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1. Introduction

Numerical simulations of fermion systems have to deal with Pauli principle which enforces
a completely anti-symmetric wave function for fermions. v@hsly, this requirement makes
fermion systems extremely non—local. Changing the systeansingle point affects all degrees
of freedom. In more technical terms, an ad—hoc local changge Iead to a completely different
value of the fermion determinant. Thus intricate method$ ss the hybrid Monte Carlo algorithm
were developed. Nevertheless, also these methods havaltwittethe non—locality which makes
the simulation of fermions several orders of magnitude neapensive than bosonic systems.

Circumventing the non—locality problem altogether is @ely an extremely appealing idea.
A prominent example of a breakthrough in this direction & kheron Cluster Algorithm proposed
in [1], which allows for highly effective Monte Carlo simuian for certain classes of fermionic
models.

An alternative approach is a formal solution of the Grassmth integral for fermions which
represents the partition function of the system as a modsbeéd fermion loops. While for a long
time this technique has been known to work well in the stramgpting limit, only recently [2, 3]
loop representations were found for two—dimensionaldatfield theories at arbitrary coupling, in
particular the Gross—Neveu model [4].

In a recent publication [5] it was shown that the loop repnésigon allows for an efficient
and considerably cheaper simulation than traditional nouthin a subsequent paper [6] Wolff has
rederived the loop representation by decomposing 2—d Béracions into Majorana components
and demonstrated that the loop formulation can be recasd@in aystem where a cluster algorithm
boosts the efficiency of a numerical simulation further.

In this contribution we review the loop representation @efltittice Gross—Neveu model and its
use for a numerical simulation. We furthermore discuss dlop kepresentation of the Schwinger
Model [7], i.e., QED in two dimensions, an example whichsthates the limitations of the loop
approach for a use in numerical simulations.

2. Loop representation of the lattice Gross—Neveu model

We consider the lattice Gross—Neveu model witflavors of Wilson fermions. The lattice action
for the fermions is given by (we set the lattice spacing to 1)

SWY.0 = T BHDEYY(Y) .
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The sum runs over the 2—d lattige In two dimensions thg—matrices may be chosen as the Pauli

matrices,y;, = 0y. The spinorgJ andy are vectors oN 2—d spinors, and we use vector/matrix

notation for both the spinor and flavor indices. Through tir@a®operatoD(x,y) all flavors couple

in the same way to the real scalar figidwhich has the action

= > $(x?. (2.2)
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When integrating out the scalar field the 4—fermi interactio
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is induced. The partition function of the model is given by
z = / [196 () dB(x) dp(x) & S-S B00) / [dée 9 det(Dlg))",  (2.4)
X X

where in the second step the fermions were integrated ourtggiise to a remaining path integral
over the scalar field with the fermion determinant raisedhgowem as integrand.

The last expression is a possible starting point for ideimif the loop representation. The
Dirac operatoD may be rewritten as

DOY) = [2+m+ ()] [&y — H(x)] . (2.5)
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where we have combined all nearest neighbor terms in theitgppatrixH. Inserting the repre-
sentation (2.5) into the partition function (2.4) one finds

Z = /ﬂdq)(x)e*%m [1(2+m+ 0())*" det(1—H[gp])"

N
— /nd(p(x)e‘%[d’] M (2+m+ ¢>(x))2N <exp<— > %Tr [H”])) . (2.6)
X X n=1

where we have used the formula [det H] = exp(Tr In[1— H]) for the determinant and expanded
the logarithm.

The expression (2.6) is the well known hopping expansion.this point the loops are al-
ready evident: The hopping matrkt is a matrix which describes hopping between neighboring
lattice points. Consequently the powseF in (2.6) corresponds to a chain ofsubsequent steps.
When taking the trace only closed chains, i.e., loops san@uch an expansion holds in arbitrary
dimensions and for different types of bosonic fields, scalsmwell as gauge fields.

The crucial step, however, is that the tracegH" in (2.6) can be evaluated only in special
cases. In addition to the space—time indices, this traceds Dirac and for non—-abelian gauge
theories also over the color indices. For the latter a simfadsed form is probably not realistic.
Concerning the Dirac indices, in two dimensions it is pdsgi8] to find a closed form for the trace
over the matrice§l + y, ] /2 which enter the hopping matrix (2.5). Thus for the case of-adelian
interactions in two dimensions the exponent in (2.6) candmeputed in closed form.

As discussed, for special cases (scalar or abelian bosefds fin 2—d) the coefficients for the
individual loops in the exponent of (2.6) can be computedyaically. The final step is to bring
the loops down from the exponent. Here two different apgreaavere followed in [3] and [7]. In
the former case the final expression for the loop representaias obtained by comparing the 2—d
Wilson fermions to the hopping expansion of a 8—vertex motiethe latter case a direct evalua-
tion of the exponential of the sum over loops was performedaid we remark that there is also
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the direct identification of the loop representation thitotige explicit solution of the Grassmann
integral for the Majorana components [6].

Once the determinant is given as a sum over loops with knowfficents (not as the expo-
nential of a sum over loops) there is only the path integnadiger the bosonic variables attached to
the loops left to be done. For the case of the scalar fieldshwdii@ rise to the 4—fermi interaction,
the path integration is trivial, since at each lattice poimty moments of the Gaussian distribution
need to be computed. In this way the partition function ofithdlavor lattice Gross—Neveu model
is found to be a model of R self-avoiding loops. For the case of gendalve refer the reader to
[2], and here quote the result filr= 1, which is the case that was used in the numerical simukation
[5, 6]. The patrtition function reads

L (_}_)C“m £u(Eb) ¢ ma(rh) 2.7)
Flz) WE

The sum runs over two sets of loops which we refer to as redn(d blue §). For a given color
the loops are self avoiding, i.e., they cannot cross or taath other, while loops of different
may do so. In Eq. (2.7%(r,b) is the total number of corners for both, red and blue loopsusTh
every corner contributes a factor of\f2 to the weight of a configuration. Furthermorg(r,b)

is the number of lattice sites which are singly occupied Ilyegir or b andn;(r,b) is the number
of doubly occupied sites, i.e., sites which are visited bthpa red and a blue loop. The weight
factorsf; and f, are simple functions, related to the masand the couplingy through

2+m 1
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The mapping (2.7), (2.8) is exact in the thermodynamic lirhitr finite volume different types of
boundary conditions in the two representations lead toefisite effects: In the loop representa-
tion we need to have closed loops and in a finite volume thesl@am wind around the periodic
boundary. The loop configurations fall into three equivaéenlasses;®€ C®° C°°, depending on
the numbers of red and blue non-trivially winding loops (ak® [9]): C®€ (even—even): The to-
tal number of windings for both, red and blue loops is everbfath directions.C®° (even—odd):
One of the colors has an odd number of windings for one of thections.C°° (odd—odd): Both
colors have an odd number of windings in one of the directioffsese equivalence classes can-
not be linked in a simple way to the boundary conditions indtadard representation which we
discussed above. However, in [5] it was shown that the bayneféects vanish as /4/V, with V
denoting the volume. The representation in terms of the Isfin variables [6] solves the boundary
condition problem completely, and the partition functiafgshe original fermionic— and the spin
representation are identical also on finite volumes.

3. Numerical simulation

For the numerical simulation of the loop representatiorhef Gross—Neveu model we use a
local Metropolis update. Red and blue loops are updatednaltgly by performing a full sweep
through the lattice for only one color and meanwhile tregatime other as a constant background
field. During one sweep all plaquettes are visited once. @ ¢tonfiguration is offered by inverting
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Figure 1: Typical loop configurations in the 1—flavor Gross—Neveu nhddle compare two different values
of the parameters. L.h.g:=0.0,m=0.1; r.h.s.:.g=0.0,m=0.2.

the 4 links of the current plaquette of the active color. Witith an offer, we guarantee that the
loops stay closed, or new loops are created if all links of lagjuette were empty before. In
case that the self-avoidance condition is violated, th@gsal is rejected. Otherwise the new
configuration is accepted with the Metropolis probability

= <i>AC fAM £An (3.1)
p= 7 PR P .
Ac is the difference of the number of cornefs); andAn, are the differences in the occupation
numbers. Fig. 1 shows snapshots of typical loop configuratio the numerical simulation.

Particularly simple observables are derivatives of the rergyF = —InZ. These expres-
sions can be written as moments of occupation numbers. Toobe explicit we discuss the chiral
condensatg and its susceptibilitfC,. The conventional definitions are

1 10Inz
X = ver\<HJ(X)w(X)> =V om (3.2)
_ 99X
In terms of loop variables these expressions read

X = A [f2(n1) + 2f2(no)] , (3.4)

1

Cx =g [(4fF —21212) {(no— (o))?) + (2 — 212F2) (N1 — (m))?)
1

+2f2,((no+ M1 — (o +nu))?) — (4ff — 22£,) (o) — 3 (m)] , (3.5)
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Figure 2: L.h.s.: The chiral condensapefor g =0 as a function ofn for 2 different lattice sizes. We
compare the simulation in the loop representation (symbitserror bars) to the exact result from Fourier
transformation (curves). R.h.s.: Same as on the |.h.s. faothe chiral susceptibilitZy.

where the numbaery is the total number of empty lattice sites. These repreientawere obtained
by differentiating the partition function (2.7).

In Fig. 2 we compare the loop resultsgt 0 (symbols) with those from Fourier transfor-
mation (curves) which is applicable in standard represientdor the special case of vanishing
coupling. Two volumes are used, the relatively small latB2x 32 and a substantially larger lat-
tice of 512x 512. For each value ah typically 10000 sweeps were used to equilibrate the system
and then about 50000 measurements were performed for oarvalbdes. These measurements
have been separated by 10 sweeps for each color to guaraffteiest decorrelation. For the cal-
culation of the observables we used Eqgs. (3.4), (3.5), amdtthtistical error was computed with
the jackknife method. For the larger lattice we find almostgud agreement of the results from
the loop representation with the analytic results. In [5]haee presented the results from the loop
simulation for several values gf~ 0 and we compared these to the outcome of a simulation with
traditional techniques. Concerning the performance wetfiatiwith comparable amounts of CPU
time with the loop representation we can work on volumes Wwhie two orders of magnitude
larger than those available with traditional techniqueble Tluster approach of [6] enhances this
performance further.

4. Perspectives and limitations of the loop representation

Having addressed the merits of the loop representatioméoGross—Neveu model, we would
like to comment on possible extensions of the loop methotalse discuss the points where we
see limits of the method.

We begin this discussion with stressing that, although wiseestricted our numerical sim-
ulations to only two flavors, a generalization to the Gross+\l model with an arbitrary number
of flavors is straightforward with the loop formula given &].[

Concerning models with relativistic fermions which are pled via 4—fermi interactions in
higher dimensions, one could try to repeat the strategyldobto the loop representation for the
2—d models. An essential step in the identification of the lfwymalism was the closed result for
the traces of thg—matrices. While this is a relatively simple problem in 2tk corresponding
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structures in 4—d are considerably more involved. For amgit to find such a closed formula in
four dimensions see, e.g., [10].

Interesting might also be the case of non—relativistic fen®in 2+1 dimensions with 4—fermi
interaction. For some of these systems a relation to 3—dmnspiels is known [11, 12] which might
be useful for a numerical simulation.

We finally comment on the applicability of the loop approactettice gauge theories beyond
the strong coupling limit. We have already mentioned, thajwdge the case of non—abelian gauge
fields as an elusive goal, due to the non—commutativity oflitlevariables. For abelian gauge
fields the situation is simpler and in 2—dimensions the loop&.6) can again be computed in
closed form. The resulting loop representation for thedatSchwinger Model [7] is of a different
type, however. Since gauge fields are oriented quantities,has to work with oriented loops,
while the loops for a scalar interaction are non—orienteg (=q. (2.7)). One finds that reverting
the orientation of a loop corresponds to complex conjugatifats contribution. This implies, that
certain cancellations among loops, which simplify the @cabse, are no longer possible [7]. The
loops for the Schwinger Model turn out to be self—intersertnd an extra minus sign appears
for each intersection. In a numerical simulation [13] it viasnd that the resulting fermion sign
problem limits the size of the accessible volumes. At the it is unclear whether this is a
fundamental obstacle or if this problem can be overcome thgrdnt techniques.
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