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O(a2) cutoff effects in Wilson fermion simulations
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We show that the size of the O(a2) flavour violating cutoff artifacts that have been found to affect
the value of the neutral pion mass in simulations with maximally twisted Wilson fermions is
controlled by a continuum QCD quantity that is fairly large and is determined by the dynamical
mechanism of spontaneous chiral symmetry breaking. One can argue that the neutral pion mass
is the only physical quantity blurred by such cutoff effects. O(a2) corrections of this kind are also
present in standard Wilson fermion simulations, but they can either affect the determination of
the pion mass or be shifted from the latter to other observables, depending on the way the critical
mass is evaluated.
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O(a2) cutoff effects in Wilson fermion simulations Giancarlo Rossi

1. Introduction and main results

Numerical data for the mass of the neutral pion in maximally twisted Lattice QCD (Mtm-
LQCD) [1] simulations show unnaturally large lattice artifacts [2] 1, despite the fact that on general
grounds they are expected to be O(a2) corrections [7, 8]. This is in striking contrast with the
smallness of the cutoff effects observed not only in the mass of the charged pions, which are related
through the Goldstone theorem to exactly conserved lattice currents [9], but also in all the other
so far measured hadronic observables. Quite remarkably small lattice artifacts are found even in
matrix elements where the neutral pion is involved [10, 11].

In this talk, relying on arguments based on the Symanzik analysis [12] of lattice cutoff effects,
we give an explanation of the origin of such peculiar corrections, showing that they are a general
feature of any Wilson-like fermion regularization, whether twisted or not, and their appearance in
the pion mass or instead in other observables depends on the choice of the twisted angle (zero or
π/2) and the way the critical mass is determined.

In sect. 2 we recall the properties of the Symanzik approach for the description of cutoff effects
in LQCD with Wilson fermions and we discuss how the critical mass is determined. In sect. 3 we
illustrate the nature of O(a2) artifacts in Mtm-LQCD and in sect. 4 how they show up in the standard
Wilson fermion regularization. We end with some concluding remarks in sect. 5.

2. Symanzik expansion and critical mass in Wilson fermion LQCD

A) We consider N f = 2 LQCD with quarks regularized as Wilson fermions. For generic values
of the bare (twisted, µ , and untwisted, m0) mass parameters the lattice action reads

SL = SYM
L + χ̄

[
γ · ∇̃− a

2
∇
∗
∇+ cSW

ia
4

σ ·F +m0 + iµγ5τ
3
]

χ , (2.1)

where for the sake of generality we have also introduced the clover term. In this talk we are
interested in two specific cases comprised in (2.1).
• Mtm-LQCD, which is obtained from (2.1), by setting µ = O(a0) and m0 = Me

cr, where Me
cr

is some estimate of the critical mass. The physical interpretation of this regularization is most
transparent in the so-called “physical basis”, resulting from the field transformation

ψ = exp(iπγ5τ
3/4)χ , ψ̄ = χ̄ exp(iπγ5τ

3/4) =⇒ (2.2)

SMtm
L = SYM

L + ψ̄

[
γ ·∇̃− iγ5τ

3
(
−a

2
∇
∗
∇+ cSW

ia
4

σ ·F +Me
cr

)
+ µ

]
ψ . (2.3)

• The clover standard Wilson fermions action, Scl
L , which is obtained by setting µ = 0 and

m0 = m+Me
cr with m an O(a0) quantity. With this choice the most appropriate basis for discussing

physics is the χ-basis itself in which eq. (2.1) was written in the first place.

1The neutral to charged pion mass splitting measured in the unquenched Mtm-LQCD simulations carried out in
ref. [2] with the tree-level improved Symanzik gauge action turns out to be smaller (and of opposite sign) than the
quenched result [3] where the standard plaquette gauge action was used. This finding is interesting in view of the
established relation [4, 5] between the magnitude of this splitting and the strength of metastabilities detected in the
theory at much too coarse lattice spacings [6].
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B) The Symanzik effective Lagrangian associated to the Wilson LQCD action (2.1) reads

LSym = L4 +δLSym , (2.4)

L4 = L YM + χ̄[D/+m+ iγ5τ
3
µ]χ , δLSym = aL5 +a2L6 +O(a3) , (2.5)

where the four-dimensional operator (all the necessary logarithmic factors are understood) specifies
the continuum theory in which correlators are evaluated. The very definition of effective action, as
a tool to describe the a dependence of lattice correlators, implies that the mass parameters in L4, if
not exactly vanishing, must be O(a0) quantities. Thus all the lattice artifacts affecting Me

cr will be
described by operators of the form akΛ

k+1
QCDχ̄χ , k = 1,2, ... in δLSym.

After using the equations of motion of L4, the O(a) piece of δLSym reads (b5;SW and δ1 are
O(1) coefficients)

L5 = b5;SWχ̄iσ ·Fχ +δ1Λ
2
QCDχ̄χ +O(m,µ) . (2.6)

The terms multiplied by powers of m and/or µ are not specified in eq. (2.6) because they are not of
relevance for the topic discussed in this note. We recall that the coefficient b5;SW vanishes, if cSW

in eq. (2.1) is set to the value appropriate for Symanzik O(a) improvement.
The O(a2) part of δLSym has a more complicated expression of the type

L6 =
3

∑
i=1

b6;iΦ
glue
6;i +b6;4χ̄γµ(Dµ)3

χ +
14

∑
i=5

b6;iΦ6;i +δ2Λ
3
QCDχ̄χ +O(m,µ) , (2.7)

where the first three operators are purely gluonic, the fourth is a chiral (but not Lorentz) invariant
fermionic bilinear and the remaining ones are four fermion operators, which we find useful to write
in the form (equivalence with the list in [13] can be proved using Fierz rearrangement)

Φ6;5 = (χ̄χ)(χ̄χ) , Φ6;6 = ∑b(χ̄τbχ)(χ̄τbχ) ,
Φ6;7 = (χ̄γ5χ)(χ̄γ5χ) , Φ6;8 = ∑b(χ̄γ5τbχ)(χ̄γ5τbχ) ,
Φ6;9 = (χ̄γλ χ)(χ̄γλ χ) , Φ6;10 = ∑b(χ̄γλ τbχ)(χ̄γλ τbχ) ,
Φ6;11 = (χ̄γλ γ5χ)(χ̄γλ γ5χ) , Φ6;12 = ∑b(χ̄γλ γ5τbχ)(χ̄γλ γ5τbχ) ,
Φ6;13 = (χ̄σλν χ)(χ̄σλν χ) , Φ6;14 = ∑b(χ̄σλντbχ)(χ̄σλντbχ) .

(2.8)

C) Both in the case of standard Wilson and twisted mass fermions the condition which de-
termines the critical mass is the vanishing of the PCAC mass. Let us examine these two cases
separately.

1) tm-LQCD – The condition (it is convenient to rotate the quark fields to the ψ-basis (2.2))

a3
∑
~x
〈(ψ̄γ0τ

2
ψ)(~x, t)(ψ̄γ5τ

1
ψ)(0)〉

∣∣∣
L

= 0 (2.9)

leads to a determination of the critical mass which is “optimal” (Mopt
cr ) in the sense that with this

choice all the leading chirally enhanced cutoff effects are eliminated from lattice correlators [9].
In the spirit of the Symanzik approach the condition (2.9) must be viewed as a relation holding

true parametrically for generic values of a (and µ). As a result, it is equivalent to an infinite
set of equations, each equation corresponding to the vanishing of the coefficient of the term ak,
k = 0,1,2, . . .. From the vanishing of the a0 term one gets∫

d3x〈(ψ̄γ0τ
2
ψ)(~x, t)(ψ̄γ5τ

1
ψ)(0)〉

∣∣∣
cont

= 0 , (2.10)

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
7
7

O(a2) cutoff effects in Wilson fermion simulations Giancarlo Rossi

by which restoration of parity and isospin is enforced. This means that, if (the O(a0) piece of)
m0 is chosen so as to verify eq. (2.9), then we will simultaneously have m = 0 in (2.5) and the
identification on the lattice of ψ̄γ0τ2ψ with the (time component of the) vector current V 2

0 (the
identification of ψ̄γ5τ1ψ with the pseudoscalar density P1 being trivial). The further implications
of eq. (2.9) are conveniently exposed looking at its Symanzik expansion. In ref. [9] it was proved
that at O(a) (2.9) implies the condition

ξπ ≡ a〈Ω|L Mtm
5 |π3(~0)〉

∣∣∣
cont

+ O(a3) = O(aµ) + O(a3) , (2.11)

L Mtm
5 = b5;SW ψ̄γ5τ

3
σ ·Fψ−δ1Λ

2
QCDψ̄iγ5τ

3
ψ +O(µ) . (2.12)

Eq. (2.11) should be read as a constraint fixing δ1. At O(a2) the only relevant term [11] is the
one where V 2

0 P1 is inserted with (the integrated density) L Mtm
6 . The latter in the ψ-basis has the

expression
L Mtm

6 = L P−even
6 −δ2Λ

3
QCDψ̄iγ5τ

3
ψ +O(µ

2) , (2.13)

with L P−even
6 parity-even. Since in the continuum limit (because of parity invariance) one gets∫

d3x
∫

d4y〈L P−even
6 (y)V 2

0 (x)P1(0)〉|cont = 0, the condition implied by (2.9) yields δ2 = 0, owing
to
∫

d3x
∫

d4y〈ψ̄iγ5τ3ψ(y)V 2
0 (x)P1(0)〉|cont 6= 0. It follows from this analysis that the estimate of the

critical mass provided by (2.9) is not affected by O(a2) effects. These arguments can be generalized
to all orders in a and show that Mopt

cr can only display O(a2p+1), p = 0,1, . . . corrections. The latter
are determined by constraints, like (2.11), that fix the value of the coefficients δ2p+1 in front of
ψ̄iγ5τ3ψ .

2) Standard clover Wilson fermions – The condition for the vanishing of the PCAC mass is

∂̃0 ∑~x〈Ab
0(~x, t)P

b(0)〉
2∑~x〈Pb(~x, t)Pb(0)〉

∣∣∣
L
≡ mPCAC

∣∣∣
L

= 0 @µ = 0 , (2.14)

which apart from the normalization and a trivial time derivative is exactly eq. (2.9) (though written
in the χ-basis) with the only difference that now µ = 0. This condition is in practice implemented
by looking for the limiting value of m0 for which mPCAC|L→ 0+.

The vanishing of the twisted mass is at the origin of all the differences resulting from the two
ways of subtracting the Wilson term. In fact, if µ is set to zero, from the symmetries of the Wilson
theory and the associated Symanzik expansion one cannot conclude anymore that δ2 vanishes.
Rather at O(a2) eq. (2.14) fixes the value of δ2 through the condition

〈π(~0)|L cl
6 |π(~0)〉|cont = 0 , (2.15)

where L cl
6 is the full six-dimensional operator of the Symanzik Lagrangian associated to the clover

improved Wilson fermion regularization (including the contribution of the two fermion operator
a2δ2Λ3

QCDχ̄χ). In general discretization errors of any order in a will affect the critical mass deter-
mination (2.14) (except those linear in a owing to clover improvement).

3. Neutral and charged pion mass in Mtm-LQCD

• Neutral pion mass – The quantity of interest for the study of the neutral pion mass is the
zero-momentum four-dimensional Fourier transform of the two-point (subtracted) correlator

ΓL(p) = a4
∑
x

eipx〈P3(x)P3(0)〉
∣∣∣
L
. (3.1)

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
7
7

O(a2) cutoff effects in Wilson fermion simulations Giancarlo Rossi

It is immediate to recognize that at p = 0 and in the limit of very small lattice pion mass one gets

ΓL(0) =
|Gπ3 |2

m2
π3

∣∣∣
L
, Gπ3

∣∣∣
L

= 〈Ω|P3(0)|π3(~0)〉
∣∣∣
L
. (3.2)

From the Symanzik expansion of ΓL(0) through orders a2 included one can prove [11] that, even
in the absence of the clover term, thanks to the optimal choice of the critical mass (see sect. 2), one
arrives at the equation

|Gπ3 |2

m2
π3

∣∣∣
L

=
|Gπ |2

m2
π

∣∣∣
cont

(
1−a2 〈π3(~0)|L Mtm

6 |π3(~0)〉
m2

π

∣∣∣
cont

)
+O(

a2

m2
π

) , (3.3)

where the continuum pion mass has been simply indicated by mπ . Consistently with the results of
χPT [14, 15, 4, 16, 17], a simple Taylor resummation leads to the key formulae of this note

m2
π3 |L = m2

π +a2
ζπ +O(a2m2

π ,a4) , ζπ ≡ 〈π3(~0)|L Mtm
6 |π3(~0)〉|cont , L Mtm

6 = L P−even
6 . (3.4)

• Estimating O(a2) lattice artifacts in m2
π3 |L – To estimate the size of the O(a2) artifacts (3.4)

we need to compute ζπ in the chiral limit. This can be done under the assumption that a sufficiently
accurate estimate of ζπ can be obtained in the vacuum saturation approximation (VSA). Quenched
studies show that VSA works quite well for matrix elements of four-fermion operators between
pseudo-scalar states [18]. We must then identify the operators in (2.8) that have non-vanishing
matrix elements between π3 states as mπ → 0 and give a non-zero contribution in the VSA. An ex-
ample is P3P3 = (ψ̄γ5τ3ψ)(ψ̄γ5τ3ψ) which corresponds in the list (2.8) to the operator (χ̄χ)(χ̄χ).
Noticeably one can prove that the matrix elements between π3 states of the four-fermion operators
in L Mtm

6 of interest for our estimate of ζπ are all proportional to |〈π3(~0)|P3|Ω〉|2cont in the limit
m2

π → 0. Thus up to a numerical factor in the VSA we can write a2ζπ ∼ a2|Ĝπ |2, with Ĝπ the
continuum (renormalized) analog of the quantity defined in (3.2).

An estimate of Ĝπ can be obtained either by a direct lattice measurement of a2Gπ [2] or
exploiting the WTI 2m̂q〈Ω|P̂3|π3〉|cont = fπm2

π . Using the results of [2, 11], the two evaluations
turn out to be numerically well consistent yielding |Ĝπ |2 ∼ (570 MeV)4, a number∼ 20−25 times
larger than the typical scale Λ4

QCD ∼ (250 MeV)4.
• Charged pion mass – Replacing the isospin index 3 in eq. (3.1) with either 1 or 2, one finds

m2
π± |L = m2

π +a2〈π±(~0)|L Mtm
6 |π±(~0)〉|cont +O(a2m2

π ,a4) = m2
π +O(a2m2

π ,a4) . (3.5)

The last equality follows from the invariance of L Mtm
Sym under SU(2)ob ≡ (Q1

A,Q2
A,Q3

V ) and it is in
perfect agreement with χPT [4, 16, 17] and the similar result derived in ref. [9]. The lattice square
pion mass splitting in Mtm-LQCD can thus be estimated up to terms of O(a2m2

π ,a4) with the result

∆m2
π

∣∣∣Mtm

L
= m2

π3

∣∣∣
L
−m2

π±

∣∣∣
L
∼ a2

ζπ ∼ a2(570 MeV)4

∼ (140 MeV)2 @ a−1 ∼ 2.3GeV . (3.6)

This number compares very nicely with the value of the splitting (180(40) MeV)2 reported in [2].
• Where else does ζπ enter? – Given the impact we have seen it has on the lattice expression

of the neutral pion mass, an important question to ask is where else (besides m2
π3 |L and all related

energy factors) can the key parameter ζπ appear in the Symanzik expansion of lattice quantities.
The answer requires a detailed analysis which we have no space to report here [11]. The outcome
of it is that to all practical purposes the only interesting place where ζπ enters is just m2

π3 |L.
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4. Pion mass and O(a2) artifacts with standard Wilson fermions

Proceeding as before, one gets for the (clover improved) standard Wilson pions the formula

m2
π |L = m2

π +a2〈π(~0)|L cl
6 |π(~0)〉|cont +O(a2m2

π ,a3) , (4.1)

where isospin indexes are understood owing to the SU(2)V flavour symmetry of the lattice Wilson
theory. No O(a) terms are present (b5;SW = δ1 = 0 in (2.6)) as we are assuming clover improvement.

The particular way in which the critical mass is fixed reflects itself into the form of the
Symanzik effective Lagrangian of the lattice theory. Here we will examine two choices. The
first corresponds to the standard procedure where the critical mass is determined from eq. (2.14).
The second is somewhat more exotic and corresponds to fixing the critical mass by using the deter-
mination provided by Mtm-LQCD.
• The standard way of fixing the critical mass – At O(a2) the condition for the vanishing of

mPCAC|L implies the relation (2.15), which fixes δ2 in terms of other parameters of the theory and
in particular of the matrix elements of the four-fermion operators (2.8) between one-pion states.

Given the uniqueness of the Symanzik effective action (eqs. (2.4), (2.5)) for Wilson fermions
(close to the chiral limit), a theoretical analysis similar to that we have sketched in sect. 3, together
with the numerical estimate of Ĝπ , shows that there are sizable contributions in the r.h.s. of the
eq. (2.15). As a result chances are that δ2� 1 because this coefficient has to compensate for the
large value of ζπ . The consequences of this situation are twofold.

1) No O(a2) artifacts will affect the value of the lattice pion mass because they are absent in
mPCAC|L thanks to (2.15) and (as it follows by taking the limit t→ ∞ in eq. (2.14)) one has

m2
π

fπ

2|Gπ |

∣∣∣
L

= mPCAC

∣∣∣
L
. (4.2)

2) On the contrary, in other observables, like for instance the mass (square mass) of the bary-
onic (mesonic) state h, there will appear O(a2) terms proportional to Λ3

QCD〈h|χ̄χ|h〉 times the
possibly large number δ2.
• Using the critical mass of Mtm-LQCD – If the estimate of the critical mass as determined

in tm-LQCD is instead employed, since, as recalled above, only odd powers of a come into play,
the term a2Λ3

QCDχ̄χ will not appear in the Symanzik Lagrangian. As a result one will have δ2 = 0
and the O(a2) corrections to the square pion mass in eq. (4.1) will not be zero. But now, no O(a2)
corrections stemming from a2Λ3

QCDχ̄χ will affect other observables.

5. Concluding remarks

In this talk we have argued that there are peculiar O(a2) cutoff effects in LQCD with Wilson
fermions which have a dynamical origin related to the mechanism of spontaneous chiral symmetry
breaking. In Mtm-LQCD they only affect the neutral pion mass making it substantially different
from that of the charged pion. If the standard Wilson fermion regularization is employed, where
these discretization errors will show up will depend upon the way the critical mass is determined.
With the usual determination, pion masses are free from these lattice artifacts, but the latter will
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appear in other physical quantities, such as hadronic masses. If, instead, the critical mass as deter-
mined in tm-LQCD is employed such O(a2) terms will only affect the value of the pion mass.
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