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1. Introduction

A lattice formulation of the supersymmetric gauge theory is important to understand the non-
perturbative aspects. Recently some formulations are proposed by several authors [2]. Most of
the models use the fact that a nilpotent part of the supersymmetry can be kept on a lattice for
N ≥ 2 cases using the topological twist and the relations among some of them are now becoming
transparent [3, 4, 5]. There is also an attempt to keep all the supersymmetry [6, 7]. Another
approach is a model without exact supersymmetry [1] which uses the factthat in two-dimensional
case, because of the super-renormalizability, there are only a few fine-tuning parameters to obtain
the supersymmetric continuum limit. One of the merits of lattice formulation is to enable one to
perform numerical simulations. In two-dimensional case, some results are known for the super
Yang-Mills theory with the topological twist [8, 9].

In this talk, we report the result of a numerical simulation of the model without exact super-
symmetry proposed in [1]. We measure some 1-point and 2-point functions.

2. Model and Algorithm

The target theory in the continuum is the 2-dimensionalN = (2,2) supersymmetric Yang-Mills
theory which is obtained by a dimensional reduction from the 4-dimensionalN = 1 super Yang-
Mills. The lattice action is defined as a lattice version of a 4-dimensional action onL×L×1×1
lattice together with a scalar mass counter termScounter:1

S= SG +SF +Scounter. (2.1)

The bosonic part is a plaquette action

SG[U ] =
β

2Nc
∑
x∈Γ

∑
M,N

Retr
{

1−P(x,M,N)
}

, (2.2)

P(x,M,N) = U(x,M)U(x+aM̂,N)U(x+aN̂,M)−1U(x,N)−1, (2.3)

where we useSU(NC) gauge link variables,U(x,µ) = exp(agAa
µ(x)Ta), (µ = 0, 1) and compact

scalar fields,U(x,2) = exp(agϕa(x)Ta) andU(x,3) = exp(agφa(x)Ta). The coupling constantg
is related toβ throughβ = 2Nc/a2g2. The fermion action consists of the Wilson-Dirac operator

SF[U,λ ] = −a2 ∑
x∈Γ

tr{λ (x)CDwλ (x)}, Dw =
1
2

3

∑
M=0

{ΓM(∇∗
M +∇M)−a∇∗

M∇M}, (2.4)

with covariant differences for the adjoint representation∇M

∇Mλ (x) =
1
a

{

U(x,M)λ (x+aM̂)U(x,M)−1−λ (x)
}

(2.5)

and its adjoint∇∗
M . The counter term is

Scounter[U ] = −C Nc ∑
x∈Γ

(

tr{U(x,3)+U(x,3)−1−2}+ tr{U(x,2)+U(x,2)−1−2}
)

, (2.6)

1For the notational details, see [1].
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whereC = 0.65948255(8). The counter term is intended to cancel the radiative corrections to the
scalar mass term. Other corrections which might appear in the effective action are suppressed in
the continuum limit because of the super-renormalizability of this theory. All possible divergences
in the sub-diagrams in the perturbative expansion are suppressed. It should be noted, however, that
it does not guarantee the supersymmetry of composite operators.

In our numerical simulation, we use quenched gauge configurations generated by using the
Hybrid Monte Carlo algorithm. The fermion contribution is introduced as a reweighting by the
Pfaffian. In the continuum limit, the model has a real and positive Pfaffian.In fact the direct calcu-
lation for some sample configurations shows that the Pfaffian is real and positive in our parameter
region. Therefore we use a positive square root of the determinant which numerical cost is much
less expensive. We set a bare fermion massm= 0. The lattice size is 8×8 for 1-point functions
and 12×12 for 2-point functions. Since the coupling isβ = 2Nc/a2g2, the continuum limit is the
β → ∞ limit. We set 3≤ β ≤ 40. The gauge group isSU(2).

We summarize the parameters and the numbers of independent configurationsin table 1.

C β 40 20 13 10 8 7 5 3

0.001 301 301 301 301 301 301 - -
0.10939 num. - - - - 301 - - -
0.4 of - 9801 - - 9801 - - -
0.65948255 configs. 801 9801 801 801 9801 801 801 801
1.0 - 9801 - - 9801 - - -
1.5 - 9801 - - 9801 - - -

ag 0.316 0.447 0.555 0.632 0.707 0.756 0.894 1.154

Table 1: The numbers of configurations for each parameter set on 8×8 lattice.

3. One-point functions

It is of our interest to measure the vacuum expectation value of a supercharge-exact operator,
〈QO〉, because it must vanish in the supersymmetric continuum limit. It should be noted, however,
that〈QO〉 can be non-zero (a finite renormalization), depending on the definition of the composite
operatorQO which does not necessarily preserve the supersymmetry.

We make use of a scalar part of the topological twisted superchargesQ and observeQ-exact 1-
point functions used in [8, 9]. Since we have no exact supersymmetry atfinite lattice spacings, first
we write down the continuum relations and then discretize them. We define the scalar supercharge
Q in the continuum as follows:

QAa
µ = ψa

µ , Qψa
µ = iDµφ ′a, Qφ ′a = 0 , (3.1)

Qφ ′a
= ηa, Q

ηa

2
= −

i
2

g fabcφ ′bφ ′c
, Qχa = iF a

01 . (3.2)

Here we introduce scalar fieldsφ ′ = ϕ + iφ andφ ′
= ϕ − iφ . Fermions in the twisted basisψµ , η

andχ are given by liner combinations of the components ofλ : (η/2,χ,ψ0,ψ1)
T ≡ Tλ .
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We use the following threeOi ’s:

O1 = −
i
8

gηa fabcφ ′bφ ′c
, O2 = −2iχaFa

01 , O3 = −
i
2

ψa
µDµφ ′a

. (3.3)

We divideQOi into two partsQOi = Fi +Bi , whereFi contains fermions andBi is made only from
bosons:

F1 = −
i
8

g fabcφ ′aηbηc, F2 = iχa(D0ψa
1 −D1ψa

0) , F3 =
i
2

ψa
µDµηa +

i
2

g fabcφ
′aψb

µψc
µ ,

B1 = −
1
8

g2
(

fabcφ ′bφ ′c
)2

, B2 = 2(Fa
01)

2, B3 =
1
2

Dµφ ′aDµφ ′a
. (3.4)

In the continuum, the kinetic terms and Yukawa interactions of the twisted fermionsare contained
in the Dirac operator. Therefore, to find an appropriate discretization ofthese terms, we simply
replace the continuum Dirac operator with the Wilson-Dirac operator. For example, we replace

iψ0D0
η
2
⇒ ψ0

(

(T−1)T(CDW)T−1)

ψ0η
η
2

. (3.5)

All dimensionful observables are measured in a unit of the dimensionful couplingg.
First, we present the result of theO1 case. Figure 1 shows that each of the bosonic and

fermionic parts is divergent in the continuum limit. The sum〈QO1〉 stays finite after the reweight-
ing by the Pfaffian, while the quenched result diverges (Fig. 2). In thistheory, the cancellation of
divergences in〈QO1〉 is achieved by a balance between bosons’ and fermions’ degrees of freedom.
Our reweighted result is consistent with this fact and the effect of dynamical fermions appears to
be properly included by the reweighting. As already noted, even in the supersymmetric contin-
uum limit, 〈QO1〉 can be non-zero due to a finite renormalization. TheC dependence of〈QO1〉

is summarized in Figure 3. To estimate the effect of the finite renormalization, we determined the
values ofC which provide〈QO1〉 = 0. They areC = 1.047(51) at β = 8 andC = 1.006(77)
at β = 20. Almost noβ -dependence is observed. These values are significantly different from
C = 0.65948255 calculated in the continuum limit [1] and suggest that the effect of the finite
renormalization is certainly not negligible.

The cancellation of divergences is also realized both inQO2 andQO3 cases (Fig. 4). The
C -dependence, however, is not manifest. Note that the plots have much moreerrors than that of
〈QO1〉 and this would imply that theC -dependence is smeared. The difference between behavior
of QO1 and that ofQO2 andQO3 could be accounted as a result of the difference of the divergence
of each operators.B1 andF1 have logarithmic divergences, whileB2, B3, F2 andF3 have quadratic
divergences.

4. Two-point functions

Next we measure quantities with which the restoration of supersymmetry is expected to be
observed transparently. A supersymmetric Ward-Takahashi identity indicates that the following
2-point functions should have the same functional form:2

B = 2i
〈

j5µ(x) jν(y)
〉

, F =
〈

tr
{

γµγ5(φa + iγ5ϕa)ψa(x) jsuper
ν (y)

}〉

, (4.1)

2The former functionB exhibits a power law behavior in the continuum theory [10].
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Figure 1: Thea→ 0 limit of B1 andF1, the left is reweighted and the right is quenched. The counter term
is C = 0.65948255. The lattice size is 8×8.
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Figure 2: The a → 0 limit of 〈QO1〉, the left is reweighted and the right is quenched. The lattice size is
8×8.

where the bosonic currents are

jµ(x) = ψaγµψa(x) , j5µ(x) = ψaγµγ5ψa(x)+2i
{

φa∂µϕa(x)−ϕa∂µφa(x)
}

, (4.2)

and the fermionic current is

jsuper
µ (x) = ψaγµ

{

1
2

Fa
ρσ σρσ − iγρDρ(φa + iγ5ϕa)− ig fabcϕbφ cγ5

}

(x) . (4.3)

Figure 5 shows a typical result of the 2-point functions. The number of the configurations we used
is 101 and the bare fermion mass is 0. According to the scenario, we expectthat a suitable choice
of C should give the supersymmetric result, i.e., the identical spectra, while the other choices ofC
should not. Unfortunately, errors in the plot are too large to analyze the spectra although this is a
result with the quenched approximation. The point here is that we cannot distinguish the difference
of the counter term.

5. Conclusion

We observed 1-point functions and 2-point functions in a lattice formulationof the two-
dimensionalN = (2,2) super Yang-Mills theory. In our scenario, only the counter term coefficient
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Figure 3: TheC dependence of〈QO1〉, the left is reweighted and the right is quenched. The lattice size is
8×8.
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Figure 4: TheC dependence of〈QO2〉 (left) and〈QO3〉 (right). These are reweighted and the lattice size is
8×8.

C should be finely tuned. The 2-point functions have large errors that wecannot compare the spec-
tra associated with a bosonic current and a fermionic current. The 1-point functions we observed
are finite in the continuum limit because of the fermion loop effect. The result of a less divergent
1-point function depends onC and is consistent with our scenario. To obtain the conclusive result
from this dependence, i.e., whether the scenario actually works or not, weneed the renormaliza-
tion factor for the 1-point function. Although the current result is not quite promising, we have
some possible ways to improve. A UV-filtered reweighting will help to reduce theerrors after the
reweighting. The HMC algorithm with dynamical fermions is another option. Theresult of 2-point
functions suggests that the fermion or the scalar (or both) is rather far from massless so that a neg-
ative bare mass of the fermion which reduces the physical mass may improve the sensitivity on the
counter term.

Acknowledgments

We would like to thank Yusuke Taniguchi for discussion at the early stage of this work. We
thank for computational resources of the RIKEN Super Combined Cluster (RSCC). I.K. is sup-
ported by the Special Postdoctoral Researchers Program at RIKEN.The work is supported in
part by Grant-in-Aid for Scientific Research, Nos. 18840045 (H.F.) and 18540305 (H.S.), and by

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
6
4

Numerical results of two-dimensional N= (2,2) super Yang-Mills theory Issaku Kanamori

 0.001

 0.01

 0.1

 1

 10

 0  2  4  6  8  10
|x0-y0|

C=0.65948255
C=0.001

 1e-04

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10
|x0-y0|

C=0.65948255
C=0.001

Figure 5: The two-point functions,B (left) andF (right), in the quenched approximation. These areµ = 1,
ν = 0 components of eq. (4.1). The parameters areβ = 18 andC = 0.65948255, 0.001 on 12×12 lattice.

JSPS and French Ministry of Foreign Affairs under the Japan-FranceIntegrated Action Program
(SAKURA).

References

[1] H. Suzuki and Y. Taniguchi,Two-dimensional N = (2,2) super Yang-Mills theory on the lattice via
dimensional reduction, JHEP10 (2005) 082, [hep-lat/0507019].

[2] J. Giedt,Advances and applications of lattice supersymmetry, PoSLAT2006 (2006) 008,
[hep-lat/0701006], and references therein.

[3] T. Takimi, Relationship between various supersymmetric lattice models, JHEP07 (2007) 010,
[0705.3831].

[4] P. H. Damgaard and S. Matsuura,Relations among supersymmetric lattice gauge theories via
orbifolding, 0706.3007.

[5] P. H. Damgaard and S. Matsuura,Classification of supersymmetric lattice gauge theories by
orbifolding, JHEP07 (2007) 051, [0704.2696].

[6] A. D’Adda, I. Kanamori, N. Kawamoto, and K. Nagata,Exact extended supersymmetry on a lattice:
Twisted N= 2 super Yang-Mills in two dimensions, Phys. Lett.B633 (2006) 645–652,
[hep-lat/0507029].

[7] A. D’Adda, I. Kanamori, N. Kawamoto, and K. Nagata,Exact extended supersymmetry on a lattice:
Twisted N= 4 super Yang-Mills in three dimensions, 0707.3533.

[8] S. Catterall,On the restoration of supersymmetry in twisted two- dimensional lattice Yang-Mills
theory, JHEP04 (2007) 015, [hep-lat/0612008].

[9] H. Suzuki,Two-dimensionalN = (2,2) super Yang-Mills theory on computer, 0706.1392.

[10] H. Fukaya, I. Kanamori, H. Suzuki, M. Hayakawa, and T. Takimi, Note on massless bosonic states in
two-dimensional field theories, Prog. Theor. Phys.116 (2007) 1117–1129, [hep-th/0609049].

7

http://xxx.lanl.gov/abs/hep-lat/0507019
http://xxx.lanl.gov/abs/hep-lat/0701006
http://xxx.lanl.gov/abs/0705.3831
http://xxx.lanl.gov/abs/0706.3007
http://xxx.lanl.gov/abs/0704.2696
http://xxx.lanl.gov/abs/hep-lat/0507029
http://xxx.lanl.gov/abs/0707.3533
http://xxx.lanl.gov/abs/hep-lat/0612008
http://xxx.lanl.gov/abs/0706.1392
http://xxx.lanl.gov/abs/hep-th/0609049

