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1. Introduction

It is well known that in lattice gauge theory the vertices quée complicated especially for
the pure gluon sector. This is because, on the lattice, wpraserving gauge invariance at finite
cutoff and the lattice itself breaks the Lorentz symmetrgliexly. This is the main difficulty of
lattice perturbation theory. To reduce the risk of errord tinalleviate the tedious task of deriving
the vertices, it is desirable to have an automatic method.rsA dittempt was made by Luscher
and Weisz about twenty yeas ago [1]. They worked in momenfpaces and performed some
calculations by using their algorithm which was restridiedlosed loops sufficient for pure gauge
theory.

Recently a new algorithm, that we call bottom up algorithrasyroposed by Hart et. al.[2].
A crucial point in this generalization is that it can deal winy parallel transporter, not only
with closed loops. This allows to also include a fermion@ttdr even a smeared HQET action.
A relevant assumption for this algorithm has been trarsiatnvariance. Our main concern in
this note is to extend the bottom up algorithm to the Schigetirfunctional (SF)[3] where this
invariance is broken for the time direction. Before goinghe extension we first summarize the
position space version of the algorithm on the usual tréioslanvariant lattice in the next section.

2. Bottom up Algorithm

In Ref.[2], the authors explain the algorithm in momenturacgpbut here we will move to
coordinate space. In the following we denote the antihemnitgauge fluctuation field y, (x),
and the link variable (still without background field) by(x, tt) = exp(godu(X)).

A firstimportant point for the automatic operation is howeptesent the vertices in a program.
We consider the parallel transporter along a cu#feon the lattice. The’th order coefficient in
the Taylor expansioR; of the parallel transportd?[.Z; ] is written as

0 r NT 1 r
PLZ;d) = ;%Pr[z;q], =3 %ua kzlqé’r -G T, 2.1)
1 &S

r=0'" A,

wherea = (U,X) is a combined index labelling links, arads color. We cally,..q, = Ta, -+ Ta, @
color factor, andfy an amplitude. The latter corresponds to a value of a reduedexwith index
(at,---,af). The reduced vertex here means a vertex without the coltorfathe information
about the reduced vertex of ordeis now encoded in a list consisting Nf lines

LI((r) = (a|%7"'7a|£; fk)7 (22)

which holds the index structures and amplitudes of the spmeding reduced vertex. The list
L) = {Ll((r)]k =1,..,N;} corresponds to the all nonzero elements of the reducedxvefterder

r. It will be constructed recursively by the multiplicatiofgarithm to be given below. Note that
in eq.(2.1) the color factor is located outside of tasummation, because it is independent of the
shape of the transporter. However, for the SF this nice tsiredés rendered more complicated by
the background field as we will see in the next section.
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As an explicit example for a list, let us look at the case ofdimgle gauge link variable. From
the expanded form we can obtain a li$? of the link variable,

0

grO a a (r) .

Ux,u)=>» = <0y, LV =(a, -,a;1), a=(u,x. 2.3

(x, 1) r§: ”alza(%l aOay " Oy ( o ) (hx). (2.3)
r elements

It consists of only one lineN; = 1) and is the elementary building block of the algorithmt ika
something like an initial condition.

So far we have defined the fundamental elements on which ¢gjogithim operates. Next we
consider the case that a parallel transpofés composed fron” andP”, P = P’P” and want to
obtain the vertices d? from those of” andP”. In other words, the problem is how to obtain a set
of lists of P (up to a certain order), from those BfandP”, {L;}p x {Lj}pr — {Lk}p. Since any
parallel transporter is composed of elementary one-linlaiées, by repeating the procedure, we
can obtain the lists for arbitrary parallel transportersisTis the origin of the name ‘bottom up’.
The algorithm can be easily understood by looking at an &otuéiplication of the coefficients of
the Taylor expansion. The coefficientBfwith orderr, B, is expressed by those Bf andP” as

r |
r /o

P=Y-— PP
' S;)s!(r—s)! sires

r r! Né Nr//—s 1 s ol a—s
o : (of (o6 i j 1l
— z Cay..a %m Zl z Oa; ---Oat Oae,1---Oa, i fj
ai...ar =0 ti=lj=1
Nr 1 r
_ ag Oy
= z Cay...a, z Oa -+ Ga k-
aj...ar k=1

After the second equal-sign we inserted the explicit fornthef coefficients, and use the fact that
the color factor is independent of the shape of the parallelsporter. In the last step we combine
the three summations into that over More precisely, we did a relabelling of the indices, and
rewrote the amplitude factor. Finally the resulting listRyfLy is created by putting the new label
structure and the new amplitude. The algorithm is summe@ze

e Relabeling:{al,---,a% at,---,a[ %} — {a}, - a8, ag™, - af}

e Amplitude part:ﬁfi’ff’ — fi

e Creating list:L{ x L] — Ly = (a¢,---, a; f)
This procedure should be carried out fok@<r, 1<i <N.and 1< j <N/ . if orderr is desired.
The algorithm has been implemented in the python scriptuagg, which is good at dealing with
the complicated list operation. In this way, one can obtaéwertices for any parallel transporter.

3. Extension to the Schrédinger Functional

The essential new ingredient in the SF is the presence ofaitevanishing back ground field.
Itis induced by non trivial Dirichlet boundary conditionsthe time direction. In this case, the link
variable is expressed by the background field and the fluotuéield gy,

U (x, 1) =V (x, 1) g% (3.1)
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The main difficulty due to the presence of the back ground felturs in the color factor. In the
color factor, the back ground field can appear “randomlyWweein SU(3) generators, for example

Cagaras- = Tay TapTag - — TaVTa,V 1T ---, onSE (3.2)

where arguments of’s and powers\{ or V1) depend on the location of the links and its orien-
tation. At first glance, it seems difficult to deal with it in gssematic way. Furthermore, since the
background field depends on the Lorentz and position indtbescolor factor is located inside of
the sum over and does not factorize anymore,

Ne . Ne .
P= Y Gaa g f— T YE L0 ff, onSE (33
ap,...,ar k=1 a,....ar k=1

One can solve the problem however for the restricted clagsaockground fields that have
mainly been used in applications of the SF [8]x,0) = 1,V (x,k) =V (Xp). In addition, we take
the background field to be abelian, given by diagonal coldrioes. This means that the generators
in theV (Xo) are written as linear combinations of the elements of thea@asub-algebr&lj, that
is, V(%) = € ZiMCoMi with coefficientsh; (xo). Now we find the nice equatiol,(xo)laV ~(xo) =
|,€%(0) and thel, (Cartan basis) do not mix with other basis elements. Thie@bse, in the
adjoint representation, an element of the Cartan basis migenstate of the Cartan generator,
[Hj,la] = Hjala. The eigenvalugu is a root, and the phase is a linear combination of the roats an
hj(X0), @a(X0) = ¥ j Mjahj(x0). Another property of the standard background fields thatles/ant
here is that the back ground field and the phase has a simpéadiepce on timey (xo + At) =
V (Xo) exp(iAt&), @a(xo + At) = @ (Xo) + Aty,, whereé is the color electric field. This however
needs to be relaxed later, see in next section.

Our main finding is that by making use of the above propertieghe background field any
color factor of order can be written as

gk

a-ar

(0) = [l Ia VA (10)e "™ ] @i Tt e 00 (3.4)
u(1) phase factor

3x3 matrix

where the background field has been moved to the right in the3 3natrix part. Actually we
can show by induction that andB are single component integer, a@dandD arer component
integer valued vectors. In the expression, the informatibtihe lattice size and the back ground
field are encoded iV, &, g and . The lists are independent of these values, og/A,B,C,D
are required. The former are only needed when implementiagértex in a diagram calculation
program at a second stage. Note that we needince there is no translation symmetry for the
time direction. We choosg, as the time component of the position of the left most linkalzle in
the parallel transporter. The benefit of the expressionasitie can separate the information about
the list (A, B,C, D) and the lattice size and the back ground field. Thereforegamedo a symbolic
list operation, independently of the details of the latacel the background field.

We have obtained a manageable expression for the color.fateat we formulate the multi-
plication for this structure of integer listgo, A, B,C,D). From an actual multiplication of the color
factors, we found the algorithm to get a list of color fac@i(orderr) from those of” (orders)
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and¢” (orderr — ), (x0,A,B,C,D) «— (x3,A',B',C",D’) x (x3,A",B",C",D"),

Xo < Xo, (3.5)
A A+A (3.6)
B «—— B +B"+AtA”, (3.7)
C « (Cly)+,Clg),Clhy + 2B + MDY, -, Clp_g +2B'+ AD[,_g), (3.8)

s elements r—selements

r elements

D «— (D{y),"**,D{g, Dy +2A, -+, D _g +2K)), (3.9)

s elements r-selements

r elements

whereAt = xg —X;. It turns out that the resulting andB remain single component integer. On the
other hand, the resulting andD are given by combinations of single prime and double prime ob
jects with some additional terms. Sin&eB,C, D are all integer value and this operation is simple,
the algorithm is suited for a symbolic operation and easilglemented in python script language.
As a new ingredient in the implementation, we have to add #necomponentsgg, A, B,C, D to the
earlier list structure,

L|((r) = (a%,"',a&,xo,Ak,Bk,Ck,Dk; fk) (310)

Even in the SF with non-trivial color factor, the algorithnaimtains a closed multiplication struc-
ture, therefore it is applicable for any parallel transport

To confirm and check the algorithm, we perform a one-looputation of the SF coupling.
By calculating this quantity, we can check the two-pointteey that is, inverse propagator. We
investigate not only the plaquette gauge action consideeéale [3], but also the improved gauge
actions including the rectangular loop [4] and get consistesults. Furthermore, we compared
with the hand derived three point vertex of the plaquetteggaction, available from a private note
of Peter Weisz and confirmed consistency. To get further denéie in the implementation of our
algorithm, we have to check the four-point vertex. To do sowed to do a two-loop calculation
of the SF coupling [5, 6], and this will be reported in the fietu

4. Application I: L =T +alattice

As a simple novel application of our algorithm, we performng-doop computation of the SF
coupling on lattices with. = T 4 sawith s= +1. Such lattices are motivated by considering the
SF with staggered fermions. Due to the Dirichlet boundarthintime direction, we have to set
T to be odd. Here, we will discuss only the gauge part on thiedgthot the staggered fermion
part. More details about the latter are given in the contigiouof P. Perez Rubio and S. Sint to this
conference.

When one takes the continuum limit in the standard SF, orsetlseT /L = 1. The fact that we
here have to s€fl +sa)/L = 1 when taking the continuum limit in the tree-lev@{a) improved
theory causes some change to the solution of the equationtadmthat is, the background field. It
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Figure 1: One-loop relative deviation as a functionafL. The left(right) panel shows tree(one-loop) level
O(a) improved results

is modified by lattice artifacts as compared to the standaed @and has to be extracted numerically
from the equation of motion. The time dependence of the backgl field turns out not to be
strictly linear anymore. Therefore we have to extend ouordtlgm to apply for an arbitrary time
dependent phasg(xp). For this purpose, we have derived another variant algorftdr the color
factor which is similar to eq.(3.9), and it will be shown in realetail in a future publication.

In Figure 1, we show the resulting relative deviation of tteppsscaling function to one-loop
order,51(k>(a/L), given by

sua/L) = 2 aé L()u)_ oW _ 5 (a/L)u+ O(L?), 4.1)
O'(U) = g_z(ZL)7 u= g_z(l-)7 (42)

wherek = 0(k = 1) is the tree (one-loop)level @(improved case. In the plots, for comparison,
we also include those af= 0 whereL andT are the same. As a result, we observe that all three
cases have similar absolute size of the lattice artifacts.

5. Application II: A parameter for improved gauge actions

As a next application, we apply the algorithm to the improgadige actions including six
link loops (not only for the rectangular type but also for thair and 3-dimensional type actions).
The loops are shown in Figure 2 with weight factarg, ¢; etc. and the weights are normalized
by co + 8¢y + 16¢, + 8c3 = 1. We perform the one-loop computation of the SF couplingtfier
improved gauge actions and extract information about a @ftlambda parameters for the pure
SU(3) gauge theory between the lattice scheme (the variaugegactions) and the SF scheme,
ALat/Nsr. By combining the result of\sg/Ays in [6] for N = 3 andN; = 0, we summarize the
values of A at/Ays = ALat/Asr- Asr//\ys in Table 1. We observe rough consistency with old
results.

We thank the Deutsche Forschungsgemeinschaft (DFG) f@osuim the framework of SFB
Transregio 9.
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Co C1 C C3

Figure 2: Loops with weight factorsg 1 » 3 which contribute to the improved gauge action.

Action C1 Cy C3 ALat/Nys
Plaquette 0 0 0 0.0347109675. [7]
Wilson RG | —0.252 0 —0.170 | 2.3408Q2)
lwasaki | —0.331 0 0 2.124585)
DBW2 —-1.40686 O 0 44.21(2)
Symanzik | —1/12 0 0 0.18369384)
Symanzik Il | —1/12 1/16 —1/16 | 0.17828834)
noname | —1/12 -0.1 0.1 0.16736748)

Table 1: We show our results ok 5t/ Ays in SU(3) gauge theory for various gauge actions, exceptier t
plaguette gauge action ref. [7] which is given here for catgriess. Our values are roughly consistent with
old results [8, 9, 10, 11, 12, 13], but in ref.[13] the authdosnot show error estimates therefore, it is hard
to compare. After the completion of this work, new resultsfeveral gauge actions have appeared in ref.
[14].
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