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1. The Di Vecchia-Ferrara model

Back in 1977 Di Vecchia and Ferrara introduced an elegant supersymmetric (SUSY) model of
the Wess-Zumino type in two dimensions [1]. On a Euclidean plane its action reads

S04 =5 [ &x[0u00,0+ By aw+ V(@) + Buv'(@)] (L)

where @ is a scalar field, and ( is a 2-component Majorana spinor field (withgy = ¢"C, where
C =0y is the charge conjugation operator).
We fix the boson-fermion interaction, as well as the bosonic potential, by the choice

A
V(p) = \/mfszr?(ﬁz (1.2)
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This action is invariant (up to a total divergence) under the SUSY transformation

oQp=¢cy ) (1.3)
oY =[woe-V'(ple, oPY=c¢[-woo-V'(p)], .

where ¢ is a constant spinor field.

2. Thefuzzy sphere

2.1 Geometry

The coordinate operators X; on a fuzzy sphere of radius R have to solve the equation [2]
B+B+8=R1. (2.1)

This can be achieved by identifying the position operators X; with the (re-scaled) angular momen-
tum operators L;,
R A .
X = —L, i=1,...,3, £€N, (2.2)
L(L+1)
where £ is the spin of the irreducible representation. For finite £ we obtain N x N matrices, with
N = £+ 1. Then the coordinate operators on the fuzzy sphere are non-commutative,

[&M=F7i%5mmp (2.3)

In the limit £ — co commutativity is restored, and the sphere is not fuzzy anymore.



SUSY an a fuzzy sphere Jan Volkholz

2.2 Fields

Some field, for instance our scalar field @(x), on the sphere 3 can be expanded in term of

spherical harmonics Yym(X),
) {

o(x) = go ZZCnggm(X) . (2.4)

In accordance with the above treatment of the coordinates, we are also going to represent the
fields as matrices, so that we end up with a matrix model. Without limiting the matrix size N, a
Hermitian matrix @ can be expanded in the polarisation tensors Y;m [3] , in analogy to eq. (2.4),

(P % Z CEmYZm (2.5)

The polarisation tensors play a role analogous to the spherical harmonics. In particular they obey
L2Y¥ym= £(£+ 1)Ym, where L2 is the angular momentum squared (cf. Section 3). Moreover we have
the adequate normalisation and parity behaviour, 47Tr(Y,} Vim) = ¢Gmm, Vb= (—1)™im .

We now introduce a cutoff £max = N — 1, and the remaining coefficients for the field ¢ can
be embedded into Hermitian N x N matrices. Thus we arrive at a finite set of degrees of freedom,
without any explicit breaking of the space symmetries. Therefore this regularisation is attractive
for SUSY models, where the lattice formulation is notoriously difficult [4]. Moreover the fuzzy
sphere regularisation is not plagued by the fermion doubling problem [5].

Theoretical aspects of supersymmetry on a fuzzy sphere are discussed in Refs. [6] and re-
viewed in Ref. [7]. The feasibility of numerical simulations in this regularisation has been tested
for the A ¢* model in d =2 [8] and d = 3 [9]. For an approach to simulate SUSY gauge theory on
the fuzzy sphere, see Ref. [10].

3. The Di Vecchia-Ferrara model on a fuzzy sphere

To be explicit, we transfer the Di Vecchia-Ferrara model from the Euclidean plane to a fuzzy
sphere by means of the following substitutions:

- 1 1 -
ox) = @, W/H RdQcp(X) = N9

~ ~

do(x) — ap=ili,q , —d%p Z[L"[L" : (3.1)

where ¢ is a Hermitian N x N matrix. We are ultimately interested in the limits N, R— co.

In practice the left-handed and right-handed applications of the operators can be implemented
best by storing the matrix configurations ¢ as vectors. In this setting the Dirac operator (3.3) takes
the form of a 2N? x 2N? matrix. We symmetrise the fermionic potential as

~ 1 - N
Vim(®) =5 (V' (@) @ In+1n8V"(9)) | (32)
which leads to the Dirac operator
Oz + Ll + VY 0.
D= B TRINT Vsym ~ ; (3.3)
0_'_ 03 + ]].N +Vsym
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phase [ (@) [ (lo*) |
disordered ~0| =0
uniform ordered >0 >0
non-uniform ordered | ~0 | >0

Table 1: The phases that we observed, along with the respective magnitudes of the order parameters.

with éi = 91 + if?g, and with the representation (3.1) of the differential operators. As usual in
Euclidean space we deal with an anti-Hermitian kinetic part. This also includes the term i/R,
which emerges from the curvature effect on the spin connection.

Integrating out the fermionic variables yields the Pfaffian Pf[(CD).sym], Where the subscript
means the anti-symmetric part. As a first approach to explore this type of model, we replace the
Pfaffian by+/detD, ! so we arrive at the matrix model action

3

I=
4. Order parameters

As in Refs. [8, 9] we are going to explore the phase diagram by considering order parameters,
which are constructed from the coefficients g, in the expansion (2.5). They can be extracted from
the relation

am_ A
Com = WTr[(ng)T(p] : (4.1)
In particular we focus on the quantities
< 2 2. am -
G:=3Y lem> and |gf:= ;%2 =N el (4.2)
m=—¢

Based on the magnitudes of the expectation values (@2) and (|¢|) we distinguish three phases as
specified in Table 1, in close analogy to the A ¢# model on a non-commutative flat space [11]:

e In the disordered phase (¢7) ~ 0 holds for all £. The angular mode decomposition does not
detect any contribution that could indicate spontaneous symmetry breaking.

e The uniform ordered phase is characterised by (|¢|?) ~ (¢€) > 0, i.e. the zero mode con-
tributes significantly, whereas higher modes are suppressed. This phase corresponds to the
spontaneous magnetisation in an Ising-type spin model.

e In the non-uniform ordered phase a non-zero mode condenses. This leads to the relations
(|01?) = (|@|* - %2) > 0. In this case the rotation symmetry is spontaneously broken. That
phase is specific to the fuzzy sphere; it does not occur in commutative spaces.

We add that the fuzzy sphere formulation is non-local, as the non-commutativity of the coordi-
nates suggests. Therefore the Mermin-Wagner theorem does not prohibit the non-uniform ordered
phase.

ITheimpact of this substitution remains to be investigated in detail. Further comments are added in Section 5.
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5. Numerical resultsfor the phase diagram

In general the determinant detD (where D is given in eq. (3.3)) is complex. In the final limit
N, R— oo it is real positive, however, hence the complex phase represents an artifact of the fuzzy
regularisation (apart from the substitution in eq. (3.4)). We therefore modify the regularisation at
this point by using |detD| already at finite N and R. With this modification the action (3.4) defines
a Boltzmann weight which enables Monte Carlo simulations. We performed such simulations with
the Metropolis algorithm: in each step, a conjugate pair of matrix elements is updated, and |detD|
is explicitly evaluated. Throughout our simulations we fixed the radius of the sphere to R= 1.

So far we simulated at N = 4, 6 and 8 (which are numerically handled by matrices of size
32, 72 and 128) and we explored the phase diagram in the (m,A) plane. We also measured the
phase of the determinant. It turns out to be quite stable, which is favourable for the modified
regularisation (in the extreme case of an invariant phase the modification is redundant). Examples
for this property are depicted in Fig. 1.
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Figure 1. Two examples for histories of the phase of the fermion determinant. The parameters in these
simulationsare N =6, A =m=4andN=8, A =1, m=—6.

Next we show in Figs. 2 and 3 the expectation values of the order parameters (|¢|2), (@)
and (|¢|? — ¢¢) (as discussed in Section 4) for N =6 and N =8, at A = 1,5 and 9. We actually
investigated a larger range of the mass parameter m, but we show here the interval of interest in
view of the phase diagram. In all cases, large values of |m| lead to the disordered phase. When
|m| decreases below a critical value = 2 (which is similar but not identical for both signs of m) we
enter the phase of uniform order. In the vicinity of m= 0 we also observe the phase of non-uniform
order to set in; the corresponding conditions are given in Table 1.

For N =6 and 8 we probed A =1,...,10, which gives rise to the phase diagram in Fig. 4.

6. Conclusions

We explored a new way to simulate a two dimensional model of the Wess-Zumino type. The
model is wrapped on a sphere and the fields are expanded in spherical harmonics. A truncation
in the angular momentum renders the sphere fuzzy, and the corresponding field coefficients build
a finite set of degrees of freedom to be used in numerical simulations. In this first approach we
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Figure 2: The order parameters for N =6 and A = 1,5,9 in the range m = —8...8. We see a double
peak structure in all cases, where the peak at m &~ —2 is enhanced for increasing A. A strong interaction
parameter A also implies a gradually enlarged phase of non-uniform order.
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Figure 3: The order parameters for N =8 and A = 1,5, 9 in the range m = —8...8. The phase transitions
show a behaviour similar to the results for N = 6 (Fig. 2), although the values of the order parameters differ.

Figure 4: The phase diagram at N = 6 and 8, which is identified from measurements as shown in Figs. 2
and3forA =1,2,...,10.

simplified the Pfaffian toy/detD. Thus we studied a SUSY inspired system of interacting scalars
and Majorana fermions on a fuzzy sphere.

In the final limit of infinite angular momentum cutoff N and radius R, the determinant detD is
real positive. This does not hold at finite N and R, so we modify the regularisation by employing the
modulus of the fermion determinant already on the regularised level. We expect this formulation
to lead to the same limit. This expectation is supported by the observation that the fluctuations of

arg(detD) are small.



SUSY an a fuzzy sphere Jan Volkholz

With this method we simulated the system at N = 4, 6 and 8 and R= 1. The basic properties
are similar in all cases; in particular large |m| > 2 always leads to a disordered phase. So it is con-
ceivable that we are already peeping at aspects of the large N limit. However, the final stabilisation
of the phase diagram at large N may involve a re-scaling of the axes.

The ordered non-uniform phase emerges as a consequence of the non-commutativity of the
coordinates, which we use on the regularised level. We observed that phase around m~ 0, and it
ought to evaporate as we increase N further. Runs at N = 10 are on the way; they could give a hint
for this trend.

Although this project is still on-going, the preliminary results are encouraging regarding the
hope to find a way to formulate and explore SUSY inspired models beyond perturbation theory.
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