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A technically simple implementation of Schrddinger funoél (SF) boundary conditions for
Domain-wall and overlap quarks can be obtained by using adfikernel with chirally rotated
SF boundary conditions in the Neuberger relation. The bagncbnditions of the Wilson kernel
are inherited by the overlap operator and with an even numibgunark flavours the theory thus
obtained can be interpreted as a chirally rotated versigdheostandard SF. | shortly discuss the
orbifold construction and identify the (exact) flavour aratity symmetries, which are partly
realised a la Ginsparg-Wilson.
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1. Introduction

The Schrédinger functional [1, 2] has become a universalttomckle renormalisation prob-
lems in lattice QCD. It allows for the definition of finite vahe renormalisation schemes (SF
schemes) which, in combination with recursive finite sizhtéques, completely solve the prob-
lem of large scale differences [3]. In principle, the Scing@ir functional can be formulated with
any regularisation. On the lattice, however, it may not gsviae obvious how to proceed, as the
required Dirichlet boundary conditions for the fermionieldis cannot always be obtained by ex-
plicitly imposing them on the fields. Rather, the boundamditions arise dynamically, depending
on the lattice action and its structure close to the bouadaiio make sure that the desired bound-
ary conditions are indeed obtained in the continuum liimg may have to tune some parameters,
depending on the symmetries of the regularisation.

Of particular interest are fermion actions with exact dhingmmetry. A nice solution for
overlap quarks has been offered by Lischer, which reliesndrersality arguments [4]. Previous
work [5, 6] made use of an orbifold construction, which hoemrremains technically involved, and
does not directly lead to a real fermion determinant in theglsi flavour case. An even number of
guark flavours may remove this defect, at the expense of ast #agour symmetry. The lack of
continuum symmetries may induce undesired countertermghwave been proven to be absent
at the tree-level only. Nevertheless, this formulation @esn implemented for domain wall quarks
in the quenched approximation and first results have beesepied at this conference [7].

Here | would like to propose a solution for even numbers ofrkjflavours which does enjoy
exact flavour and parity symmetries, and yet is simple to@mant for both overlap and Domain-
wall quarks. For technical reasons, a slight detour is tdkgmmplementing the Schrddinger
functional in a chirally rotated basis, which, in the contim limit, is equivalent to the standard
Schrédinger functional. This writeup is organised as fefiol first discuss the chirally rotated SF
in the continuum, which is then regularised on the lattigeugh an orbifold reflection applied to
overlap quarks. | then discuss how the symmetries are egladind comment on its application to
Domain-Wall quarks.

2. Thechirally rotated SF

The basic objects of interest are correlation functionsioletd from the Schrodinger functional
in the chiral limit. Assuming that the flavour doubletsand x’ satisfy standard homogeneous SF
boundary conditions [2], the chiral rotation

X =expliawt®/2)x, X = xexpiant®/2), (2.1)

implies that the rotated fields satisfy

Pr(a)X(X) =0 = O, P_(a)X(X) [x=1=0,
XX)WP-(a) [x=0 = 0, X(X)YoPs(a) [x,=T=0, (2.2)
with the projectors,
P(a) = {1+ pwexpliayst?)). (2.3)
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Performing a change of variables in the functional integrak then obtains the formal identities

(O[X, X)) (p.) = (Olexplia ysT%/2) X, X expiay5T%/2)]) b, (a)): (2.4)

where the quark masses have been set to zero. The subsaritite €orrelation functions indicate
the boundary conditions foy atxy = 0, and the quark and anti-quark boundary fields [11] may be
included inO[x, x], by replacing

{(x) = P_x(0,x),  {(x) = Xx(0,x)P:, (2.5)

and similarly for the fields aty = T. As the chiral rotation is part of the non-singlet chiral sym
metries of QCD, both formulations are thus equivalent ingbetinuum limit. At least for even
numbers of flavours, the regularisation of the SF may theegiooceed at any value of the angle
a. In particular, | will choosex = 11/2 where the projectors read

PL(1/2) = Qs = S (1 iopT"). (2.6)

Furthermore, in the absence of mass terms, the distincgbomden flavour and chiral symmetries
becomes a convention. | will stick to the convention thatgtemdard SF boundary conditions in
terms of the projectorB;. are invariant under flavour and parity symmetries. This rad¢hat these
symmetries take a somewhat unusual form when expresseuefootated fields (s. below).

3. Orbifold construction

The basic procedure is completely analogous to the case lebiVguarks described in [8],
except for a small offset of @] introduced for technical reasons to become clear shofthe
starting point is the standard lattice action for a singlestess overlap quark,

Sty,g.U]=a*y g(x)Dny(x),  aDy = 1-AATA)~Y2  A=1—aDy, (3.1)

whereDyy is the standard massless Wilson-Dirac operator, and thadarfields are anti-periodic
with period 2T +a) (rather than Z),

Po+2(T+a)x) =-¢(x),  Po+2AT+a),x)=—-P(x). (3.2)
The orbifold reflection is defined by
Rig() —ippd(-a—xx), P — P(—a—x0,X)ink. (3.3)
The gauge field is extended to the interfiall —a, T + &),
Uk(—a—x0,X) =Uk(X0,X),  Uo(—2a—x0,X)" =Up(x), (3.4)

and then 2T + a)-periodically continued. The fermionic fields are then daposed into even
and odd with respect t& as in [8] and, due tdDy,R] = 0, the functional integral factorises.
Interpreting even and odd fields as flavour components of aldby we see that the rotated SF
boundary conditions are indeed obtained, albeit only up(&) €ffects, which are due to the 8)(
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offset in the orbifold reflection. Note that the dynamicaldieariables are now (x) and x (x) for
all Euclidean times & xg < T.

What has been achieved by theeDgffset is that the overlap operat@i, acting on the doublet
X (x) is block diagonal in Euclidean time. The desired explicituetion to the time-intervgD, T]
is then simply obtained by considering only one of the blodksrthermore, the same holds true
in the case of the Wilson-Dirac operator itself, and the Negér operator can therefore still be
obtained by inserting the corresponding Wilson-Dirac kém the Neuberger relation, viz.

agn=1—o (" Tt)" Y2, o =1—a%, (3.5)
with the Wilson-Dirac kerneiAy,
aZwx (X) = —U (x,0)P_x (x4 a0) + (K)(x) —U (x— a0) P, x (x— a0). (3.6)

Here, | have sex(x) = 0 for xp < 0 andxp > T, and the time diagonal kernklis given by

3

1 : :
K=1+5y {a(O+ Op) W — @050} + 0 TP + 8 Ti V5 TPy (3.7)
k=1

4. Symmetries

As stated earlier, | refer to the standard SF boundary dongitas being flavour and parity
invariant. Then it is not difficult to see that the SU(2) ledtiflavour symmetry in the rotated basis
is realised a la Ginsparg-Wilson [9, 10]:

BTN+ DT = aZnysT D, (4.1)
°9n— INTS = 0. 4.2)

DefininglNs = y5(1—a%y)] (note thaﬂ'§ # 1), the generators are easily identified,
Tl=rst?/2, T?2=-rIstt/2, T3=1%2 (4.3)
and the flavour algebra does indeed close,
(T2, TP =igPeTC. (4.4)

On the other hand, all chiral symmetries are explicitly lmlby the SF boundary conditions. In
the rotated framework one finds

(12, 9] # 0, {13, IN} # aZN BT DN, (4.5)

Note that the last equation also implies that the standandfarg-Wilson relation does not hold.
However, the violations are expected to be exponentiallglisimthe distance from the boundaries,
and | have numerically checked that this is indeed the caseeatevel.

Parity and time reversal are again realised in the Ginspélgpn fashion, e.qg.

P:x(x) —ipwr’x(X),  X=(X,—X), INP+ PN = aZNP N, (4.6)
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so that the symmetries of the two-flavour SF match exactlgdhaf the standard SF with two
flavours of Wilson quarks. In contrast to the analogous coosbn with Wilson quarks, the re-
covery of SU(2) flavour and parity as Ginsparg-Wilson-likensnetries means that there are no
additional counterterms to be expected. One thus expeatsehormalisation and @) improve-
ment works out with the same number of counterterms as needeel standard case. In particular,
O(a) improvement of most (massless) correlation functions$ ieijuire an analogue of the coun-
terterm proportional ta; T11]. This counterterm will already contribute at the treed|, which is

a consequence of having chosen to off-set the orbifold tafleby O@).

5. Concluding Remarks

Chirally rotated SF boundary conditions have been suags@inplemented for a doublet of
quarks, and the generalisation to any even number of quarduila seems straightforward. | have
shown that the usual SF symmetries are exactly realisedavghap quarks. As in infinite vol-
ume, the overlap operator can be obtained by Neuberger&roation [12], with a corresponding
Wilson kernel. The construction can therefore easily besteded to Domain-wall quarks [13, 14],
where it is sufficient to use the same Wilson kernel in theredtisional slices. Note also that
Pauli-Villars fields do not pose a problem here, as a the iaddif a standard mass term is compat-
ible with the orbifold construction. However, Domain-wallarks will induce exponentially small
violations of flavour symmetry (as defined here), due to thigefiextent of the lattice in the extra
dimension. Note that the determinant of the overlap Diraeraijor is real and non-negative. In
fact, both flavour components of the overlap operator hagkaned equal determinant, so that the
SF for a single flavour could be defined in the same way. Howéwsrcannot easily be related to
the corresponding standard single-flavour SF, as thisaelabw involves a singlet axial rotation,
the Jacobian of which is expected to be non-trivial. Newsdetss, such an alternative definition of
the SF could be interesting in its own right. Incidentaltgarresponds to the boundary conditions
singled out by Symanzik in his celebrated paper on the Salgéd representation in Quantum
Field Theory [15].
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