
P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
6
9

Fisher’s Zeros and Perturbative Series in
Gluodynamics

A. Denbleyker, D. Du, and Y. Meurice∗

Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA
E-mail: alan-denbleyker@uiowa.edu
E-mail: daping-du@uiowa.edu
E-mail:yannick-meurice@uiowa.edu

A. Velytsky†

Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547, USA
E-mail: vel@physics.ucla.edu

We study the zeros of the partition function in the complexβ plane (Fisher’s zeros) in SU(2)

and SU(3) gluodynamics. We discuss their effects on the asymptotic behavior of the perturbative

series for the average plaquette. We present new methods to infer the existence of these zeros in

region of the complexβ plane where MC reweighting is not reliable. These methods are based on

the assumption that the plaquette distribution can be approximated by aφ4 type distribution. We

give new estimates of the locations for a 44 lattice. ForSU(2), we found zeros atβ = 2.18(1)±
i0.18(2) (which differs from previous estimates), and atβ = 2.18(1)± i0.22(2). For SU(3), we

confirmβ = 5.54(2)± i0.10(2) and found additional zeros atβ = 5.54(2)± i0.16(2). Some of the

technical material can be found in recent preprints, in the following we emphasize the motivations

(why it is important to know the locations of the zeros) and the challenges (why it is difficult to

locate the zeros when the volume increases).
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1. Introduction

More than 200 years ago, L. Euler [1] realized that the asymptotic behavior of the expansions
coefficients of the Bessel functions about the origin could be obtained from the location of the
complex zeros. For a single plaquette withSU(2) gauge group (as defined, for instance, in Ref.
[2], as usualβ = 4/g2), we obtain that in this simple model the average plaquetteP can be written
as

P = 1−2β
∞

∑
n=1

1
β 2 +α2

n
, (1.1)

where theαn are the locations of the zeros ofJ1(z) (on the positive real axis). Using the geometrical
series one sees that the radius of convergence of the expansion inβ is 1/α1. This result can be
rephrased in the following way: the radius of convergence of the strongcoupling expansion ofP
is the distance from the origin to the closest zero of the partition function (which in this simple
example is located, as well as all the other zeros, on the imaginary axis).

The situation is more interesting at largeβ and fundamentally different from the case of scalar
models. As well known, the zeros ofJ1(z) become approximately equally spaced for large real
argument. If we now considerP in the g2 = 4/β complex plane, the zeros accumulate at zero
along the imaginary axis which plays the role of a Stokes line. Unlike the scalar case the partition
function is well defined at real negativeg2, but as we cross the imaginary axis, the values ofP
changes discontinuously. This can be seen from the sum ruleP(β )+ P(−β ) = 2, which remains
true on arbitrary lattices with even number of sites in every directions [3].

We expect that the features of the strong and weak coupling expansions observed for the one
plaquette model to remain true on generic lattices. However, other zeros of the partition function
related to phase transitions are expected. For the 2-dimensional Ising model, it has been observed
by M. Fisher [4] that the zeros of the partition function pinch the real axis of the complex inverse
temperature atβc. For the 3-dimensional Ising model, numerical calculations consistent with this
scenario have been obtained [5] on a 43 lattice. These zeros in the complexβ plane are called
Fisher’s zeros and should be distinguished from the Lee-Yang zeros inthe complex magnetic field
plane.

For a zero temperature lattice gauge theory with a Wilson action, we expect nophase transition
on the realβ axis. However, such theories can be seen as “close” to other theories (e. g. at non-zero
temperature or with a positive adjoint coupling) that have a phase transition.Consequently, it is
plausible that zero temperature lattice gauge theory with a Wilson action have Fisher zeros close
to the real axis but that these zeros do not pinch the real axis in the infinite volume limit. This is
a plausible explanation [6] for the unexpected behavior [7] of the weak coupling expansion ofP
for SU(3) [8, 9]. Standard methods of series analysis suggest [7, 6] a singularityon the real axis,
namelyP ∝ (1/5.74− 1/β )1.08. This would imply a peak in the second derivative ofP with a
height increasing with the volume, which is not seen at zero temperature [6]. The vicinity of the
critical point in the fundamental-adjoint plane, suggests the approximate meanfield behavior [6]:

−∂P/∂β ∝ ln((1/βm−1/β )2 +Γ2) , (1.2)

Fits of the series with such parametric form yield the approximate valuesβm≃ 5.78 andΓ ≃ 0.006
(i.e Im β ≃ 0.2).
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Values ofΓ which are too large (too small) would produce modulations of the coefficients
(peaks in the derivatives ofP) which are not observed. A detailed analysis [6] yield the bounds (for
SU(3)) 0.001< Γ < 0.01. This suggests zeroes of the partition function in the complexβ plane
with

0.03≃ 0.001β 2
m < Imβ < 0.01β 2

m ≃ 0.33 (1.3)

In these proceedings, we report recent efforts to locate such zerosin pure gauge theories with
gauge groupSU(2) andSU(3). Some of the technical details can be found in a recent preprint [11].
Another preprint is in preparation [12] and should be available soon. Inorder to avoid repetitions,
we will emphasize the motivations and aspects not covered in these preprints.

2. The non-perturbative part of the plaquette and the gluon condensate

It is quite common that the difference between a physical quantity and its perturbative ex-
pansion is of the form exp(−K/g2). One of the best known example is the quantum mechanical
double-well where the perturbative series is not able to take into accountthe tunneling effect and
instantons are needed. For the average plaquette, the issue is obscuredby the hypothetical zero
close to the real axis and the factorial growth necessary to get an envelope [10] in the accuracy
versus coupling at successive order is not reached at the order where the perturbative expansion is
available. Larger order extrapolation are necessary. Two models havebeen considered [10].

The first is based on Eq. (1.2) which implies a dilogarithmic series forP:

P∼ ∑
k=0

akβ−k ≃C(Li2(β−1/(β−1
m + iΓ))+h.c . (2.1)

The low order coefficients depend very little onΓ as long as the upper bound given above is sat-
isfied. It is remarkable that the method of stochastic perturbation theory allows us to calculate the
series up to order 10 [8] and 16 [9], however larger series are needed to resolveΓ! As we will ex-
plain below, the situation might be better forSU(2). The two other parameters can be determined
using for instance the values ofa9 anda10. This gives very good predictions [10] of the values of
a8,a7, . . .. This nice regularity is still begging for a diagrammatic explanation.

Despite its predictive success, the dilogarithmic series has a finite radius of convergence and
the coefficients do not have the expected factorial growth that is observed in the one plaquette
model. The second extrapolation was based on an IR renormalon model [13, 14, 15]

∑
k=0

akβ̄−k ≃ K
∫ ∞

0
dte−β̄ t (1− t 33/16π2)−1−204/121 (2.2)

β̄ = β (1+d1/β + . . .) (2.3)

These two extrapolations seem consistent with the behavior

P(β )−Ppert.(β ) ≃C(a/r0)
4 (2.4)

with a(β ) defined with the force scale [16, 17] withr0 = 0.5 fm, andPpert appropriately truncated.
For largeβ this has the desired exponential form. Attempts have been made in the past [18, 7, 9]
to relateC to the so-called gluon condensate [14]. Remembering theα/π factor in the definition,
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Figure 1: Distribution of the 500,000 values ofS in an histogram with 100 bins for aSU(2) pure gauge
theory on a 44 lattice atβ = 2.20. The solid line is a Gaussian fit.

the value that could in principle be compared with the commonly used value of 0.012 GeV4 is
(36/π2)Cr−4

0 for Nc = 3. C is sensitive to resummation.C ≃ 0.6 with the bare series [10] and 0.4
with the tadpole improved series [9]. This gives values 3-5 times larger than the value quoted above.
Besides the question of scheme dependence, the gluon condensate is notan order parameter and it
seems difficult to compare the lattice results with quantities defined in the context of sum rules. On
the other hand, it is important to figure out how well the scaling with the lattice spacing given in
Eq. (2.4) is obeyed and if it can be explained semi-classically as it can be done for the double-well.
In this context, it is crucial to understand the complex singularities ofP, which complicate the
analysis of the scaling.

3. The zeros of the partition function

The zeros of the partition function can be located with the reweighting method [19, 20].

Z(β0 +∆β ) = Z(β0) < exp(−∆βS) >β0
. (3.1)

It is convenient to subtract< S> from S in the exponential because it removes fast oscillations
without changing the complex zeroes.Z(β ) is the Laplace transform of density of statesn(S):

Z(β ) =
∫ ∞

0
dS n(S)exp(−βS) . (3.2)

If we could estimateZ(β ) along an axis in the imaginary direction, we could calculate the inverse
Laplace transform and obtainn(S). As shown in Fig. 1, the distribution of values ofS for SU(2)

can be fitted very well with a Gaussian withσ2
S =< S2 > − < S>2. This suggests [20] a criterion

to determine a region of confidence for MC zeros. For a Gaussian distribution, the fluctuation in
exp(−∆β (S− < S>)) is smaller than the average for|∆β |2 < ln(Ncon f.)/σ2

S. This defines a radius
of confidence

√

ln(Ncon f.)/σS in the complexβ plane. Asσ2
S ∝ V, the radius of confidence shrinks

like V−1/2 which is hard to beat with
√

lnNcon f..
When the zeros pinch the real axis as the volume increases, which is expected near a phase

transition, there is some hope that it is possible to follow them with MC methods. Thisexplains
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Figure 2: r i = (Ni −NPi)/
√

NPi for SU(2) at β = 2.20 on 44 and 64 lattices.

some positive results [20] on 2× L3 and 4× L3 lattices. On the other hand, onL4 lattices, we
expect the zeros to stabilize away from the real axis and MC methods can only give lower bounds
that shrink whenL increases. For instance forSU(3) on a 84 lattice [21], we were only able to
verify thatImβ > 0.03. In addition, forSU(2), there seem to be no zeros in the Gaussian region of
confidence even on a 44 lattice. For these reasons we have developed new methods to find zeros of
the partition that lay outside of the region of confidence of MC calculations.

4. New methods to locate the zeros [11, 12]

Gaussian distributions (ofS) have no complex zeros. The Gaussian circle of confidence in the
complexβ plane defined by the conditionσ f < | f |

√

Ncon f.. If this criterion is applied directly to
a non-Gaussian distribution having complex zeros, it will automatically excludethe regions that
contain the zeros. When looking for complex zeros, we look for the intersection of the zero level
curves for the real and imaginary parts. We are interested in knowing howmuch these level curves
can move due to statistical fluctuations. We proposed [11] to consider the alternative region of
confidence defined by a condition that controls the error on the level curves:

σ f < d
√

Ncon f. | f ′| . (4.1)

In order to be usefuld should be a fraction of the typical distance between zero level curves ofthe
real and imaginary part. This methods has allowed [11] to reject dubious zeros on the edge of the
Gaussian circle of confidence forSU(2) on a 44 lattice. It remains applicable when the deviation
from a Gaussian distribution is significant and true zeros appear.

The zeros come from the deviations from the Gaussian behavior. As shown on Fig. 2, discrep-
ancies in unit of the expected fluctuations are coherent forL = 4 but as the the volume increases, the
signal gets lost in the noise (for that particular value ofβ ). The nice regularities of the difference
with the Gaussian approximation (for small lattices) suggest to fit the distributionwith

P(S) ∝ exp(−λ1S−λ2S2−λ3S3−λ4S4) (4.2)

The unknown parameters were determined from the first four moments usingNewton’s methods
and also byχ2 minimization. Very good agreement between the two methods was found on 44
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Figure 3: Zeros of the real (crosses) and imaginary (circles) using MCon a 44 lattice, forSU(2) at β =
2.18 andSU(3) at β =5.54. The smaller dots are the values for the real (green) and imaginary (blue) parts
obtained from the 4 parameter model. The MC exclusion regionboundary ford = 0.15 is represented by
boxes (red).

lattices. The zeros can then be calculated for the parametric form (4.2) using accurate numerical
integration. The results are shown in Fig. 3 on a 44 lattice. Comparing results at differentβ on a
44 lattice, we obtained the following locations of the complex zeros:

• β = 2.18(1)± i0.18(2) for SU(2) (differs from [19] 2.23±i0.155 obtained with MC outside
regions of confidence) and another zero atβ = 2.18(1)± i0.22(2).

• β = 5.54(2)± i0.10(2) for SU(3) (agrees with [20]) and another zero atβ = 5.54(2)±
i0.16(2) .

Note that the ratio of the imaginary and real parts of the closest zero is almost5 times larger in
SU(2). This indicates that modulations in the perturbative coefficients ofP should be easier to see
than inSU(3).

5. Conclusions

We have build a ladder of methods that can be applied for increasing valuesof the imaginary
part. We found new ways to distinguish fake and true MC zeros that work well with non-Gaussian
examples. Fitting methods based on cubic and quartic perturbations give consistent results at dif-
ferentβ for larger values of the imaginary part on a 44 lattice. Results on larger lattices will be
available soon [12]. We are in the process of checking the selfconsistency of the parametriza-
tion at differentβ and are attempting to extract the density of states. Effect of an adjoint term,
finite-temperature and decimation are also under study.
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