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1. Introduction

More than 200 years ago, L. Euler [1] realized that the asymptotic bahaiibe expansions
coefficients of the Bessel functions about the origin could be obtaired the location of the
complex zeros. For a single plaquette w8bl(2) gauge group (as defined, for instance, in Ref.
[2], as usuaB = 4/g?), we obtain that in this simple model the average plaguetian be written
as

il 1
P=1-28S5 ———, (1.1)
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where theay, are the locations of the zeros&f z) (on the positive real axis). Using the geometrical
series one sees that the radius of convergence of the expangfois itya;. This result can be
rephrased in the following way: the radius of convergence of the sttongling expansion oP

is the distance from the origin to the closest zero of the partition function fwhithis simple
example is located, as well as all the other zeros, on the imaginary axis).

The situation is more interesting at lasfend fundamentally different from the case of scalar
models. As well known, the zeros df(z) become approximately equally spaced for large real
argument. If we now conside? in the g> = 4/ complex plane, the zeros accumulate at zero
along the imaginary axis which plays the role of a Stokes line. Unlike the scdartbe partition
function is well defined at real negatigg, but as we cross the imaginary axis, the value® of
changes discontinuously. This can be seen from the sunP(@g+ P(—f) = 2, which remains
true on arbitrary lattices with even number of sites in every directions [3].

We expect that the features of the strong and weak coupling expansisessed for the one
plaquette model to remain true on generic lattices. However, other zeros péttition function
related to phase transitions are expected. For the 2-dimensional Ising thbdse been observed
by M. Fisher [4] that the zeros of the partition function pinch the real alkte®complex inverse
temperature gB.. For the 3-dimensional Ising model, numerical calculations consistent with this
scenario have been obtained [5] onldttice. These zeros in the complgxplane are called
Fisher’s zeros and should be distinguished from the Lee-Yang zeths somplex magnetic field
plane.

For a zero temperature lattice gauge theory with a Wilson action, we expphtise transition
on the rea3 axis. However, such theories can be seen as “close” to other themrigesat non-zero
temperature or with a positive adjoint coupling) that have a phase transt@ionsequently, it is
plausible that zero temperature lattice gauge theory with a Wilson action hdwer Eexos close
to the real axis but that these zeros do not pinch the real axis in the infolitsme limit. This is
a plausible explanation [6] for the unexpected behavior [7] of the weakling expansion oP
for SU(3) [8, 9]. Standard methods of series analysis suggest [7, 6] a singuwaritye real axis,
namelyP O (1/5.74— 1/B)1%. This would imply a peak in the second derivativePivith a
height increasing with the volume, which is not seen at zero temperatur@|j@] vicinity of the
critical point in the fundamental-adjoint plane, suggests the approximate fiehbehavior [6]:

—0P/dB 0In((1/Bm—1/B)%>+T?), (1.2)

Fits of the series with such parametric form yield the approximate v@iyes5.78 andl ~ 0.006
(i,elmfB ~0.2).



Fisher's Zeros and Perturbative Series Y. Meurice

Values ofl" which are too large (too small) would produce modulations of the coefficients
(peaks in the derivatives &) which are not observed. A detailed analysis [6] yield the bounds (for
SU(3)) 0.001< I < 0.01. This suggests zeroes of the partition function in the com@lelane
with

0.03~ 0.00182 < ImB < 0.0182% ~ 0.33 (1.3)

In these proceedings, we report recent efforts to locate such ingpose gauge theories with
gauge grousU(2) andSU(3). Some of the technical details can be found in a recent preprint [11].
Another preprint is in preparation [12] and should be available sooarder to avoid repetitions,
we will emphasize the motivations and aspects not covered in these preprints

2. Thenon-perturbative part of the plaquette and the gluon condensate

It is quite common that the difference between a physical quantity and itsripatitie ex-
pansion is of the form exp-K/g?). One of the best known example is the quantum mechanical
double-well where the perturbative series is not able to take into actoaitinneling effect and
instantons are needed. For the average plaquette, the issue is olisctinedhypothetical zero
close to the real axis and the factorial growth necessary to get an pavd] in the accuracy
versus coupling at successive order is not reached at the or@éee Wie perturbative expansion is
available. Larger order extrapolation are necessary. Two modeldleaveconsidered [10].

The first is based on Eq. (1.2) which implies a dilogarithmic serie®for

P~ Z;akﬁ_k ~C(Li2(B7Y/(Byt+ilN)) +hec. (2.1)
k=

The low order coefficients depend very little bras long as the upper bound given above is sat-
isfied. It is remarkable that the method of stochastic perturbation theorysallswo calculate the
series up to order 10 [8] and 16 [9], however larger series aresdgedesolvd ! As we will ex-
plain below, the situation might be better 8U(2). The two other parameters can be determined
using for instance the values a§ anda;o. This gives very good predictions [10] of the values of
ag,ay,.... This nice regularity is still begging for a diagrammatic explanation.

Despite its predictive success, the dilogarithmic series has a finite radiosndrgence and
the coefficients do not have the expected factorial growth that is adénvthe one plaquette
model. The second extrapolation was based on an IR renormalon mod&#[115]

Y aB K ~K /0 dte Pt (1—t 33/16m2) 1204121 2.2)
K=o :

B=B(1+di/B+...) (2.3)
These two extrapolations seem consistent with the behavior
P(B) —Pper (B) ~C(a/ro)* (2.4)

with a(f3) defined with the force scale [16, 17] with = 0.5 fm, andP,e: appropriately truncated.
For largep this has the desired exponential form. Attempts have been made in the past $]8
to relateC to the so-called gluon condensate [14]. Rememberingrthrefactor in the definition,
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Figure 1. Distribution of the 500,000 values &in an histogram with 100 bins for 8U(2) pure gauge
theory on a 4 lattice at = 2.20. The solid line is a Gaussian fit.

the value that could in principle be compared with the commonly used value d GeY* is
(36/1%)Cry* for N; = 3. C is sensitive to resummatio ~ 0.6 with the bare series [10] and 0.4
with the tadpole improved series [9]. This gives values 3-5 times larger tbarathe quoted above.
Besides the guestion of scheme dependence, the gluon condensateriomnbdr parameter and it
seems difficult to compare the lattice results with quantities defined in the coftaxnaules. On
the other hand, it is important to figure out how well the scaling with the latticeisgaiven in
Eq. (2.4) is obeyed and if it can be explained semi-classically as it canfsefdiothe double-well.
In this context, it is crucial to understand the complex singularitieB,aivhich complicate the
analysis of the scaling.

3. Thezerosof the partition function

The zeros of the partition function can be located with the reweighting meti@o@Q1.

Z(Po+ALB) = Z(Bo) < exp(—ABS) >g, - (3.2)

It is convenient to subtract S> from Sin the exponential because it removes fast oscillations
without changing the complex zero&g3) is the Laplace transform of density of statgs):

Z(B) = /OmdS (S exp(—BS) . (3.2)

If we could estimat&([3) along an axis in the imaginary direction, we could calculate the inverse
Laplace transform and obtain{S). As shown in Fig. 1, the distribution of values &for SU(2)
can be fitted very well with a Gaussian witlf =< & > — < S>2. This suggests [20] a criterion
to determine a region of confidence for MC zeros. For a Gaussian ditribthe fluctuation in
exp(—AB(S— < S>)) is smaller than the average f@B|? < In(Neont)/02. This defines a radius
of confidence,/In(Ncont.) /0sin the complex3 plane. Asaé OV, the radius of confidence shrinks
like V=12 which is hard to beat withy/InNcon ..

When the zeros pinch the real axis as the volume increases, which idexkpear a phase
transition, there is some hope that it is possible to follow them with MC methods.eXplains
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Figure2: ri = (Ni —NR)/\/NR for SU(2) at 3 = 2.20 on 4 and & lattices.

some positive results [20] on2L3 and 4x L3 lattices. On the other hand, drf lattices, we
expect the zeros to stabilize away from the real axis and MC methods bagivslower bounds

that shrink wherL increases. For instance f8J(3) on a & lattice [21], we were only able to
verify thatimg > 0.03. In addition, forSU(2), there seem to be no zeros in the Gaussian region of
confidence even on & 4attice. For these reasons we have developed new methods to find zeros of
the partition that lay outside of the region of confidence of MC calculations.

4. New methodsto locatethe zeros[11, 12]

Gaussian distributions (&) have no complex zeros. The Gaussian circle of confidence in the
complexp plane defined by the conditiamy < |f|,/Ncont.. If this criterion is applied directly to
a non-Gaussian distribution having complex zeros, it will automatically exdheleegions that
contain the zeros. When looking for complex zeros, we look for the inteoseof the zero level
curves for the real and imaginary parts. We are interested in knowingrhah these level curves
can move due to statistical fluctuations. We proposed [11] to consider thmeadite region of
confidence defined by a condition that controls the error on the leve¢sur

Gf < d\/ Nconf_ ’f/’ . (41)

In order to be usefull should be a fraction of the typical distance between zero level cuntbg of
real and imaginary part. This methods has allowed [11] to reject dubioas »e the edge of the
Gaussian circle of confidence f6tJ(2) on a 4 lattice. It remains applicable when the deviation
from a Gaussian distribution is significant and true zeros appear.

The zeros come from the deviations from the Gaussian behavior. As:giolig. 2, discrep-
ancies in unit of the expected fluctuations are cohererit fod but as the the volume increases, the
signal gets lost in the noise (for that particular valugdf The nice regularities of the difference
with the Gaussian approximation (for small lattices) suggest to fit the distribwitbn

P(S) Oexp(—A1S— A2 — A3S* — A4SH (4.2)

The unknown parameters were determined from the first four moments Nsintpn’s methods
and also byx? minimization. Very good agreement between the two methods was found on 4
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Figure 3: Zeros of the real (crosses) and imaginary (circles) usingdi@ 4 lattice, for SU(2) at 8 =
2.18 andSU(3) at 3 =5.54. The smaller dots are the values for the real (greethjraaginary (blue) parts
obtained from the 4 parameter model. The MC exclusion regmmdary ford = 0.15 is represented by
boxes (red).

lattices. The zeros can then be calculated for the parametric form (4.2) asturate numerical
integration. The results are shown in Fig. 3 onf*dattice. Comparing results at differefiton a
4% lattice, we obtained the following locations of the complex zeros:

e 3=2.18(1)+i0.18(2) for SU(2) (differs from [19] 2.23ti0.155 obtained with MC outside
regions of confidence) and another zer@at 2.18(1) +£i0.22(2).

e 3 =554(2)+i0.10(2) for SU(3) (agrees with [20]) and another zero ait= 5.54(2) +
i0.16(2) .

Note that the ratio of the imaginary and real parts of the closest zero is aintivses larger in
SU(2). This indicates that modulations in the perturbative coefficienBsifould be easier to see
than inSU(3).

5. Conclusions

We have build a ladder of methods that can be applied for increasing \@&lties imaginary
part. We found new ways to distinguish fake and true MC zeros that wehlkwith non-Gaussian
examples. Fitting methods based on cubic and quartic perturbations gisisteoi results at dif-
ferentB for larger values of the imaginary part on 4lattice. Results on larger lattices will be
available soon [12]. We are in the process of checking the selfconsystérthe parametriza-
tion at different and are attempting to extract the density of states. Effect of an adjoint term,
finite-temperature and decimation are also under study.
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