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1. Introduction

The ON) symmetric Gross-Neveu (GN) model [1] forms a particularly simple family t se
interacting fermionic quantum field theories. It may be regarded as theahfdtmionic counter-
part of the N-componentlp* theory of real bosons. While they are renormalizable in four dimen-
sions the same is true th= 2 for GN, where it is even asymptotically free. It is most naturally
written in terms of Majorana fermion& which are pairwise related to the more familiar Dirac
fermions by

=—(é1+1&2), =— —ié, )¢, ¥ =-—%' :chargeconjugation 1.1
We here define the action immediately on the lattice with Wilson-fermions as
_ 2+m STz T 1-Vu -
R R LGS S TES S L R L

We work with lattice unitsa = 1. The first term contains the mass and the diagonal part of the
Wilson term and is followed by the interaction and the hopping term. Note thavi&porana
fermions the backward hopping terms coincide the forward onesé -Allinears are contracted
in the internalN-valued index making the @) symmetry manifest. It allows only one type of
4-fermi interaction, hence the strict renormalizability. The discrete chaakformatioré — y5¢&
is broken only by the mass and the Wilson term. As with chiral symmetry in QCD itpeat®d
to emerge in the massless continuum limit where the bare Wilson mass has to btotareeitical
valueme.

The partition function follows,

2 2
Zen— [DkeS—ep{§ 5 502} @aimx)" 1.3

By allowing for anx-dependent mass we re-wrote it here in terms of the partition functidg
of oneMajorana fermion in such a background. Its action is the bilinear part.gj.(1n ref.[2]
more details on everything said here can be found. In particular it is exglaioey the interacting
theory can be simulated once one has the efficient algorithragfon(x)] available that we study
below. Such simulations are presently under way.

2. Transfor mation to a dimer ensemble

To expand the partition function with(x) = 24 m(x) we first exploit the nilpotency of even
Grassmann elements and obtain.

2= [ &[] (L1 088 ] (1+ 8 e e n ). (2.1)

Next the product of the hopping terms on each link is organized with the Hdipkodimer-
variablesk(x,u) =0,1,

1-y, A k(x,u)
Zp = DE[T{1+9&& ] €T (N5 &(x+[1) (2.2)
3, P [ (00 )
= 3 p[K xsignK (2.3)
{k(x, 1)}
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Figure 1. Lines correspond to dimer loops which also form contoursasgmg domains of up and down
spins. The four different possible loop topologies on thregare exemplified.

with
¢ (x) ifnodimerat(= monomey
1 if2dimersinthe samedirectioat
Kl = . 2.4
Pl |:| % 1/+/2 if2dimersindifferentdirections at (2.4)
0 else

To arrive at the weighp one has to observe that the Grassmann integral constrains dimers (links
with K(x, ) = 1) to form closed loops and at each site either two or zero dimers can tAwsite
with no dimer adjacent is called a monomer and leads to a fadtor The weight for such loops
can be computed analytically [5] and leads to (2.4). The factorl§igmuals+1 unless dimer
loops wind around the boundary, in which case it depends on whethkotimelary conditions are
periodic or antiperiodic. This leads to relations between fermion and dinsemdsles of the type
Z; " =Z2+7° - 7+Zt (+3moresuchrelations (2.5)
In this formuIaZg+ is a fermion (anti)periodic in (time) space, azﬁf is a partition function of the
type (2.3) restricted to configurations with 1 (mod 2) loops around the totirsénand O in space
and analogously for the other cases. The four possibilities are illustratédebhines in Fig.1. An
example of the translation of observables between the representatiovsd dy taking derivatives



Cluster simulation of two-dimensional relativistic feams Ulli Wolff

500} T
L
- z=2
100} |
fé— X < |ocal
- 20} ) * cluster|]
10} |
5V 8 Z:0.3’#,_,* |
I x o0 ]
2 ¥ ¥
816 32 64 128
L

Figure 2: Autocorrelation times for localX) and cluster ) algorithm for a massless fermion.

with respect tan(x), relates the scalar fermion density and the monomer density

24+my/ ¢ B _ ) 1 if monomerax
~SS(ETEE) = (KOO)dimer K(x)—{o oo . (2.6)

3. Spin representation and cluster algorithm

In the form of the dimer ensembles we have recast the originally fermionigptiveterms of
discrete commuting variables with local interactions. They can be updatedooglaVetropolis
algorithm as demonstrated in [4]. Due to the constraints [the zero in 2.4)] thenalinpdates
have to change dimers around a plaquette. Such updates do not chamij@ehn loop topology
which is determined by the initial state. Such a fixed topology dimer ensemblespormds to a
combination of fermion ensembles with several kinds of boundary conditidreslocal simulation
of such an ensemble has roughly the same complexity as simulating a stamigrddsel.

Also as in the Ising model the local update leads to critical slowing down withhardical
exponentz around two. For the case equivalent to a free Wilson Majorana fermigarashing
mass, which is critical, the upper crosses in Fig.2 at least qualitatively steosxgiected growth of
the integrated autocorrelation time for the monomer density. In the Ising modettieiesdeterio-
ration of efficiency is practically completely eliminated by collective cluster tgopdeocedures like
the one of Swendsen and Wang [6]. The good news is now that alsddreoar Ising type theory
with plaquette interaction — exactly equivalent to Wilson fermions — we havedfan equally ef-
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ficient technique. We briefly sketch it here, but for a more detailed siaieling probably [2] has
to be consulted.

We consider the lattice dual to the one carrying the dimers (and originally tivécies). Its
sites can be drawn in the centers of the original plaquettes. This is wheyetwsng spins, which
appear as plus and minus signs in Fig.1. We also read off there, how tleel ¢tam-intersecting)
dimer loops are obtained as the Peierls contours encircling areas ofissgineorientation. As dis-
cussed in [2] this is an exact two-to-one mapping of Ising configuratibaging a certain plaguette
constraint and allowed dimer configurations. The four different dimeglompes correspond to the
four possible combinations of (anti)periodic boundary conditions of thweglspins. There an-
tiperiodicity forces domain boundaries into our ‘magnet’ which are prectbglyon-contractable
dimer loops, see again Fig.1. The Ising partition function — for one choitepoiogy/boundary
conditions — is now given by

Zi=z =5 W<S4SS>' (3.1)
{s()} plaquettes S

The desired weights for the individual configurations dictate the values of

WC i):rp(x), W<i E):\z, W(+ +>:1, W<+*+>:O,.... (3.2)

with other values obtained form these by rotating or flipping the four spihe.eEsential observa-
tion for the cluster approach is, that this function of four spins around@uptte may be written

as a linear combination of ten terms consisting of Kronecker deltasdjkgtying together pairs

of spins with positive coefficients,

wep (P ) e (D) (D) @9

In the above symbolic formula the delta-bonds are represented by the seid By considering
all 16 configurations of the four spins (and the obvious symmetries) tHéaeets
m(X) 1 r

1
) = —_, =1——+r all > 0ifm< 2v/2 3.4
result. This is a rather direct generalization of the Fortuin-Kasteleynsoni@], where only just
pairs of spins have to be considered. We now introduce correspdndi@gyalued variable®
on the sites of the original (=plaquettes of the dual) lattice as additional \esialbhe partition
function is now given by a sum over both the spin and the new bond field,

Zs= > [ Poooorx <S4 83> : (3.5)

{b(x) = 1,...,10;s(x)=+1} plaq S1 %2

Here the factord € 0,1 depend on both bonds and spins and contaid thesociated with a given

b-value, while theP are the weights from (3.4). The decisive trick is now to refrain from #yxac
summing oveb, but to alternatingly do Monte Carlo updates to both kinds of variables. hsta fi
pass, for fixed spins, at each site a new bond is picked among those calbgwfewith relative
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probabilities given byP. This amounts to a local heatbath, and bhepdates at different sites are
independent in this step. With new bonds given we next pick a new spiigacetion. All spin
configurations on the whole lattice in this step are either forbiddeA byO or have thesame
positive weight. If one chooses one of the latter at random with equlhbpifity this furnishes a
global heatbath in this step. With the help of percolation cluster search algenithich divide the
spins into groups (‘clusters’) that are tied together bydH#onds, this becomes possible at a cost
of O(volume) only. This is the nonlocal update step that (almost) eliminates tshivéing down

as witnessed by the stars in Fig.2.

In [2] two important generalizations are given that we only mention herest, Fir the step
of picking new spins at fixed bonds one may also at the same time consideit¢b among the
four possible boundary conditions. One then simulates with ‘fluctuatinghtdary conditions the
ensembl&s ™ +Z, "+ 75 +Z; . By reweighting with a factor depending on the boundary con-
dition as a dynamical variable one can then also effectively measureafdixaion boundary con-
ditions, see (2.5). This factor is of fluctuating sign which is a remnant ofdireibnic minus sign
problem, still visible at finite volume here. It leads however to no severeetiations that cannot
be handled. Moreover it even seems possible to construct an imprauaates at least for some
quantities in the reweighted ensemble. The second generalization allog6dice 2+ m(x) < 2,

i.e. negative mass. If the simulations studied for a fermion in the ‘external’igtdl here are ac-
tually embedded to simulate the interacting GN model, such local masses carawided. The
decomposition (3.3) with weights (3.4) requimes> 0. There is however another decomposition
available in the case of negative mass. It contains both bonds as betbamtibonds liked, s,

with then altogether 14 terms and positive weights again. Clusters now alsorctad-together
opposite spins, but otherwise the construction of clusters which aredliggkectively with prob-
ability 1/2 is very similar. With locam(x) some plaquettes may use the one and some the other
decomposition.

Both in [2] and here only free fermions have been simulated numericallyeldither or Ising
form this case in fact does not seem so very special, but of cowsetfre fermionic realization
exact results are available for all quantities. In the meantime first simulatiensraming however
with interactingN = 2 andN = 8 fermion flavors. First results to be compared with [7] look con-
sistent and the update seems to remain very efficient. Unfortunately the nsetfands restricted
to two dimensions. Fermions, and the possibility to ‘bosonize’ them, is known spédal to this
dimensionality. Nevertheless, it seems worth to keep thinking about ‘namrdimant’ approaches
to fermions also fod = 3,4.
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