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1. Introduction

To relate observables measured in lattice QCD to their physical counterpartin the continuum,
renormalisation is needed. Besides non-perturbative renormalisation alsoperturbative approaches
are useful. In addition, it is useful to know as precisely as possible perturbative contributions to
lattice observables assumed to show confinement properties in order to separate non-perturbative
effects (condensates etc.). The gluon and the ghost propagator belong to these observables.

It is well known that lattice perturbation theory (LPT) is much more involved compared to
its continuum QCD counterpart. The complexity of diagrammatic approaches increases rapidly
beyond the one-loop approximation. By now only a limited number of results up totwo-loop
accuracy have been obtained.

Applying the standard Langevin dynamics [1, 2] to the problem of weak coupling expansions
for lattice QCD, a powerful numerical approach for higher loop calculations – called numerical
stochastic perturbation theory (NSPT) – has been proposed in [3]. Amongst other results un-
quenchedNf = 2 Wilson loops up to 3-loop order [4], plaquettes up to 8-loop order in pure
QCD [5] and renormalisation constants related to the QCD pressure [6] have been calculated.
There is ongoing progress in calculating high-loop perturbative renormalisation constants [7]. As a
new application we report here on a higher-loop calculation of the perturbative contributions to the
gluon propagator in Landau gauge. For a similar related study see [8]. More detailed results will
be presented elsewhere.

2. The Langevin equation

The basis of stochastic quantisation is the Langevin equation derived fromthe Euclidean action
that generates a (quasi-continuous) sequence of Euclidean field configurations. For gauge theories
some special aspects related to the gauge redundancy have to be taken intoaccount. Lett the
Langevin time, then the Langevin equation reads

∂

∂t
Ux,µ(t; η) = i [∇x,µSG[U ] − ηx,µ(t)] Ux,µ(t; η) , (2.1)

whereη =
∑

a ηaT a is a random noise field with a Gaussian distribution satisfying

〈
ηa

x,µ(t)
〉
η

= 0 ,
〈
ηa

x,µ(t)ηb
y,ν(t

′)
〉

η
= 2δab δµν δxyδ(t − t′) . (2.2)

The notation〈. . .〉η denotes an average over the (external) Gaussian stochastic measure. As for all
Gaussian processes, higher cumulants vanish.T a are the (anti-hermitian) generators of the gauge
groupSU(N). The differential operator∇x,µ =

∑
a T a∇a

x,µ is the left Lie derivative for any
function on the group and a partial derivative with respect to the links of the lattice.

It can be proven that the gauge fields, in the limit of larget for the continuous-time Langevin
equation, are distributed according to the Gibbs measureP [U ] ∝ exp(−SG[U ]). In practice,
the Langevin equation is solved by discretisation of time,t = nǫ, with running step numbern.
Therefore, in order to extract correct physical information, it is not only necessary to go to larget,
but also to do the extrapolationǫ → 0. For the solution of the Langevin equation we use the Euler
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scheme in a way that guarantees all the linksUx,µ ∈ SU(N) not to leave the group manifold:

Ux,µ(n + 1; η) = exp (i Fx,µ[U, η]) Ux,µ(n; η) (2.3)

Fx,µ[U, η] = ǫ ∇x,µSG[U ] +
√

ǫ ηx,µ . (2.4)

ForSG[U ] we take here the standard plaquette Wilson gauge action.
For the stochastic perturbation theory it is substantial to consider each link matrix as an ex-

pansion in the bare coupling constantg. Sinceβ = 2N/g2, the expansion reads

Ux,µ(t; η) → 1 +
∑

l≥1

β−l/2U (l)
x,µ(t; η) . (2.5)

It simplifies matters if one rescales the time stepε = βǫ. Upon the expansion ing, the Langevin
equation transforms (2.3) into a system of simultaneous updates that takes thefollowing form in
terms of the expansion coefficients ofUx,µ (2.5) and of the forceFx,µ (2.4)

U (1)(n + 1) = U (1)(n) − F (1)(n)

U (2)(n + 1) = U (2)(n) − F (2)(n) +
1

2
(F (1)(n))2 − F (1)(n)U (1)(n) (2.6)

· · · .

The random noiseη enters only the lowest order equation throughF (1), the lowest part of the force
(2.4) analogous to the expansion (2.5). Higher orders are stochastic only by the noise fed in from
the lower order terms.

A similar expansion like (2.5) exists also for the (anti-hermitian) vector potentialliving in the
algebrasu(N),

Ax+µ̂/2,µ(t; η) →
∑

l≥1

β−l/2A
(l)
x+µ̂/2,µ(t; η) . (2.7)

Since the vector potentialAx+µ̂/2,µ is related to the linksUxµ via Ax+µ̂/2,µ = log Ux,µ, the sep-
arate ordersA(i) can be expressed via the ordersU (k). Enforcing unitarity of the originally unex-
pandedUx,µ link fields is tantamount to enforcing anti-hermiticity and tracelessness of all orders
of Ax+µ̂/2,µ. Whenever we speak about contributions of some order to an observable this has to be
understood in the sense of an expansion

〈O〉 →
∑

l≥0

β−l/2〈O(l)〉 . (2.8)

3. The (perturbative) gluon propagator

The lattice gluon propagatorDab
µν(q̂) is the Fourier transform of the gluon two-point function,

i.e. the expectation value

Dab
µν(q̂) =

〈
Ãa

µ(k)Ãb
ν(−k)

〉
= δabDµν(q̂) , (3.1)

which is required to be color-diagonal. HerẽAa
µ(k) is the Fourier transform ofAa

x+µ̂/2,µ, and q̂

denotes the physical discrete momentum

q̂µ(kµ) =
2

a
sin

(
πkµ

Lµ

)
=

2

a
sin
(aqµ

2

)
, kµ ∈ (−Lµ/2, Lµ/2] (3.2)
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corresponding to the integer-valued Fourier momentum 4-vectork on the finite lattice. Some values
q̂2(k) of the lattice momentum squared (the lattice equivalent ofq2 in the continuum limit) can be
realized by different integer 4-tuples(k1, k2, k3, k4).

Assuming reality of the color components of the vector potential and rotationalinvariance of
the two-point function, the continuum gluon propagator has the following general tensor structure

Dµν(q) =

(
δµν − qµ qν

q2

)
D(q2) +

qµ qν

q2

F (q2)

q2
, (3.3)

with D(q2) andF (q2) being the transverse and longitudinal propagator, respectively. The longitu-
dinal propagatorF (q2) vanishes in the Landau gauge.

The lattice gluon propagatorDµν(q̂) depends on the lattice four-momentum̂q. Inspired by the
continuum form (3.3) we consider the following lattice scalars

∑
µ,ν q̂µDµν(q̂)q̂ν and

∑
µ Dµµ(q̂)

that should survive the continuum limit. The first scalar vanishes exactly in lattice Landau gauge.
In this gauge the second scalar function, corresponding to the tranverse part of the gluon propagator
in the continuum limit, is denoted by

D(q̂) =
1

3

4∑

µ=1

Dµµ(q̂) . (3.4)

On the lattice, this function shows the lower symmetry of the hypercubic group inthat it depends
on the scalar quantities

∑
µ q̂2n

µ , n = 1, 2, . . . rather than being a smooth function of onlyq̂2.
Multiplying with q̂2 or (aq)2 we get the two versions of dressing functions or form factors

Ẑ(q̂) = q̂2D(q̂) , Z(aq) = (aq)2D(q̂) . (3.5)

Using the expansion (2.7) andA(l)
x+µ̂/2,µ =

∑
a T aA

a,(l)
x+µ̂/2,µ we obtain the differentlooporders

n of the perturbative gluon propagator (restricted to even powers ofl in the sense of (2.8)),

δabD(n)
µν (q̂) =

〈
2n+1∑

i=1

[
Ãa,(i)

µ (k) Ãb,(2n+2−i)
ν (−k)

]〉
. (3.6)

Note that already the tree-level contribution,D
(0)
µν , arises from the quantum fluctuations of the

gauge fields withi = 1. Therefore, the tree-level result for the dressing function,Ẑ(0)(q̂) = 1 in
the limit ε → 0 for all sets of lattice momenta(k1, k2, k3, k4), is nontrivial and is obtained as the
result of averaging.

4. Practical implementation of NSPT

Solving the coupled system of equations (2.6), one generates a configuration sequence of
expanded gauge fields at finiteε which can be used to measure the perturbatively constructed ob-
servables. To study the limitε → 0, we usedε = 0.07, 0.05, 0.03, 0.02, 0.01. It is expected that the
autocorrelation timeτ for a chosen observable extending over subsequent configurationsincreases
with decreasingε. As reasonable compromise between computer time and autocorrelation we have
measured the gluon propagator after each 20th Langevin step. The remaining autocorrelations are
taking into account in the error estimate.
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To obtain infinite volume perturbative loop results at vanishing lattice spacing,different lattice
sizes have to be studied in addition. We have usedL = 6, 8, 10, 12(16) and studied the maximal
loop number for the propagatornmax = 4 (1). After reaching equilibrium for the largest Wilson
loops to all orders, up to 60000 Langevin steps have been used to obtain up to 3000 measured
gluon propagators. We checked that expectation values for odd powers of l for all observables
indeed vanish in the ensemble average.

The Landau gauge for all considered orders of the perturbative gauge fields (lmax = 10) is
defined by the condition

∑

µ

∂L
µ A(l)

x,µ = 0 , ∂L
µ A(l)

x,µ ≡ A
(l)
x+µ̂/2,µ − A

(l)
x−µ̂/2,µ . (4.1)

For the configurations used in measurements it is reached by an iterative gauge transformation
using the expanded variant ofUg

x,µ = G(x)Ux,µG†(x + µ̂) . The gauge transformation is chosen
as a perturbative variant of Fourier acceleration [9] with an optimalα = 1/p̂2

max

G(l)(x) = exp

[
F̂−1 α

p̂2
max

p̂2
F̂

(
∑

µ

∂L
µ A(l)

x,µ

)]
. (4.2)

p̂2 is the non-zero eigenvalues of lattice−∂2 andF̂ (F̂−1) denotes the forward (backward) Fourier
transform. The iterative procedure to reach the Landau gauge stops when, for all ordersl,

(1/V )
∑

x Tr

[(∑
µ ∂L

µ A
(l)
x,µ

)† (∑
µ ∂L

µ A
(l)
x,µ

)]
= 0 within double precision.

In the course of the Langevin process we mainly follow the prescription given in [4]: after

each Langevin step we perform a gauge transformation withG(l)(x) = exp
[
−ε
∑

µ ∂L
µ A

(l)
x,µ

]
and

subtract zero momentum gauge field modes to all orders. This keeps the gauge field components
finite.

5. Selected results for the gluon propagator

The measured gluon propagator data have been averaged over equivalent 4-tuples of lattice
momenta and linearly extrapolated to the limitε = 0. In Figs. 1 we present the extrapolation at
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Figure 1: Tree level (left) and one-loop (right) dressing functionẐ(0,1)(q̂) vs. q̂2 atL = 16.

lattice size164 for the tree and one-loop dressing functionẐ(0,1) as function of̂q2 defined in (3.2),
together with original data atε = 0.07 and0.03 .

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
5
1

The lattice gluon propagator in stochastic perturbation theory Arwed Schiller

2

3

4

0 5 10 15 20 25 30 35 40

Z
(1

) (
a
q
)

(aq)2

L = 16
L = 12
L = 10
L = 8
L = 6

2

3

4

0 5 10 15 20 25 30 35 40

Z
(1

) (
a
q
)

(aq)2

L = 16
L = 12
L = 10
L = 8
L = 6

Figure 2: One-loop dressing functionZ(1)(aq) vs. (aq)2 at all volumes. Left: all independent momentum
components. Right: components near the diagonal(k, k, k, k), (k ± 1, k, k, k), k > 0.

Figs 2 show a volume and lattice momentum cut dependence using the other representation of
the one-loop dressing functionZ(1)(aq) vs. (aq)2. This behaviour is similar in all loop contribu-
tions that have been studied. In the left figure the different branches for off-diagonal momentum
tuples are clearly seen, which do not possess a continuum limita → 0. Restricting to momentum
values near the diagonal(k, k, k, k), (k± 1, k, k, k), k > 0, a universal momentum dependence for
larger volumes shows up.

This universal curve can be compared with the known one-loop analytic result atL → ∞ and
a → 0 [10]

Z(1)(aq) = −0.24697 log(aq)2 + 2.29368 . (5.1)

The aim is to verify the constant 2.29368. We fit the dressing functionnear diagonalin the form

Z(1)(aq) = −0.24697 log(aq)2 + CL + c1(aq)2 + c2(aq)4 (5.2)

by assuming an universal anomalous dimension and parametrise additional lattice artefacts via
coefficientsc1 andc2. A typical fit atL = 16 is presented in the left Fig. 3. The results for different
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Figure 3: Left: One-loop fitting at L=16,CL=16 = 2.3050(35). Right: CL vs. 1/L3 together with the
known infinite volume resultC∞ = 2.29368.

volumes together with the known infinite volume result is shown in the figure on the right. From
here is no doubt that NSPT will reproduce the one-loop analytic result.
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Finally we present in Fig. 4 the perturbative dressing functionẐ(q̂, nmax) =
∑nmax

n=0 Ẑ(n)(q̂)/βn

for near-diagonal lattice 4-tuples summed up to four loops forL < 16 and up to one loop for
L = 16 usingβ = 6.

1
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1.6

1.8

2

1 10

Ẑ
(q̂
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m

ax
)

q̂2

nmax = 4

nmax = 3

nmax = 2

nmax = 1

nmax = 0

L = 16
L = 12
L = 10
L = 8

Figure 4: Perturbative dressing function
Ẑ(q̂, nmax) up to four loops (one loop) vs.̂q2

usingβ = 6 atL = 8, 10, 12 (16).

6. Summary

In the present work we have applied NSPT to calcu-
late the Landau gauge gluon propagator in higher-
loop perturbation theory. Our results are in good
agreement with expectations from standard LPT
in one-loop. There is a good chance to extract
higher loop finite contributions using known lead-
ing and subleading anomalous dimensions. Our re-
sults have to be confronted against non-perturbative
Monto Carlo results and interpreted. The present
work is in progress, and we will combine our efforts
with those of the Parma group in order to study the
perturbative gluon propagator at larger lattices and
also the ghost propagator (not discussed here).
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