expansion reads

Uru(tin) = 14> 87200 (). (2.5)
>1

It simplifies matters if one rescales the time step (e. Upon the expansion ip, the Langevin
equation transformg (2.3) into a system of simultaneous updates that taketawing form in
terms of the expansion coefficientsi@f ,, (2.3) and of the forcé”, ,, (2.4)

UDn+1) = UD(n) - FO(n)

UPDn+1) = UD(n) = FAn)+ Z(FV(n)? - FOn)UD (n) (2.6)

DO =

The random noisg enters only the lowest order equation througy, the lowest part of the force
(B-4) analogous to the expansign [2.5). Higher orders are stochalstibyothe noise fed in from
the lower order terms.
A similar expansion like[(2]5) exists also for the (anti-hermitian) vector potdiviag in the
algebrasu(N),
Apiipoptin) = > 87240 (). (2.7)
>1
Since the vector potential, , ;» , is related to the link¢/,,, via A, /2, = log U, ,, the sep-
arate ordersi(”) can be expressed via the ordéré). Enforcing unitarity of the originally unex-
pandedU, , link fields is tantamount to enforcing anti-hermiticity and tracelessness ofdatrer
of A, /2,,- Whenever we speak about contributions of some order to an obkethiEbhas to be
understood in the sense of an expansion

— > 00y, (2.8)
>0
3. The (perturbative) gluon propagator

The lattice gluon propagatavj b (§) is the Fourier transform of the gluon two-point function,
i.e. the expectation value

D) = (A (k) AL(=k) ) = 6" Dy (@) (3.1)
which is required to be color-diagonal. He@( ) is the Fourier transform Oﬁi+u/2 o andg
denotes the physical discrete momentum

. 2 . (nk 2 . raq
Gu(ky) = _ sin (L:) = —sin (#) , kye(—L,/2,L,/2] (3.2)
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corresponding to the integer-valued Fourier momentum 4-véatarthe finite lattice. Some values
G2 (k) of the lattice momentum squared (the lattice equivalerfah the continuum limit) can be
realized by different integer 4-tuplés, k2, k3, k4).

Assuming reality of the color components of the vector potential and rotatioveaiance of
the two-point function, the continuum gluon propagator has the followimgige tensor structure

2

Dunla) = (80 = 23 ) D) 4 B ). 33)
q q q

with D(¢?) andF(¢?) being the transverse and longitudinal propagator, respectively. Tigéue

dinal propagatof’(¢?) vanishes in the Landau gauge.

The lattice gluon propagatd?,,, (¢) depends on the lattice four-momentygtrinspired by the
continuum form|[(3]3) we consider the following lattice scalgls , 4u Dy (§)dy andy_, Dy, (q)
that should survive the continuum limit. The first scalar vanishes exactlytiodd.andau gauge.
In this gauge the second scalar function, corresponding to the trampentsof the gluon propagator
in the continuum limit, is denoted by

D(§) = % > Duu(d). (3.4)

On the lattice, this function shows the lower symmetry of the hypercubic grotifatrit depends
on the scalar quantitiegu qﬁ", n = 1,2,... rather than being a smooth function of or.
Multiplying with 42 or (aq)? we get the two versions of dressing functions or form factors

Z(q) = ¢*D(4), Z(aq) = (aq)’D(§). (3.5)

Using the expansiof (3.7) amfhgiﬂ/? L= > T“Agf;ﬂ ,, We obtain the differenfbooporders

n of the perturbative gluon propagator (restricted to even powerindhe sense 0 (2.8)),
2n+1 o _ '
5abD;([,L,)(Cj> — < Z [AZ,(l)(k) Al;7(2n+271)(_k)} > _ (36)
=1

Note that already the tree-level contributioD,(PV), arises from the quantum fluctuations of the
gauge fields with = 1. Therefore, the tree-level result for the dressing funct@ﬁ‘??((j) =1in
the limite — 0 for all sets of lattice momentg;, ks, k3, k4), IS nontrivial and is obtained as the
result of averaging.

4. Practical implementation of NSPT

Solving the coupled system of equatiofis](2.6), one generates a catifigusequence of
expanded gauge fields at finikevhich can be used to measure the perturbatively constructed ob-
servables. To study the limit— 0, we used = 0.07, 0.05, 0.03, 0.02, 0.01. Itis expected that the
autocorrelation time for a chosen observable extending over subsequent configurattraases
with decreasing. As reasonable compromise between computer time and autocorrelationeve hav
measured the gluon propagator after each 20th Langevin step. The iregraitocorrelations are
taking into account in the error estimate.
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To obtain infinite volume perturbative loop results at vanishing lattice spadiffigrent lattice
sizes have to be studied in addition. We have used 6,8, 10,12(16) and studied the maximal
loop number for the propagater,., = 4 (1). After reaching equilibrium for the largest Wilson
loops to all orders, up to 60000 Langevin steps have been used to opt&n3®00 measured
gluon propagators. We checked that expectation values for odd pa#eérfor all observables
indeed vanish in the ensemble average.

The Landau gauge for all considered orders of the perturbativgeegBelds (,.x = 10) is
defined by the condition

S okal, =0, 9tal, =4l AV

BT p T+0/2,p T—f/2,p " (4.1)
W

For the configurations used in measurements it is reached by an iteratige gansformation
using the expanded variant &, = G(z) U, ,G'(z + f1) . The gauge transformation is chosen
as a perturbative variant of Fourier accelerat{gn [9] with an optimal 1/p2 .

~2
r—1 _ Pmax ¢ L 4(1
Fla=gx F <§ jauAg}u>

I

G (2) = exp (4.2)

p? is the non-zero eigenvalues of lattic@? and£” (£'~1) denotes the forward (backward) Fourier
transform. The iterative procedure to reach the Landau gauge staps foh all orders,
(1/V) S, Tr {(z LAY ) (Z LAl )] — 0 within double precision.

In the course of the Langevin process we mainly follow the prescriptiomgivéfl]: after
each Langevin step we perform a gauge transformation@fth{z) = exp [—5 Z aLAg )“] and

subtract zero momentum gauge field modes to all orders. This keeps tgeftjﬁsld components
finite.

5. Selected resultsfor the gluon propagator

The measured gluon propagator data have been averaged oveleou#tuples of lattice
momenta and linearly extrapolated to the limit= 0. In Figs.[l we present the extrapolation at

l
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Figure 1: Tree level (left) and one-loop (right) dressing functigt-!) (4) vs.§? at L = 16.

lattice sizel6* for the tree and one-loop dressing functigff-!) as function ofj? defined in [3),
together with original data at= 0.07 and0.03 .
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Figure 2: One-loop dressing functiod ") (aq) vs. (ag)? at all volumes. Left: all independent momentum
components. Right: components near the diag@nadl, k, k), (k + 1, k, k. k), k > 0.

Figs[2 show a volume and lattice momentum cut dependence using the otlesergption of
the one-loop dressing functiofi(®) (aq) vs. (aq)?. This behaviour is similar in all loop contribu-
tions that have been studied. In the left figure the different branaresfffdiagonal momentum
tuples are clearly seen, which do not possess a continuumdimit0. Restricting to momentum
values near the diagongt, k., k, k), (k£ 1, k, k, k), k > 0, a universal momentum dependence for
larger volumes shows up.

This universal curve can be compared with the known one-loop anadgidtratl, — oo and
a — 0[]

ZW (ag) = —0.24697 log(aq)? + 2.29368 . (5.1)

The aim is to verify the constant 2.29368. We fit the dressing funetéar diagonah the form
ZW (aq) = —0.24697 log(aq)? + Cr, + c1(aq)? + ca(ag)? (5.2)

by assuming an universal anomalous dimension and parametrise addititical datefacts via
coefficientsc; andes. A typical fit atL = 16 is presented in the left Fif]. 3. The results for different

3.8 | ‘ L = 16 near didgonal [ ‘ Ol s
Fitted function i

Co m

C’L 2.36 :
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2.34 i :
2321}
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‘ ‘ ] ‘ ‘
1 ) 10 0 0.002 3 0.004
(ag) 1/L

Figure 3. Left: One-loop fitting at L=16(C7—15 = 2.3050(35). Right: Cr, vs. 1/L3 together with the
known infinite volume resul€,, = 2.29368.

volumes together with the known infinite volume result is shown in the figure orighe From
here is no doubt that NSPT will reproduce the one-loop analytic result.
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Finally we present in Fig] 4 the perturbative dressing funcOf nmax) = .1 2 () /8"
for near-diagonal lattice 4-tuples summed up to four loopsifox. 16 and up to one loop for
L =16 usingg = 6.

2

L=16'
L=12—— | 6. Summary
Mmax =4 g L=10
1.8 + 3 I T L= 8 1
Nmax =9 1 x .
~ , sk In the present work we have applied NSPT to calcu-
1.6 Pmax = T . .
g toa ~r late the Landau gauge gluon propagator in higher-
N Y., TR T . .
o 14t . -1, ~§ loop perturbation theory. Our results are in good
N : "E mremag | Agreement with expectations from standard LPT
b2y in one-loop. There is a good chance to extract
L [ =0 O p— higher loop finite contributions using known lead-
1 10 ing and subleading anomalous dimensions. Our re-

0 sults have to be confronted against non-perturbative
Figure 4  Perturbative dressing functionMonto Carlo results and interpreted. The present
Z(G, nmax) UP to four loops (one loop) vs42 Workis in progress, and we will combine our efforts
usings = 6 at L = 8,10,12 (16). with those of the Parma group in order to study the
perturbative gluon propagator at larger lattices and
also the ghost propagator (not discussed here).
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