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1. Introduction

Supersymmetry is nowadays an important ingredient in ninesiretical developments of quantum
field theory beyond the standard model. It allows for the oatfon of the three fundamental forces
described by the standard model and is also incorporategpergravity and string theory. In the
low energy regime this symmetry is obviously not manifesd #me question remains by which
mechanism supersymmetry if realized in nature is brokenmAmon-renormalization theorems it
is at least known that this has to be answered non-pertuebatin this view the lattice might serve
as an equally good approach as it has been before for gaugetheHowever since supersymmetry
is an extension of the Poincaré symmetry of spacetime ihisremtly broken on a spacetime lattice.

Here we study and simulaté” = 2 Wess-Zumino models in one and two dimensions. Lattice
theories with different lattice derivatives and discratian prescriptions which preserve parts of
the supersymmetry are simulated. It is checked that ferimiand bosonic masses coincide and
that unbroken Ward identities are fulfilled to high accurd8y introducing a nonstandard Wilson
term in the two-dimensional theory we can suppress comn@) artifacts. To include dynamical
fermions several algorithms are used and compared with etidr. For a more thoroughfull
presentation of our results we like to refer the reader to [1]

2. Quantum M echanics

In the continuum, the action of our first model is given by théam

_ } ) } 12 1 (174 TAN ; ! — dW(q))
Son— [ dr (507 + W2 G0+ W) with wig =3 @
it is invariant under the following supersymmetric vaigas:
sWe=cy, 8Wg=—c(p+W), V=0, 2.2)
6Pp=ge,  3¥y=(p-W)e,  sPg=o. '

In order to perform numerical simulations and compare wihvipusly results [2] we have fix the
potential to

\M@=g¢+%¢. (2.3)

A lattice version of this supersymmetric continuum theaiges a couple of questions. First
we can ask whether the lattice model admits part of the contisupersymmetry. Integrating out
the fermionsy and changing variables from the bos@n® the so-called Nicolai variables

E=p+W (2.4)

renders the bosonic continuum path integral purely Gansglascretizing this sum of squares
Sos= 23 &&= ((00) +W/(9)’

05T 5 . XX =5 . X

(2.5)
= Shaive + Z(@(p)XW/(QD)x,
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Figurel: Left: The naive discretization of the continuum action fails tooreer the correct supersymmetric
continuum limit when Wilson fermions are used (green andgreghhs). For every finite lattice spacing the
extracted masses differ vastly from each other. The sttnadidifferent when SLAC fermions are used. Here
the masses coincide within statistical bounds and tendrtismhie correca — O limit. Right: The same
graph as on the left, now using the improved actions as digclis the main text. Here also the model with
Wilson fermions exhibits degenerate masses at finite éasti@cing and tends towards the correct continuum
limit.

one easily verifies that one of the symmetries is preservaaceShe presence of the additional
“surface” term improves the behavior of the action with extfgo supersymmetry this action will
be calledNicolai improved

Second we have investigated whether there is an optimatdatrescription for the Dirac
operator. In particular it is a well-known fact that (uljdacal hermitean Dirac operators will
introduce fermionic doublers thus spoiling the balancevbeh bosonic and fermionic degrees of
freedom. Two strategies might be pursued, to double therfiwspectrum as well or to use the non-
local SLAC derivative. The former requires then to amendsingerpotential with a corresponding
Wilson term while the latter is free of any such modifications

2.1 Degeneracy of mass spectra

The most obvious physical consequence of supersymmetarids is the degeneracy of masses
between the bosonic and fermionic channels which is simpé/td the fact that supersymmetry
transforms corresponding states into each other. In M@atde simulations the masses of the
lowest lying state can be read off from the exponential dexfahe connected twopoint function
which can be readily measured. For various lattice spacdnge have measured the masses for
all models in both channels, see Fig. 1. For all improvedoastithe presence of one unbroken
supersymmetry suffices to find the degeneracy even at fittiteelapacing. However while naive
Wilson fermions fail to recover the correct continuum liragt expected [3] and are still plagued by
strongd'(a) artifacts for the improved action, SLAC fermions show cdesably smaller deviations
for finite a and are much less sensitive to improvement terms.

2.2 Ward identities

Another important check for the presence of supersymmaetithe lattice theory is given by the
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Figure2: Left: The Ward identities mentioned in the text as a functiofxefy|. The green graph shows the
“intact” identity while in red the deviation from the continm result is clearly visible. The data were taken
from a lattice with 20 lattice points using Wilson fermioriBhe analysis of SLAC fermions is somewhat
more involved and all signals are worse by an order of magdaithan what is shown heré&ight: The
masses of the various two-dimensional models as a functithedattice spacing. All spectra are degenerate
in the scaling region, however lattice artifacts are muchenpoonounced for Wilson fermions than for SLAC
or modified Wilson fermions.

computation of several Ward identities. For any observ@béind supersymmetry variatianone
should find that

5(0) = (50) =0 (2.6)

holds. With the particular choice f@ = @i, andd = %) we have checked explicitly the relation

(Unetly) — (B&y) = (Untly) — (@ + W) =0, (2.7)

the results are shown in green on the left of Fig. 2. On therdthad, since>® is not respected
by the lattice action one might expect

(W) — (@@ —W))) = (317S) #0

to hold, cf. the left of Fig. 2, too.

By considering Ward identities we have seen that indeed apersymmetry is preserved
while the other is clearly broken at finite lattice spacingori®bver the breaking of Ward Identities
vanishes rapidly with decreasing lattice spacing and weaklag g.

(2.8)

3. Wess-Zumino mode in two dimensions

The action we start from now reads

— 1 .
Son— [ (200004 WP+ My, @)
whereW’ denotes the first derivative of the holomorphic superpakandM is given by
_ " A o 1 o L.Ul
M=¢+W'P.+W'P_, Pi—é(lljzyg,), Y= ) (3.2)
2
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Again this model is invariant under the following set of stgyenmetric variations:

50 = e+ a1y, 5p = Per+ ey
Yt = —IW'e +dge,, Yt = —1W'e — dge,, (3.3)

SY? =dger— W'ep, Q% = —dge — W',

It is still possible to construct a local Nicolai map given by

E=200)+W', & =2(0¢) +W (3.4)

and theNicolai improvedbosonic action is thus

Shos= 3 (200)x(00)+WL(09)+V(99)s + %ywx’F) (3.5)

X

while the fermionic part reads

S‘erm = Z ‘ﬁxMxyl’Uy, M= IVlO +W//(@<)5xyp+ +VV”(@<)5XyP~ (3-6)
Xy

The chosen superpotential differs from the quantum mechhane and now reads
m
W(g) = 27+ 3¢ (3.7)

This particular lattice actions leaves one of the four qonim supersymmetries intact. Unlike
in the quantum mechanical case we consider only improvéokeadbut choose different realizations
of the Dirac operator. Standard Wilson fermions are cdgtamatural choice since they are free
of doublers and ultralocal and hence easy and fast to siemmuldbwever, they suffer from large
O'(a) discretization errors and in our case necessitate a madébficaf the bosonic kinetic operator
as well. SLAC fermions are again another choice. In ordertaia reasonable results, we have
checked that the theory remains one-loop renormalizalaleaniexplicit perturbative calculation.
A third option emerges from a modification of the standardsdfil term reading

ar.
Mo = Y0, + 1. (3.8)

By this twist it can be shown for the free Dirac operator thiata(a) artifacts vanish and the
corrections becomé(a?). Moreover on correllators of spatially averaged operatwesorrections
become ever (a*) for the free theory. The right panel of Fig. 2 shows the masééise lightest
boson and fermion state respectively as a function of thiedaspacing. Both SLAC and twisted
Wilson fermions are much less disturbed by lattice artfabfin standard Wilson fermions are,
although the improvement of the action ensures the supengjric mass degeneracy in all three
cases.

4. Algorithms

Since low-dimensional theories are less demanding thardiowensional LQCD, several strategies
to handle the fermion determinant on top of the standarditiy¥donte Carlo might be put to use.
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Figure 3: Left: Distribution of the reweighting factor plotted as loganitlof the fermion determinant nor-
malized to the free field determinant for different couplstgengthsy using SLAC fermions on a 3% 31
lattice. The more pronounced the peak, the better statigitors are under control and the more reliably
estimates can be measured. It is obvious that the reweggtatitnique will fail forg > 1. For each distribu-
tion 20,000 configurations were evaluat&ight: Comparison of the bosonic two point function between
the quenched and reweighted ensemblg :at0.5 on a 32« 32 lattice with Wilson fermions. The inclu-
sion of fermionic fluctuations in the path integral are digaital for the correct computation of correlation
functions and physical observables.

In any case the models deviate at least in two points from thiee familiar scenario of LQCD.
First our theories involve a only single flavor in order to fxeke fermionic an bosonic degrees of
freedom balanced and secorngkhermiticity is broken by the Yukawa coupling terms. In vielfv
this and to start the investigation on safe grounds, vatimasments of the fermion determinant are
used in parallel and compared to each other. In the simpdesst, the quantum-mechanical model
with Wilson fermions, the explicit formula for the fermior@rminant reads

detMw(¢] = [ ] (1+m+3g¢) — 1, (4.1)

X

and can be applied directly to include fermionic contribas in a HMC integration scheme. Since
the computational effort is rather small very high statstare attainable. In the second related
method one computes the determinant and the inverse ofrthefematrix by direct methods such
as LU-factorization. Again additional noise originatingrh the use of pseudo-fermions is absent.
While easily applicable in one dimension the method soonines infeasible in two dimensions as
the lattices grow in size. A third possibility is given by reighting the fermionic contribution from
guenched ensembles. This method can generate configgradonquickly and is still exact in its
treatment of fermionic fluctuations. Nonetheless it faggidly with increasing coupling constants
since the fluctuations might then overstretch more than tiyverders of magnitude, see the left
of Fig. 3, thereby reducing the effective number of configores to order one. Finally pseudo-
fermions are a well-known approach to estimate the fermeterchinant stochastically. Recent
algorithms such as PHMC and RHMC allow for the treatment aétional powers oM™™. Thus
these algorithms can also be used to simulate supersynoragigile-flavor field theories. However,
the annoying problems with small eigenvalues of the fernmatrix will remain and may hamper
the numerical treatment of these models.
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5. Conclusions and Outlook

We have tested several lattice constructions of supersynume” = 2 Wess-Zumino models in
one and two dimensions. The extended supersymmetry algdbmis the construction of a lattice
action which preserves one supersymmetry. Using Wilsomifars this single remnant of the
continuum symmetry suffices to observe important featufethe theory such as a degenerate
mass spectrum and the validity of associated Ward idestitidependent of the choosen lattice
derivative. For the SLAC derivative in one dimension we hiend that the results do not differ
vastly between the naive and improved action respectivéljth the help of the derived Ward
identities it is possible to check explicitly that one sigyenmetry is respected while the other is
broken.

The two-dimensional models are numerically more demansiimge upon integrating out the
fermion fields one ends up with an (in general not strictlyifpes determinant. This situation
worsens when the coupling is made stronger leaving thismegiaccessible for reweighting tech-
nigues. However the correct treatment of fermionic flu¢turet is again crucial for the expected
“supersymmetric” physics to show up as can be seen fromghéeof Fig. 3. With the introduction
of a modified Wilson term the typica¥(a) scaling is circumvented yielding results of about the
same quality as the non-local SLAC fermions.

In order to investigate the whole parameter space and/oelmadmore than two dimensions
some technical obstacles related to the treatment of th@dardeterminant must be readdressed.
In particular we know from first experiments that precomiing the linear systems before ap-
plying iterative solver schemes would lead to a significaihg Furthermore other acceleration
techniques such as Fourier accelaration, multiple tinadescor higher order integrators are under
investigation. With the help of the PHMC algorithm we hopestttend the stability of the algo-
rithm into regions of parameter space which are inaccessiblhe moment. Apart from this, it is
already possible to study further supersymmetric modedh as the 4/ = 1 Wess-Zumino model
in two dimensions, nonlinear supersymmetrienodels, Wess-Zumino models in higher spacetime
dimensions and Super-Yang-Mills theories with the helpwfexisting codes.
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