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1. Introduction

The subject of high energy scattering for hadrons has a long histegating both QCD and string
theory. Here | wish to report on progress toward a fuller understgrafithis limit. However the reader
should be warned that this short presentation will simplify a rather techammhilcomplex subject and
she or he is referred to references in the bibliography of recentp{h,[B[}#] for much more careful
and cautious assessment. In the context of QCD, there is a fundameessibguhat should have a
definite answer. QCD is apparently the correct theory of the strongarudece with confinement and
a mass gap. Itis a self-consistent unitary theory with a well-defined S-matrigh is UV complete for
any number of color§l > 1 and a limited number of fundamental quark flavors. (The flavor constrain
requiresns < 11N /2 to maintain asymptotic freedom and a more stringent upper boung tmavoid
the Banks-Zaks conformal IR fixed point.) Consequently, in the abseihak other interactions, one
can in principle determine properties of QCD at arbitrarily high energies.ekample, in three flavor
QCD, we may ask what is the exact asymptotic form for the high energy limihétotal cross section
for scattering any of the stable hadrons (pion, kaon, nucleon etckifi8pdly, the celebrated Froissart
theorem from 1961 gives a rigorous bound,

Orat(p+p—X) < ”%Cpp(mn/mp)l()gz(s/%) . (1.1)

when applied to the total pp cross section, as the center of mass dnergys goes to infinity. Even
in the pure glue sectonf = 0), a similar theoretical bound must hold for glueball scatterog; <
/\godcolog(s/so), whereCy is a dimensionless constant.

Surprisingly after almost 50 years since the proof of the Froissarthaumstill are not certain that
this bound is saturated and if so how to compute the coeffiGggim,;/m,)! What is the dependence
of this coefficient in the chiralni; — 0) limit? Questions like this not only pose a sharp theoretical chal-
lenge, they have significant phenomenological consequences. YAhigdr energies such as in cosmic
rays or even the LHC, the lack of a prediction of the QCD cross sectiordgsitdifficult to determine
if new physics is responsible or not for the observed increase in tlss sextion. More generally one
would like to know what distribution of multi-particles configurations dominate tighrgy hadronic
scattering and the rate for the diffractive production of new particlels as¢he Higgs or new TeV spec-
tra. We are still far from a clear picture, let alone quantitative control eé¢hphenomena. Here let
me report on the recent developments in this subject based on Maldaweak/strong duality relating
Yang Mills theories to string theories in (deformed) Anti-de Sitter space.

2. Geometry of Pomeron Exchange

In the Regge theory the traditional approach to the leading high energyibefs related to a rather
mysterious object in the complex J-plane referred to astmeron, whatever that is! In spite of the
difficulty in computing the properties of the Pomeron exchange procesCihiQere is in principle a
clean, albeit indirect, definition. By expanding the elastic amplitude for SKQ@Ip ,

A(Sut) :g(2)A1(37t7)\)+ggA2(svtu)\)+ (21)
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in go ~ 1/N at fixed 'tHooft couplingh = g2,,N, we may adopt the definition:

’ Pomerone leading contribution at largd to the vacuum exchange at large s and fixbd t

While this may appear to be circular, there are some definite consequédmthsweak coupling
SU(N) QCD and strong coupling dual string theory identify this leadiffg2lterm with the topology of
a t-channel exchange flux tube corresponding to a single color trazatopin Yang Mills theory or a
closed string in the dual description.

In weak coupling perturbation theory to first order in the 'tHooft couplhgnd all of order
(Alog(s))", the summation of QCD diagrams leads to the BFKL Pomeron kernel. This Kerttet
solution to a t-channel Bethe Salpeter equation for exchanging two "Regljegluons. Also to this
order, the beta function is zero and so QCD maybe viewed as as a cohfbeng.. Consequently it
is relevant to compare this result with recently identified strong couplingekeising the AdS dual to
N = 4 super conformal Yang Mills theory|[2]. Indeed the strong couplinglte®es exhibit a remark-
able similarity to the BFKL kernel that can begin to shed light on this Pomerarekar the conformal
limit for general 'tHooft coupling. Let us give a geometrical interpretatbthis similarity.

Consider the Regge limit for a generaparticle scattering amplitudé&(ps, p2, - - - pn). The rapidity
gaps, Iip; p, ), between any right- and left-moving particles are@(llogs), i.e., a large Lorentz boost,
expyM,;_], with y ~ logs, is required to switch from the frame co-moving with the left movers to the
frame co-moving with the right movers. Tleplane is conjugate to rapidity, and as such is identified
with the eigenvalue of the Lorentz boost generddiqr_. In the context of the AdS/CFT correspondence,
consider the boost operator relative to the f0[4,2) conformal group. In terms of transformations
on light-cone variables, there are two interesting 6 parameter subgrdhpsfirst is the well known
collinear groupSL (2,R) x SLr(2,R) used in DGLAP for deep inelastic scattering, with generators,

L (2,R), SLr(2,R) generators: DM, _, Py, K¢, (2.2)

which corresponds in the duAtlSs bulk to isometries of the MinkowslddS; light-cone sub-manifold.
The second iSL(2,C) (or Mobius invariance used in solving the weak coupling BFKL equatiorits) w
generators,

S.(2,C) generators: iD+Mip, PLtiP, K1 FiKy, (2.3)

corresponding to the isometries of the Euclidean (transvés8) subspace oAdSs; EuclideanAdS;
is the hyperbolic spadds. IndeedSL(2,C) is the subgroup generated by all elements of the conformal
group that commute with the boost operatdr, . and as such plays the same role as the little group
which commutes with the energy operakyr

To understanding the origin of the SL(2,C) algebra, let us discuss the tisesnef the Euclidean
AdS; metric,ds? = R?[dZ + dwdw] /z?, where the transverse subspac@is= x; +ixp, z). The generators
of theSL(2,C) isometries ofAdS; are

J0:W0W+%zdz .l =—0y , J.=WPOy+wzd,— Py

Jo = Wow+ %zaz B I S R P - (2.4)
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The singularities in thd-plane must be determined by the eigenvalues of the boost operator, f@hich
ourAdSPomerof is approximated b, =2—H, _/(2v/A)+0(1/A) to leading order in strong cou-
pling. Indeed we note that the strong coupling Pomeron kerédlj, x* — X,z 7) = (zZ /R*)Gs(j, V),

is directly written in terms of thé&dS; Green’s function,

| . [l+v+ %VQ*‘V)} (2-0+(1))
Gs(j,v) = a1 V21V ) (2.5)

which is the solution to the boost equation at strong coupling,
Hi +2VA(j —2)]Gs(j,v) = 28(2—Z)8*(x, — X)) - (2.6)

As as a consequence of SL(2,C) invariaiGgg j,v) depends only on thAdSs chordal distancey =
((xL —X,)?+ (z—Z)?)/2zZ and theAdS; conformal dimension) (j) — 1,

A (j)=2+\/4+2VA(j—2) =2+/2VA(j—jo) . (2.7)

The analytic continuation from DGLAP to BFKL operators has been digcuas weak coupling for
some time. The demonstration of this relationship in all laxgesnformal theories, and the derivation
of the formula [2]7), is given in section 3 di [2], wheke (j) = 2 at ] = jo (the BFKL exponent) and
A, (]) =4 atj =2 (for the energy-momentum tensor, the first DGLAP operator) was demaded. For
clarity, we reproduce Fid] 1 fronj][2] showing the essential form of thigfion for large and smaA.

ioar

Figure 1: Schematic form of thé — j relation forA <1 andA > 1. The dashed lines show the= 0 DGLAP
branch (slope 1), BFKL branch (slope 0), and inverted DGLA&nbh (slope-1). Note that the curves pass
through the points (4,2) and (0,2) where the anomalous difmemust vanish. This curve is often plotted in terms
of A— j instead ofp, but this obscures the inversion symmetry- 4 — A.

lIn Ref. ﬂ] the eigenvalue conditidd, _ = j was also identified with the on-shell condition for the world sheet dilatation:
Lo+ Lo—2=0. Here we are concerned with the target space isometries.
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With Hy_ =3—-2J%— 232 expressed in terms @L(2,C) Casimirs, we are led directly to the J-
plane spectrumj(v) = jo— 2v2+0(v*), and as first pointed out in Ref][2] the strong coupling BFKL
intercept isjo = 2—2/+/A and the diffusion constant i8 = 2/v/A.

It is interesting to note that this structure is similar to the weak coupling onerggpion BFKL
spin chain operator in the large N limit. Here the boost operator is approxingtéd, = 1—
(aN/m)HgrkL, WhereHgrk = 411 2104 0) + 0 (F? ‘.+1)] is @ sum over two-body operator with
holomorphic and anti-holomorphic functions of the Casimir. The Yang Mills toggs defined as
a = g&\/4m. Even numbers of gluons§) contribute to the BFKL Pomeron with charge conjugations
C = +1 and the odd number of gluons to the so called “odderon” with chargegainpumsC = —1. The

consequence for the leading J-plane singularity in the two gluon chanmahis
j(v) = jo— 2vZ+0(v*), (2.8)

with jo=1+4In2aN/mandZ = 14{(3)aN/m.

Let us note some differences between the strong-coupling and weeddh@oupling limits. Firstjg
moves from 1 to 2 a8 moves from small to large. Also, the formulas f¢r) given above have different
regimes of validity; at strong coupling the energy-momentum tensjoeadt (along with the nearby~ 2
DGLAP operators) lies within the region of validity of the strong-couplingregpion, while the explicit
factor of A in M, _ means the weak coupling BFKL result breaks down before2. In strong coupling
perhaps one should visualize the Pomeron as the exchange of singlglarsamediagram with an infinite
number of t-channel gluons whose interactions are approximated via afialelapproximation.

3. Theeikonal approximation

We now turn to the problem of the eikonal summation of multiple Regge exchaagégfor the
AdSs strong coupling Pomeron. The standard eikonal formula takes the classic f

Ast) = —2is / dbe 0 [dX(s0) 1) | 3.1)

wheret = —g?2. For the Regge pole model of the Pomeron exchag@ep™) is the Fourier transform
to impact parameter space of the elastic amplitude in the one-Reggeon exelpgmgximation,
d? gL ipt
xsbh = | G AN, (32)
with AD(s;t) = —[(e7™ 1) £ 1) /sinma (t)]B(t)s*®). This is the leading contribution to the sum of
graphs depicted in Fid] 2 below. Let us compare this with our result forikeaaization of theAdSs
graviton of Ref. [}]

Ao_a(st) ~ —2is / d?beibra / Q217 Prs(2) Poa(2) [ X150 22) — 1] (3.3)

whereb = x* — x* due to translational invariance. The salient new features relative to tve é&bur-
dimensional expressions are the new transverse co-ordinate foittheirfiflension ilrAdSs and the prod-
uct of wave functions for left-moving (& 3) and right-moving (2— 4) states,

P13(2) = (z2/R)?\/9(2)D1(z and  Pu(2) = (Z/R?\/9(2)P2(2)Ps(Z)  (3.4)
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Figure 2: Ladder and crossed ladder diagrams contributing to thenallapproximation in the high energy limit.

The obvious (and correct) guess for the eikonalizatioAdss Pomeron is to simply use the appropriate
AdS; kernel given by inverse Mellin transform of the J-plane kernel preskabove,

2

%R sxt —xt.27). (3.5)

1 L _
X(87X _X, 7272,) - 2(22’)25

Whereg0 = K5/R3 This is a natural generalization of our earlier resultAdsS graviton exchangq J4],
whose kernel can be obtained by taking the limnit co.

3.1 Frozen String Bitsin Flat Space

It is also interesting to compare our strong coupling resul&ds space with the eikonal formula
of Amati, Ciafaloni and Veneziang][6] for the superstring in flat spadee flat space solution does not
require a truncation of the infinite number of normal modes of a full stringdisineet description, so
similarities with the general mechanism for eikonalization in string theory foudiirstrong coupling
AdS example suggest further generalization beyond strong couplifigt space the superstring eikonal
phasex is a matrix for all 2 to 2 particle scattering amplitudes in the planar approximation. Stodar
AdSs eikonal amplitude, this matrix can be re-expressed geometrically, this time angelof basis to
an infinite dimensional “impact parameter” space for the transverse pasafandividual string “bits”
X, (o) of the colliding strings:

T4~ —2is / Px, 7%, d° b, Pr3x, (0)]PaalX, (07)] &P [@X(SPrxiX) _q] | (3.6)

Ps1x, (0)] = |®[x,(0)]|?> andPa[X, (¢”)] = |P[X, (0”)]|? are then expressed as the square of Gaussian
wavefunctionals[]2],

P[x1(0)] = (x1(0)/0;0) = expl— ,fd folo2 a ij}ﬁj( 222], @3.7)

for the overlap of the string vacuum stat8; 0), and the string bit distribution at the time of impact
xt=0.
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Thus we see that the geometrical extension of the transverse dimensiows thew above, where
the KK radial mode allowed us to rewrite a multi-channel problem in four dimensions using a teasesv
AdS;, has an analogue here. For the string, the exact flat space eikonkiudmpa multi-channel
problem involving a tower of massive string states, is diagonalized usindfiait@rdimensional space
which is a product of transverse impact-parameter spaces, one fosegug bit. During the collision,
each string bit interacts instantaneously in light-cone #he= T undergoingero deflection. The string
bits are frozen.

4. Futuredirections

While our discussion above has emphasized results for the conformay ttteoeikonal expression
still holds for confining backgrounds with the appropriate kernel. Fanmete the hardwall model with
a cut-off atzir = 1/Aqeq in the IR region is again aAdS; Green function with appropriate boundary
condition atzg. However the consequences are important. We now have a confiningliQ€gual
with a discrete spectrum. This allows one to argue that the eikonal contritiatibe total cross section
respects and saturates the Froissart bound. One future goals is tohstidlae linearity approximation
for the eikonal sum holds for a sufficiently large region in impact paransgace to prove saturation
of the Froissart bound in strong coupling confining gauge theories.r &ftg, we plan to identify the
specific non-linear contributions due to Pomeron splitting as for example inpkeRomeron coupling.
In extreme strong coupling limitW(A /log(s) — «), the dual theory is the Einstein-Hilbert action in a
curved (AdS like) background. By isolating the leading contribution in thevigr limit first, we can
proceed systematically to introduce the/iA contributions to guide the development of a dual Reggeon
effective field theory analogous to the earlier Gribov calculus. Thesambitious goals but ones that
have real promise to bring new clarity to high energy hadronic physics.
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