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1. Introduction

Recent progress in parallel computing, as well as theoretical advances in the formulation of
lattice gauge theories with fermions, have allowed the widespread adoption of simulations using
dynamical light quarks, leading to a significant reduction in systematic errors by removing the
uncontrollable error inherent in the quenched approximation.

The Fermilab Lattice, MILC and HPQCD collaborations have an ambitious program which to

date has made several high-precision predictions from unquenched lattice QCD simulatihns [
In this, we rely on the Symanzik-improved staggered-quark formalism, specifically the use of the
asqtad 8] action. While this approach requires the use of the fourth root of the staggered quark
determinant, all the available evidence is consistent with the conclusion that the resulting theory
is in the same universality class as continuum QCD, as long as the chiral limit is taken after the
continuum limit [4].

Recent studies of the heavy-quark potential in full QGDHave shown an unexpected ap-
parent increase in scaling violations compared to the quenched approximation. A possible reason
for this would be that these scaling violations arise from the mismatch between the inclusion of
sea quark effects in the simulation and the omission of sea quark effects in the improvement co-
efficients in the action. This mismatch would appear to spoildiie?) improvement at the level
of 0(asN¢a?). While a systematic study af(osa?) effects is generally beyond the scope of the
current perturbative improvement programme, it is still important to bring up-to-date the calcu-
lations of the Luscher-Weisz improved gluonic acti@n T] to include the effects of dynamical
quarks. This is important also because the Lischer-Weisz improvement is currently included in
many unquenched simulation8][ Since the lattice spacing scale is set by measurement of the
heavy-quark potential, there will be an indua€dasN¢a?) artifact by omitting the corrections due
to unquenching. While such errors are generally smaller than other systematic errors in current
state-of-the art studies, it is simple to remove them using the result of the perturbative matching
calculations outlined here. For details, the reader is referred to our @per [

2. On-shell improvement

The Luscher-Weisz action is given bj [

4
S=5{c S (1-P,)+2c 1-Ryy)+=c 1—Tavp) v, (2.1)
Z{ u;v< ) 1u;v< ) 3 2#2¢P< ' p>}

whereP, RandT are the plaquette, rectangle and “twisted” parallelogram loops, respectively. The
requirement of obtaining the Yang-Mills action in the continuum limit imposes the constraint

Co+8c1+8c=1, (2.2)

which fixescy given the other two coefficients. This leaves us vattandc, to be determined in
order to eliminate thes(a?) lattice artifacts.

If we have two independent quantiti€s andQ, which, at each order in perturbation theory,
can be expanded in powers @fa), whereu is some energy scale, as

Q = Qi +wi(ua)*+dijcj(na)* + 0 ((na)*) . (2.3)
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then theo'(a?) matching condition reads
dijcj = —w; . (2.4)

Since this equation is linear, we can decomposevihato a gluonic and a fermionic part as

wi = Wiqlue+ waiquarkand obtain the same decomposition for thethus, especially we do not
need to repeat the quenched calculation in order to obtaiwthg) contributions®

At tree-level, there are no fermion loops to consider, and hence the tree-level coefficients
remain unchanged compared to the quenched &se [

1

C1 = _TZ’

¢ = 0. (2.5)

3. Lattice perturbation theory on a twisted lattice

In lattice perturbation theory, the link variablely € SU(N) are expressed in terms of the
gauge fieldA, € suN) as

Uy (x) :exp<gaﬁ,u <x+;ﬁ>> (3.1)

which, when expanded in powers@fleads to a perturbative expansion of the lattice action, from
which the perturbative vertex functions can be read off.

As in any perturbative formulation of a gauge theory, gauge fixing and ghost terms appear
in the Fadeev-Popov Lagrangian; an additional term arises from the Haar measure on the gauge
group. Here we will not have to concern ourselves with these, since for our purpose we only need
to consider quark loops.

To handle the complicated form of the vertices and propagators in lattice perturbation theory,
we employ a number of automation method$, [L2] that are based on the seminal work of Lischer
and Weisz §]. Three independent implementations by different authors have been used in this work
to ensure against programming errors.

We work on a four-dimensional Euclidean lattice of lengthin the x andy directions and
lengthsL,a, L;a in thez andt directions, respectively, whegeis the lattice spacing and L, L
are even integers. In the following, we will employ twisted boundary conditions in much the same
way as in p, 7]. The twisted boundary conditions we use for gluons and quarks are applied to the
(x,y) directions and are given by & X,y)

Uy (x+LV) = QU (xQ; 1, (3.2)
Wx+LV) = Q,¥(xQ, !, (3.3)

where the quark fiel®sc(x) becomes a matrix in smell-colour spadsj][by the introduction of
a “smell” group SUKs) with Ns = N in addition to the colour group SN). We apply periodic
boundary conditions in thez,t) directions.

1Although doing so provides a useful check on our methods, and we have in fact successfully reproduced the results

of [7].



Unguenching effects on the coefficients of the Lischer-Weisz action G.M. von Hippel

These boundary conditions lead to a change in the Fourier expansion of the fields: in the
twisted(x,y) directions the momentum sums are now over

NL NL
Py = mny, —7<nv§7, V:(X,y), (34)

wherem= 2L, The modes withr = ny = 0 modN) are omitted from the sum in the case of the
gluons. The momentum sums for quark loops need to be divided toyremove the redundant
smell factor.

The twisted theory can be viewed as a two-dimensional field theory irfzhg plane by
considering the modes in the twisted directions as Kaluza-Klein modes. Demon@y,ny),
the stable particles in the,t) continuum limit of this effective theory are called the A mesons
(n=(1,0) orn = (0,1)) with massmand the B mesons(= (1, 1)) with massy2m[7].

4. Small-mass expansions

To extract the/(a?) lattice artifacts, we first expand some observable qua@titypowers of
maat fixedmga:

Q(ma mya) = ay” (mga) +ay (mya) (ma)? + & ((ma)*, (ma)*log(ma)) (4.1)

where the coefficients in the expansion are all functiomsgf There is no term a’ ((ma)?log(ma))
since the gluon action is improved at tree-leveCi@?) [7]. Although we ultimately wish to ex-
trapolate to the chiral limit, we cannot sea = O straight away, since the correct chiral limit is
mga — 0, ma— 0, mg/m > C, wherem = 2T as before an€ is a constant determined by the
requirement that a Wick rotation can be performed without encountering a pinch singularity. This
requires us to consider a double expansiomga, maand carry out the extrapolation tya = 0
for the coefficients in Eqn4(1).

To extrapolate to the chiral limitnga — 0, we will fit the coefficients in the expansion fQr
in mato their most general expansionnma for smallmga.

For a(()Q)(n‘qa) we have

ay? (mga) = bl log(mya) +aly - (4.2)

Since we expect a well-defined continuum Iinai&?)(nha) cannot contain any negative powers of
mya but, depending on the quantiy, it may contain Iogarithmsbé%) is the anomalous dimension
associated witlQ, and can be determined by a continuum calculation.

Fora(zQ)(mqa) we find

Q)
a”
(ma) = o5+ + (a3 + b3 logmya) ) (mae)* +0/ ((ma)) . (43)

After multiplication by(ma)? the (mqa) ~2 contribution gives rise to a continuum contributiorQp
anda(zf{)2 is calculable in continuum perturbation theory. There can be no tefmya ~2log(mya)
since this would be a volume-dependent further contribution to the anomalous dimen®icanof
there can be no term in l¢gya) since the action is tree-levél(a?) improved.

In the chiral limitmg — 0, the termw; that appears on the right-hand side of Edh4)is a(z%),
and it is this limit and this coefficient that we will concern ourselves with hereafter.
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Figure 1: (a) The fermionic one-loop diagrams contributing to the A meson mass renormalisation as well
as to the wavefunction renormalisation for A and B mesons. (b) The fermionic diagrams contributing to the
irreducible three-point function.

5. The A meson mass

The simplest spectral quantity that can be chosen within the framework of the twisted boundary
conditions outlined above is the (renormalised) mass of the A meson. The one-loop correction the
the A meson mass (for A mesons with positive spin) is given by

1
1 _ 77 (K)

(0)
2" = im® 0mo)

(5.1)

whereZy(k) = 1+ ¢ ((ma)*) is the residue of the pole of the tree-level gluon propagator at spatial
momentunk, andmg)) is defined so that the momentuais on-shell. We consider the dimension-
less quantityn(Al) /m. The fermionic diagrams that contribute to this quantity are shown in figgure
(a).

The anomalous dimension pfa is zero and so using Eqr4.Q) we havebéi'é’*?l) = 0. From
gauge invariance we firgh ™" = 0 andaj™"
implies thatagy™" = 0.

Theo (as(ma)z) contribution from improvement of the action is given bY [

(mga) = 0, which together with the previous result

(1)
Bimp 2= = — (¢t — &) (ma)?+ & (ma)*) (5.2)

6. The three-point coupling

An effective coupling constarit for an AAB meson vertex is defined as

A =dov/Z(K)Z(p)Z(q)eiT %1 (k, p,q) (6.1)
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where we have factored out a twist factor#Tr([l’k,rp]rq) from both sides, and the momenta
and polarisations of the incoming particles are

k=(iE(k),k) p=(—iE(p),p) a=(00) e=(0,1,-1,0)

k=(0mir) p=(m0ir)  g=(-m—m—2ir) (6.2)

Herer > 0 is defined such th&(q) = 0. This coupling is a spectral quantity since it can be related
to the scattering amplitude of A mesorig)]. We expand Eqn. §.1) perturbatively to one-loop
order and find (up t@’((ma)*) corrections)

A0 1 r 4.d 1 d /i@
™o <1‘ 24”?> o iedie ™ 0 e <1‘ 12”F> i@ ez (@)

The fermionic diagrams contributing to the irreducible three-point fundtidhare shown in figure
1 (b). Continuum calculations of the anomalous dimension and infrared divergence give

G0 (6.3)

a1 Ni 5 A1) Ne
Boo” = 309 %2 = ~ 509 ©4)
The improvement contribution tb is [7]
ll
Bimp ' = 4(9¢;” — 7¢57)(ma)* + & (ma)*) . (6.5)

7. Continuing to imaginary momenta

The external lines of the diagrams are on-shell, but with complex three-moméntunthe
Euclidean formulatiorkg is also imaginary. In evaluating the loop integrals that are not pure tad-
poles, care must be taken to ensure that the amplitudes calculated are the correct analytic continu-
ations from the Minkowski space on-shell amplitudes defined with real three-momenta to the ones
in Eqn. 6.2).

The situation is complicated by the presence of two mass soaleg. The integrals are
evaluated after performing a Wick rotationkg taking care to avoid contour crossing of any poles
that move as is continued front = 0 tor = m/+/2. This requiresn,/m > C, whereC is a constant
dependent on the graph being considered. After the Wick rotatikg) the (Euclidean) integration
contour forkg (or, in one caseks) must be shifted by an imaginary constant.

8. Results

To extract the improvement coefficients from our diagrammatic calculations, we compute the
diagrams for a number of different values of battandmg with Ny = 1, N = 3. At each value
of mq, we then perform a fit irma of the form given in Eqn. 4.1) to extract the coefficients
aﬁQ’l)(mqa), n=0,2.

Performing a fit of the form4.2) and @.3), respectively, on these coefficients, we get the
required coefficients of the’(a?) lattice artifacts in the chiral limit to be

a2 = 0.003611) (8.1)
ays” = —0.140(1) (8.2)
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Figure 2: (a) A plot of the fermionic contributions to the one-lodpmeson seIf—energmgl)/m against

(ma)?. The vanishing ofn,&l)/m in the infinite-volume limit can be seen clearly. (b) A plotaéf’l) against

mya which shows the agreement between the numerical lattice results and the known anomalous dimension:
(c) A plot of a(z’l’l) againstmga with the analytical continuum result for the infrared divergence shown for
comparison.

These coefficients are to be identified with theof Eqn. 2.4).
Solving equation4.4) for ci(l), our results can be summarised as

ci) = —0.0252184) + 0.0048613)N (8.3)
ci) = —0.0044184) + 0.00126 13)N (8.4)

where the quenchedN¢ = 0) results are taken fronY]. With N¢ = 3 the shift from the quenched
values is surprisingly large, and may have a significant impact.
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