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1. Introduction

The renormalised QCD coupling αs = g2/(4π) is one of the fundamental parameters of the
Standard Model of particle physics and can not only be determined from high-energy experiments
but also estimated directly in lattice QCD simulations (see, e.g., [1] for a recent review).

The actual values of αs depend on both the renormalisation scheme (including the number of
active flavours) and the scale considered. Given a renormalisation scheme S the dependence of αS

s

on the scale µ is controlled by the renormalisation group through

µ
2 d

dµ2
αS

s (µ2)
π

= β
S
(
α
S
s
)
∼ −∑

i≥0
β
S
i

(
αS

s

π

)i+2

, (1.1)

where β S is the beta function defined in that scheme. Its asymptotic expansion is known up to four
loops in the MS scheme [2] and up to three loops in various MOM schemes [3]. The first two co-
efficients are renormalisation-scheme independent and can be looked up, e.g., in [4] and references
therein. The number of physically admissible renormalisation schemes (RSs) is unlimited, and so
is the number of running couplings. The MS scheme, with the underlying use of dimensional reg-
ularisation, is currently the most widely used RS in the analysis of high-energy experimental data.
Such experiments are usually performed at different scales µi, but through Eq. (1.1) the different
values of αMS

s (µi) are related to each other.1 In order to keep track of different initial parametri-
sations (µi,α

MS
s (µi)) a scale-invariant parameter ΛMS is introduced. This can be done for any RS.

Once the Λ parameter is known in one RS, a one-loop calculation is sufficient to obtain it in any
other scheme (see, e.g., [7]).

Various nonperturbative studies in the past, in particular in lattice QCD, have provided esti-
mates for αMS

s (MZ) or ΛMS for different numbers of flavour (see, e.g., [8 – 11]). There, different
RSs, and thus different nonperturbative definitions of αs, have been used and the results roughly
agree with what has been found in experiment. Our objective here is to show that, in future, good
results for αMS

s (MZ) or ΛMS may be expected using lattice QCD in Landau gauge.
The definition of the running coupling we employ here is a nonperturbative one that has been

first presented in the context of introducing a solvable systematic truncation scheme for the Dyson-
Schwinger equations of Euclidean QCD in Landau gauge [12]. This running coupling, which we
call αMOM

s in what follows, is defined in a MOM scheme and has its seeds in the ghost-gluon vertex
in Landau gauge. To be specific, we use [12]

α
MOM
s (q2) := α

MOM
s (µ

2)Z(q2,µ
2)J2(q2,µ

2) (1.2)

which defines a nonperturbative running coupling that enters directly into the DSEs of QCD [13].
Z and J are the renormalised dressing functions of the gluon and ghost propagators,

Dab
µν(q2,µ

2) = δ
ab

(
δµν −

qµqν

q2

)
Z(q2,µ2)

q2 and Gab(q2,µ
2) =−δ

ab J(q2,µ2)
q2 . (1.3)

1In the literature it is common practice to evolve data to αMS
s at the Z-Boson mass (see, e.g., [5, Fig.23] for a nice

illustration.) A recent compilation of αMS
s (MZ) values has been given at the ICHEP conference resulting in the world

average αMS
s (MZ) = 0.1175±0.0011 [6].
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In a lattice regularised theory, the corresponding bare dressing functions ZL and JL are related to Z
and J, renormalised at some sufficiently large q2 = µ2, by

Z(q2,µ
2) = Z−1

3 (µ
2,a2) ZL(a2,q2) and J(q2,µ

2) = Z̃−1
3 (µ

2,a2) JL(a2,q2) (1.4)

where Z3 and Z̃3 are the respective renormalisation constants and a is the lattice spacing. When
considering 1/a as our lattice UV cutoff, i.e., for a→ 0, then 2

g2(a)
4π

Z3(µ2,a2) Z̃2
3(µ2,a2)

Z̃1(µ2,a2)
a→0−→ α

MOM
s (µ

2) . (1.5)

With discretisation errors of O(a2) we can thus write

α
MOM
s (q2) =

g2(a)
4π

ZL(q2,a2)J2
L(q2,a2)+O(a2) , (1.6)

where g2(a) is the bare coupling at the lattice cutoff scale 1/a. It is this form of the running
coupling which we will use below.

2. Details of the numerical simulation

The preliminary results described here were obtained on both zero and two-flavour SU(3)
gauge field configurations. The quenched configurations were thermalised using the standard Wil-
son gauge action at several values of β ≡ 6/g2(a). We applied update cycles each consisting of
one heatbath and four micro-canonical over-relaxation steps. The unquenched gauge field con-
figurations were provided to us by the QCDSF collaboration. They used the same gauge action
but supplemented it by N f = 2 clover-improved Wilson fermions at various values of the hopping-
parameter κ . For details on the choice of β - and κ-values we refer to Tab. 1. All gauge con-
figurations were fixed to Landau gauge with an iterative Fourier-accelerated gauge-fixing algo-
rithm [18].3 For the stopping criterion we chose maxx Tr

[
(∇µAx,µ)(∇µAx,µ)†

]
< 10−13. The

fields Ax,µ ≡ Aµ(x+ µ̂/2) are the lattice gluon fields given here in terms of gauge-fixed links Ux,µ

by the mid-point definition

Aµ(x+ µ̂/2) :=
1

2aig
(Ux,µ −U†

x,µ)− 1

6aig
Tr(Ux,µ −U†

x,µ) .

This is accurate to order O(a2). On each such gauge-fixed configuration the momentum-space
gluon and ghost propagators were measured. On the lattice, these are defined as the Monte Carlo
averages

Dab
µν(k) =

〈
Ãa

µ(k)Ãb
ν(−k)

〉
U

and Gab(k) =
1
V

〈
∑
xy

(
M−1)ab

xy eik·(x−y)

〉
U

2Note that, in Landau gauge, as shown long ago [14], the ghost-gluon vertex is regular and finite to any order in
perturbation theory. Its renormalisation constant can thus be set to Z̃1 = 1. Numerical evidence that this is also valid
nonperturbatively has been provided in various investigations (see, e.g., [15 – 17]).

3Note that for the range of momenta studied here the Gribov ambiguity is irrelevant as verified numerically in [19].
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β κ latt. a [fm] #conf.
5.25 0.13575 243×48 0.084 60
5.29 0.13590 243×48 0.080 55
5.40 0.13610 243×48 0.070 62
5.40 0.13640 323×64 0.068 57
5.40 0.13660 323×64 0.068 30

β latt. a [fm] #conf.
– – – –

6.20 324 0.063 30
6.40 324 0.048 50
6.60 324 0.037 60
6.80 324 0.029 46

Table 1: Number of N f = 2 (left) and N f = 0 (right) configurations used. To set the lattice spacings we use
values for (r0/a) as provided by QCDSF [9, 20] and assume r0 = 0.467 fm.

where Ãµ = Ãa
µT a are the Fourier-transformed gluon fields, M is the lattice Faddeev-Popov operator

in Landau gauge, and k · x ≡ ∑µ 2π kµxµ/Lµ . For a definition of M and details on its inversion we
refer to [17, 19] and references therein. The corresponding bare dressing functions, ZL and JL,
are then calculated by assuming a tensor structure for the lattice propagators as given in Eq. (1.3),
but with the continuum momenta qµ substituted by pµ(k) = (2/a)sin(πkµ/Lµ) where the integers
kµ ∈ {−Lµ/2+1, . . . Lµ/2}.4 At tree level this tensor structure is exact for the Wilson gauge action
and the Faddeev-Popov operator we use (applying periodic boundary conditions). Given the data
for ZL and JL, we then estimate the coupling constant by the product

αL(p2) =
g2(a)

4π
ZL(p2,a2)J2

L(p2,a2) (2.1)

where g2(a) = 6/β . The corresponding error is obtained from a bootstrap analysis. Note that
unlike other lattice investigations where data for Z and J are usually separately renormalised, no
renormalisation is done here.

3. Preliminary results

In Fig. 1 (left) we show our present N f = 2 data on αL as a function of momentum. One
sees that the data for different values of the input parameters β and κ form a reasonably smooth
curve, indicating that discretisation effects are small for the input we employ. The only noticeable
exceptions are the highest momentum values of each data set, where a slight deviation becomes
evident with decreasing a. As expected, the quark-mass dependence is small.

Discretisation effects are more evident for our present quenched data, as shown in Fig. 1
(right). In particular for β ≤ 6.4, which corresponds to even smaller lattice spacings than we
use for N f = 2, the data at larger momenta tends towards larger values as a decreases. Perhaps
surprisingly, this effect is in the opposite direction than that observed in the unquenched data.

Since we use a tree-level improved definition of momentum (see above) the data at larger
momenta is expected to be less affected by discretization errors than with the naive definition
ap̃µ = 2π kµ/Lµ . Nevertheless, if the data is fit to perturbative QCD, e.g., as described below, the
momenta pµ considered must satisfy Λ ∼ 250 MeV � |pµ | � π/a . For the cylinder-cut data
[21] used here, this translates into an upper bound of p2 = pµ pµ � 4π2/a2 ∼ 300 GeV2 with the
lattice spacings for N f = 2 in Fig. 2. This leaves us a considerable range of momenta to work with.

4Of course, for both propagators the case k ≡ (k1,k2,k3,k4) = 0 has to be excluded.
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Figure 1: N f = 2 (left) and N f = 0 (right) data for αL(p2) at different β (and κ). We set r0 = 0.467 fm to
assign physical units to p2. Approximate values for the lattice spacing a are given in fm.

We observe, however, that for both the quenched and the unquenched data, strong discretisation
effects appear at a2 p2 ≥ 14 (not shown), where the data points (for fixed parameters) start bending
downwards as a2 p2 is further increased. We therefore restrict the present analysis to momenta
a2 p2 < 14 where no such effect occurs.

Given the data for different parameters, we consider, for each data set, a range of fitting win-
dows within which the data is fit to a perturbative expansion of our running coupling. Since, from
perturbative QCD, the running of αMOM

s is known up to three loops for the ghost-gluon vertex [3],
we could use the truncated αMOM

s beta-function at 3-loop order from Ref. [3] to describe the run-
ning of our data. However, the coefficients c1 and c2 in the expansion of αMOM

s in terms of αMS
s ,

i.e.
α

MOM
s = α

MS
s

{
1+ c1α

MS
s + c2

[
α

MS
s

]2 + c3
[
α

MS
s

]3 + . . .
}

, (3.1)

which are known, as a function of N f [3], 5 are all positive and of O(1) for the cases considered
here, causing αMOM

s to run more rapidly with scale than does αMS
s . The result is that, as one

lowers the scale, the truncated running at a given order becomes problematic at higher scales for
the MOM coupling than it does for the MS coupling. In order to opt for the safest version of our
analysis from the outset, we thus perform the running using the intermediate αMS

s running at four
loops, with matching from αMOM

s to αMS
s at the start, and then re-matching back to αMOM

s at the
end.

In practice, this means that for our fits we scan over a fine-grid interval of αMS
s values at an

arbitrary reference scale µ , running each such value to all the momenta p2 considered with the
truncated 4-loop running6 relevant to N f . At each p2 the 4-loop value of αMS

s (p2) is then related to
the corresponding MOM value αMOM

s (p2) using the relation between the MOM and MS couplings
given in Eq. (3.1). For this we use the known coefficients c1 and c2 and set c3 = c4 = . . . = 0,
an approximation which appears to become reliable for sufficiently large p2 in our data sets. A

5For the ghost-gluon vertex those coefficients are roughly c1(0) ≈ 4.23/π and c2(0) ≈ 36/π2 for the zero-flavour
and c1(2)≈ 3.67/π and c2(2)≈ 26/π2 for the two-flavour case [3].

6To be specific, the running is performed using the exact analytic (implicit) solution of Eq. (1.1) corresponding to
the four-loop truncated beta function.
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Figure 2: N f = 2 data for αL(p2) at β = 5.4 and
κ = 0.1366. The line represents the best fit to the
data as described in the text. The fit window and the
value of r0ΛMS, as a result of that fit, are given too.
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Figure 3: Fitted values for r0ΛMS
2 as a function of

bare mass amq for different β . We use κc values
from [9, 20] to set amq = (1/κ−1/κc)/2.

χ2-minimisation of the scaled deviations of αMOM
s (p2) from the αL(p2) data then determines the

optimised αMS
s (µ2), from which the optimised ΛMS value is obtained using the conventional def-

inition given, e.g., in Ref. [22]. We perform such a fit separately on the data for each (β , κ , N f ).
An example of the resulting fit quality, together with the corresponding value for r0ΛMS, is shown
for the (β ,κ,N f ) = (5.4,0.1366,2) set in Fig. 2. Obviously, the data there is well described by the
fit. The result shown there, r0ΛMS = 0.60(1), is already in the ballpark of what is expected based
on the results of, e.g., Refs. [9, 11]. In Fig. 3 all our present (as-yet-preliminary) values of r0ΛMS

for the N f = 2 data sets are collected. Note that we have yet to fully investigate and quantify, and
hence have not included in Fig. 3, uncertainties due to (i) truncated running, (ii) the impact of pos-
sible higher order, non-zero c3,c4, . . . terms in the relation between the MS and MOM couplings,
and (iii) the statistical uncertainty in the fit associated with that in the data. In particular, this will
then allow us to extrapolate our r0ΛMS values for the different parameters to the appropriate limits
(a→ 0, κ → κc) with realistic error estimates.

4. Conclusions

We have reported on first steps towards a determination of ΛMS in terms of lattice MC simu-
lations of gluodynamics within the Landau gauge. Our method is based on the ghost-gluon vertex
which in this particular gauge provides a nonperturbative running coupling in a MOM scheme de-
fined solely in terms of the gluon and ghost dressing functions. Both these dressing functions can
be calculated in terms of lattice MC simulations with good accuracy.

Although our results are still preliminary, fits of our data to corresponding perturbative ex-
pressions of our running coupling result in values of ΛMS

2 in the range expected. This suggests
that a full estimate of the QCD parameter Λ within this framework is worth pursuing. Different
systematic effects still have to be investigated before final conclusions can be drawn. In addition to
those already noted above, lattice discretisation errors, in particular for N f = 0, need further study.
In the light of the results shown in Fig. 2, however, the approach appears quite promising.
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