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Thin and dressed Polyakov loops

1. Motivation

The phenomenology of QCD is governed by two prominent features, confinement and sponta-
neous breaking of chiral symmetry. As one increases the temperatureT above some critical value
Tc, the theory becomes deconfined and chiral symmetry is restored. This suggests that there could
be a relation between the two phenomena. Establishing or ruling out such a relation would be a
major insight into key mechanisms of QCD.

The finite temperature transition of pure gauge theory, where the system changes from the
confined(T < Tc) into the deconfined phase(T > Tc), can be understood as spontaneous breaking
of the center symmetry [1], and the Polyakov loop is a suitable order parameter with 〈P〉 = 0
for T < Tc and〈P〉 6= 0 for T > Tc (see Fig. 1). Concerning chiral symmetry breaking the order
parameter is given by the chiral condensate with〈ψ̄ψ〉 6= 0 for T < Tc and〈ψ̄ψ〉 = 0 for T > Tc.
The chiral condensate in turn is related to the spectral density of the Dirac operator by the Banks-
Casher formula [2]:〈ψ̄ψ〉 = −πρ(0), whereρ(0) is the spectral density at the origin. When
increasing the temperature above the critical value, the spectral density atthe origin vanishes and
with it the chiral condensate (see Fig. 2).

In a series of recent papers, [3]-[6], the Polyakov loop, or other quantities that serve as order
parameters for the breaking of the center symmetry, were related to spectral sums of differen-
tial operators on the lattice, in particular the Dirac and the covariant Laplaceoperators. In this
way also confinement is related to spectral quantities, as is chiral symmetry breaking through the
Banks Casher formula. Since eigenvalues can be divided into IR and UV regions in a natural way,
the spectral representations allow one to analyze whether confinement is dominated by IR or UV
modes. In this paper we review and extend our contributions to this enterprise.

2. Derivation of spectral sums

2.1 Preliminaries

The thin Polyakov loop averaged over space is given by

P =
1
V3

∑
~x

L(~x) with L(~x) = Trc

[
Nt

∏
x4=1

U4(~x,x4)

]

, (2.1)

whereL(~x) is a straight line of links in temporal direction closed around the periodic boundary and
Trc denotes the color trace. Obviously, this quantity has a rather singular support. Due to this fact
it is known to have a poor continuum limit with large renormalization effects.

To address this problem, below we will define a new observableP(q) which we refer to as the
dressed Polyakov loop with winding number q. It is a collection of loops all with the same numberq
of windings around compactified time. So, for example,P(1) is a sum of the thin Polyakov loop and
all other loops winding once around the lattice in time direction, where the latter loops may have
arbitrary complicated detours in spatial directions and are weighted proportional to their length.

In the following two sections we derive the spectral sums for thin and dressed Polyakov loops.
For this purpose it is convenient to summarize our conventions: The staggered Dirac operator is
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Figure 1: Scatter plot for the thin Polyakov loop in the complex plane for an ensemble of quenched SU(3)
configurations. As the temperature increases (left to right) the Polyakov loop acquires a non-vanishing
expectation value.
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Figure 2: Histograms of the spectral density of the staggered latticeDirac operator as a function of the
modulus of the eigenvalues. Below the critical temperaturethe spectral density at the origin is non-zero.
NearTc the density at the origin decreases and vanishes above the critical temperature.

given by

D(x,y) = mδx,y +
1
2

4

∑
µ=1

ηµ(x)
[
Uµ(x)δx+µ̂,y−Uµ(x− µ̂)†δx−µ̂,y

]
, (2.2)

whereηµ(x) = (−1)x1+x2+...+xµ−1 is the staggered phase. The covariant Laplace operator on the
lattice is defined as

∆(x,y) = (8+m2)δx,y−
4

∑
µ=1

[
Uµ(x)δx+µ̂,y +Uµ(x− µ̂)†δx−µ̂,y

]
. (2.3)

Below we will use the staggered Dirac operator for representing the thin Polyakov loop, while the
dressed loops are constructed from the Laplace operator. We stress,however, that it is an easy
exercise to generalize our formulas, such that both the thin and the dressed Polyakov loops can be
obtained from both differential operators. The derivation can be extended further to arbitrary lattice
operators with only nearest neighbor interaction (such as Domain Wall Fermions). The advantage
of these operators is that they are numerically cheap.

3
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2.2 Thin Polyakov loops

In order to connect the thin Polyakov loop to spectral sums we follow the derivation in [3]. We
consider powers of the staggered Dirac operator (2.2). Then-th power of the operator then contains
paths up to lengthn, dressed with a product ofn links. For the special case where we consider the
operator to the powerNt , whereNt is the time extent of our lattice, we obtain

TrcD
Nt (x,x) =

1
2Nt

Trc

Nt

∏
s=1

U4(~x,s) −
1

2Nt
Trc

Nt−1

∏
s=0

U4(~x,Nt −s)† (2.4)

+ other loops, trivially closed

=
1

2Nt

[
L(~x) − L∗(~x)

]
+ other loops, trivially closed. (2.5)

From the set of all loops that contribute we have singled out the thin Polyakov loop and its complex
conjugate. These two straight loops are the only ones that can close around compactified time. All
others are ’trivially closed’, i.e., they do not wrap around the lattice in temporal direction.

The key observation is that a change of the temporal boundary conditions

U4(~x,Nt) → zU4(~x,Nt) , |z| = 1 , (2.6)

wherez is a complex phase, only affects the Polyakov loops

L −→ zL , (2.7)

while the trivially closed loops remain unchanged. After such a change the expression (2.5) reads

TrcD
Nt
z (x,x) =

1
2Nt

[
zL(~x) − z∗L∗(~x)

]
+ other loops, (2.8)

whereDz is the Dirac operator on a configuration where the temporal boundary conditions are
changed by a factorz. Averaging this expression over space and time we obtain

Tr DNt
z =

V4

2Nt
(zP−z∗P∗ +X) , (2.9)

whereX is the sum of all trivially closed paths. We make use of this behavior to cancelthe un-
wanted trivial contributions and project onto the thin Polyakov loop by takinglinear combinations
(coefficientsai) of this expression for three different boundary conditionsz1,z2 andz3

P
!
= 2Nt

3

∑
i=1

aiTr (DNt
zi

)

= P (z1a1 +z2a2 +z3a3)
︸ ︷︷ ︸

!
=1

−P∗ (z∗1a1 +z∗2a2 +z∗3a3)
︸ ︷︷ ︸

!
=0

+X (a1 +a2 +a3)
︸ ︷︷ ︸

!
=0

. (2.10)

This leads to a set of linear equations for the coefficientsa1,a2 anda3






z1 z2 z3

z∗1 z∗2 z∗3
1 1 1











a1

a2

a3




 =






1
0
0




 . (2.11)
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One can show that this equation has a unique solution as long as the boundary conditionsz1,z2 and
z3 are different. For the particular choicez1 = 1 andz2 = z∗3 = ei 2π

3 ≡ z the thin Polyakov loop is
then given by

P =
2Nt

V4

[

∑
i

(

λ (i)
)Nt

+ z∗∑
i

(

λ (i)
z

)Nt

+ z∑
i

(

λ (i)
z∗

)Nt

]

, (2.12)

where theλ (i)
z are the eigenvalues of the staggered Dirac operator for a given boundary condition

z. Similar expressions can be obtained for other differential operators onthe lattice.

2.3 Dressed Polyakov loops

In order to obtain the spectral sum for the dressed Polyakov loops we now use the Laplace operator
and apply a different strategy than used for the thin loops. First, we rewrite the covariant Laplace
operator on the lattice from Eq. (2.3) in the following way

∆ =
1
κ

[1 − κ H ] , H(x,y) =
4

∑
µ=1

[

Uµ(x)δx+µ̂,y +Uµ(x− µ̂)† δx−µ̂,y

]

, (2.13)

where the hopping matrixH collects all terms which connect nearest neighbors on the lattice and
the hopping parameterκ is related to the bare massm via κ = (8+ m2)−1. The inverse Laplace
operator∆−1(x,x) can be expressed as geometric series in terms of powers ofH,

∆−1(x,x) =
∞

∑
j=0

κ j+1H j(x,x) . (2.14)

Since the hopping matrixH contains only terms that connect nearest neighbors, the powersH j(x,x)
in (2.14) correspond to closed loops of lengthj, again dressed with the corresponding products of
the link variables. Thus we can organize∆−1 in terms of loops and order these with respect to their
winding around time. We obtain (after taking the trace)

Tr∆−1 = ∑
x

Trc ∆−1(x,x) = ∑
n∈Z

∑
l∈Ln

κ |l |+1 Trc ∏
(y,µ)∈l

Uµ(y) , (2.15)

whereLn is the set of loops that wind exactlyn-times around the time direction and|l | denotes
the length of a loopl . It is important that now the sum on the right hand side contains loops
of arbitrary length, with all possible numbers of windings. To disentangle thedifferent winding
numbers we introduce U(1)-valued temporal boundary conditions for theLaplace operator which
are most conveniently implemented by the replacement

U4(~x,Nt) −→ eiϕ U4(~x,Nt) , (2.16)

which corresponds to a parameterizationz= eiϕ in (2.6). Each loop acquires a phase factoreiϕn,
corresponding to its winding numbern:

Tr
(

∆ϕ

)−1
= ∑

n∈Z

eiϕn ∑
l∈Ln

κ |l |+1 Trc ∏
(y,µ)∈l

Uµ(y) . (2.17)
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Integrating overϕ with a factor ofe−iϕq projects to winding numberq and we end up with the
dressed Polyakov loopP(q) (which we normalize withV = N3Nt),

P(q) ≡
1
V

∫ π

−π

dϕ
2π

e−iϕqTr(∆ϕ)−1 =
1
V ∑

l∈Lq

κ |l |+1 Trc ∏
(y,µ)∈l

Uµ(y) . (2.18)

After the projection the loops still can be arbitrarily long but all have the same winding numberq.
The individual loops are weighted with a factorκ |l |+1, where|l | is the length of the loop. This leads
to an exponential suppression of long loops and the rate of the suppression is determined by the
value ofκ. Nevertheless arbitrary long loops may contribute and the formula (2.18) is asensible
definition of dressed loops.

The final step to make the connection to spectral properties of the staggered Dirac operator is
to write the trace over∆−1 as a spectral sum giving

P(q) =
1
V

∫ π

−π

dϕ
2π

e−iϕq
3V

∑
j=1

κ
1 − κ λ (ϕ)

j

=
1
V ∑

l∈Lq

κ |l |+1 Trc ∏
(y,µ)∈l

Uµ(y) , (2.19)

whereλ (ϕ)
j is the j-th eigenvalue of the hopping matrixH (2.13) for boundary condition angleϕ .

The dressed Polyakov loop transforms in the same way as the thin Polyakov loop. Thus the dressed
Polyakov loops are proper order parameters for the breaking of the center symmetry. They are
also not as singular as the thin Polyakov loops and thus are expected to have a better continuum
limit with smaller renormalization effects. In an analogous way dressed Polyakov loops can be
constructed also with the eigenvalues of the Dirac operator instead of the Laplace spectrum.

We stress that both equations (2.12) and (2.19) are exact results that hold for individual gauge
configurations. However, for a practical evaluation with numerically generated gauge configura-
tions the two formulas have a different status. Equation (2.12) for the thin loops holds to ma-
chine precision when the result of the spectral sum is compared to the direct evaluation of the thin
Polyakov loop from the gluonic definition (2.1). The expression (2.19) for the dressed loop on the
other hand contains an integral over a continuum of boundary conditions. That this integral can
indeed be approximated numerically in a sensible way will be demonstrated in the next section.

β L3×Nt a[fm] T[MeV]

7.00 63×4,123×4 0.351(3) 140

7.60 63×4,123×4 0.194(4) 254

7.91 63×4,123×4 0.146(2) 336

7.40 123×6 0.234(2) 140

8.06 123×6 0.129(1) 255

8.40 123×6 0.098(1) 337

Table 1: Ensembles used in our simulations. For the 63×4 lattices 2000 configurations are available, for
123×4 and 123×6 we have used 20 configurations.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
8
9

Thin and dressed Polyakov loops

3. Numerical analysis

3.1 Simulation details

For the numerical analysis of our spectral sums (2.12) and (2.19) we usequenchedSU(3) gauge
configurations generated with the Lüscher-Weisz action [7]. We work onlattices with different
sizes ranging from 63×4 up to 123×6 at temperatures below and above the critical valueTc (see
Table 1). For those we compute complete spectra of both the staggered Diracoperator and the
hopping matrixH of the Laplace operator for up to 16 different boundary condition. Thelattice
spacing was set [8] with the Sommer parameterr0 = 0.5 f m. All error bars we show are statistical
errors determined with single elimination jackknife.

3.2 Thin Polyakov loops

For the thin Polyakov loops we restrict ourselves to the three boundary conditions z1 = 1 and
z2 = z∗3 = ei 2π

3 ≡ z which are used to derive the spectral sum (2.12). A different choice would
change our results only marginally.

After computing all eigenvalues of the staggered Dirac operators we order them w.r.t. to their
absolute value and organize them in bins. For each bin we calculate a numberof observables.
The first observable is the distribution of the eigenvalues, which we show inFig. 3 for different
spatial and temporal extents of the lattice and for three different temperatures above, below and
approximately at the critical valueTc. The l.h.s. set of those plots shows the distribution as a
function of the size of the eigenvalues in lattice units, while the r.h.s. plots are in MeV. One can
clearly see that the spectral density at the origin vanishes and chiral symmetry is restored as one
increases the temperature above the critical value. The density of eigenvalues reaches a maximum
after about three quarters of the eigenvalues and then quickly drops towards the UV cutoff.

Fig. 3 is particularly important when one analyzes which part of the spectrum contributes to
the spectral sum (2.12) for the thin Polyakov loop. For the interpretation ofsuch an analysis it is
necessary to take into account the global distribution of the eigenvalues, and this is exactly what
Fig. 3 provides.

In the spectral sum (2.12) the thin Polyakov loop emerges through a shift of the eigenvalues as
the boundary condition is changed. It is interesting to analyze how stronglydifferent eigenvalues
of the spectrum are shifted when the boundary condition is changed. We quantify this question by
studying the averaged shift of the eigenvalues given by

s(λ ) = (|λ −λz| + |λ −λz∗ | + |λz−λz∗ |)/3 . (3.1)

Since above the phase transition the thin Polyakov loop obtains a finite value while in the confined
phase it is approximately zero, the shift of the eigenvalues should changeas one increases the
temperature. This is exactly what we find in our results for the average shift s(λ ) presented in
Fig. 4). The individual data points are obtained by averaging over all eigenvalues in a bin and then
over all configurations in the ensemble.

It is obvious, that over the whole range of the spectrum the average shift is almost zero below
the critical temperature. For high temperatures, however, we find large shifts for low-lying eigen-
values and little or no shift when the UV region is approached. The small shift at the UV end of
the spectrum disappears when finer and larger lattices are used.

7
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Figure 3: Distribution of the eigenvalues of the staggered Dirac operator for different lattices and different
temperatures. The l.h.s. plots are in lattice units, while on the r.h.s. we use MeV.

After understanding the global distribution of the eigenvalues and their shift under a change
of the boundary conditions, we can start to analyze the individual contributions to the spectral sum
(2.12). This individual contribution is given by

c(λ ) =
2Nt

V4

[

(λ )Nt + z∗ (λz)
Nt + z(λz∗)

Nt
]

. (3.2)

Our results are shown in Fig. 5, where we plot the absolute value of the individual contri-
butions after normalizing them withP, i.e., we divide by the value of the thin Polyakov loop. It
is obvious that mainly the UV modes contribute to the thin Polyakov loop. This observation is
essentially independent of the temperature and the size of the lattice. This is a finding which is not
a-priori obvious, given the fact that it is the IR modes that show the largest shifts in Fig. 4. On the
other hand, the large powerNt in the spectral sum (2.12) drastically enhances the contributions of
the UV eigenvalues.

Interesting are also the dips which form with increasing temperature at about 1.5a for Nt = 4

8
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Figure 4: Average shift of the eigenvalues calculated as defined in Eq.(3.1) as a function ofλ . Again we
use lattice units in the l.h.s. set of plots and MeV on the r.h.s.

and at 0.8a and 1.9a for Nt = 6. It can be shown that these dips are correlated with a change of the
direction of the shift of the eigenvalues forz-valued boundary conditions relative to the eigenvalues
computed with periodic boundary conditions.

The plot in Fig. 5 shows that the individual contributions are biggest at theUV end of the
spectrum. On the other hand, Fig. 3 shows that for the largest eigenvalues the density shows a
sharp drop. It is an interesting question which effect, size of contributionversus density, wins out.
This question can be addressed by considering only partial sums of (2.12). In Fig. 6, we show
such partial sums as a function of the cutoff, i.e., as a function of the largest eigenvalue included in
(2.12). Again we divide by the Polyakov loopP, such that when all eigenvalues are summed, i.e.,
at the largest value ofλ in Fig. 6, the curve approaches 1.

For the 123×6 lattice, we find that for low and medium temperatures the partial sums over-
shoot by nearly a factor of two before they reach the correct value atthe largest values ofλ . Thus
the behavior of the partial sums is non-monotonic. On the other hand, for small temperatures the
Polyakov loop should vanish. Thus the overshooting is not problematic, since the accumulated

9
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Figure 5: Contribution (3.2) of individual eigenvalues to the spectral sum for the thin Polyakov loop given
by Eq. (2.12). As before we use lattice units in the l.h.s. setof plots and MeV on the r.h.s.

contributions stay approximately zero over the whole range of the spectrum.We also find that the
thin Polyakov loop is recovered only after all UV modes are included in the spectral sum. Again
we see the appearance of dips at exactly the same values which we have already identified in Fig. 5.

So far we have only considered absolute values of quantities. However,the Polyakov loop and
also the spectral sums are complex numbers and we can analyze their relative phase. In Fig. 7 we
plot the angle∆φ between the truncated sums and the resulting thin Polyakov loop as a function
of the cutoff used in the truncated sum. We show data for a 123× 4 and a 123 × 6 lattice, both
at T > Tc. We find that on the former lattice the accumulated contributions start with the wrong
sign and recover the correct sign at the end. On the other lattice, althoughstarting and ending with
the correct sign, there is an intermediate region in which the truncated sum has the wrong sign.
A comparison with lattices of different spatial size but the same temporal extent reveals, that this
behavior depends only on the temporal extent.

A possible explanation for this phenomenon is the fact that the eigenvaluesλ of the staggered
Dirac operator are purely imaginary. Thusλ 4n is a real positive number, whileλ 4n+2 is real but
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Figure 6: Partial sums of the spectral formula (2.12), plotted as a function of the cutoff.

negative. If we consider only the first term in the truncated sum we find:

c(λ (1)) =
2Nt

V4

[(

λ (1)
)Nt

+z∗
(

λ (1)
z

)Nt

+z
(

λ (1)
z∗

)Nt
]

=
2Nt

V4
[α +z∗α̃z+zα̃z∗ ]

α̃z∗≈α̃z≡α̃
=

2Nt

V4
[α +(z∗ +z)α̃]

=
2Nt

V4
[α − α̃]

{

< 0 Nt = 4n asα , α̃ > 0
> 0 Nt = 4n+2 asα , α̃ < 0

, (3.3)

where we assume that the boundary conditions with phaseszandz∗ lead to approximately the same
lowest eigenvaluẽα, which is larger in size than the eigenvalue at periodic boundary conditions
[9, 5]. Interestingly, this last relation between the relative sizes of the eigenvalues for non-trivial and
periodic boundary conditions seems to change in certain regions in the spectrum of the staggered
Dirac operator, thus creating the observed sign change in the truncated sums. The points where
these sign changes occur depend only on the time extend of the lattice.
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Figure 7: Phase shift of the truncated sums relative to the thin Polyakov loop forT > Tc. The upper plots
are for a 123×4 lattice, while the lower plots are for 123×6.

3.3 Dressed Polyakov loops

For the thin Polyakov loops the numerical analysis of the last section demonstrates that the
spectral sums for the thin loops are predominantly built up from the UV modes.However, as we
have already speculated above, part of the UV dominance might come fromthe singular nature
of the support of the thin loop. Thus it is interesting to perform the same spectral analysis for
the dressed Polyakov loop. Such an analysis is planned for a future publication. Here we focus
on the feasibility of computing the integral over the boundary angle in (2.19) numerically and
establish that the dressed Polyakov loop is indeed an order parameter forthe breaking of the center
symmetry.

For the dressed Polyakov loops we compute complete spectra ofH for 16 values of the bound-
ary angleϕ ∈ [0,π). The integrand in the spectral sum (2.19) is given by (omitting the normaliza-
tion and the phase exp(−iϕq))

S(ϕ) =
1
V

3V

∑
j=1

κ
1− κ λ (ϕ)

j

. (3.4)

IntegratingS(ϕ) over ϕ with the phase exp(−iϕq) projects to the loops with winding numberq.
The important technical question is how smooth a function ofϕ this integrand is.

Fig. 8 shows the integrandS(ϕ) averaged over 20 configurations aboveTc with real Polyakov
loops (l.h.s. plots) and 20 configurations with complex Polyakov loops (r.h.s.). The individual
curves are for different values of the mass parameterm in the vicinity of the critical massmc where
the Laplace operator ceases to be invertible. In the bottom plots a constant was subtracted.
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Figure 8: The spectral sumS(ϕ) for the Laplace operator as a function ofϕ. The l.h.s. plots are from
an average over 20 configurations with real Polyakov loop, the r.h.s. plots are for 20 configurations with a
Polyakov loop with phase∼ exp(i2π/3). In the top plots the full sumS(ϕ) is shown, while in the bottom
plots the constantc =

∫
dϕSL(ϕ) was subtracted.

The plots show a clear cosine behavior for the ensemble with real Polyakovloops (l.h.s.) and a
shifted cosine for the complex ensemble (r.h.s.). For low-lying modes a similar dependence on the
phase at the boundary was observed in [10]. It is obvious that dividing the interval[0,π) into 16
sub-intervals should be sufficient for a reliable numerical estimate of theϕ-integral in the case of
q = 1, where the phase factor is simplycosϕ − i sinϕ . This is the most interesting case of dressed
Polyakov loops with a single winding.

Fig. 8 establishes that a numerical integration overϕ is feasible. We implement this integration
for the case ofq = 1 using Simpson’s rule. The resulting dressed Polyakov loopP(1) transforms
under center transformations in the same way as the thin Polyakov loopP defined in (2.1). Thus it
should be an order parameter for breaking of center symmetry, but one even expects that it shows
a similar behavior as shown in Fig. 1 for the thin loop. In order to test this expectation we use 20
configurations belowTc and 20 aboveTc. The latter all have a Polyakov loop which is essentially
real, i.e., configurations in the right leg of the distribution shown in ther.h.s. plot of Fig. 1. On
these two sets of configurations we compare the thin loop with the dressed loopat two different
values ofκ. The corresponding results in the complex plane are shown in Fig. 9.

The plot shows clearly that forT < Tc both, the thin and the dressed Polyakov loops cluster
around the origin, while aboveTc they develop a non-vanishing value near the positive real axis.
Even the pattern in the distribution of the data points is similar for thin and dressedloops.
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Figure 9: Scatter plots of thin (l.h.s. plot) and unscaled dressed Polyakov loops (center and l.h.s. plots)
below (blue symbols) and aboveTc (red symbols) for 20 configurations on a 123×6 lattice.

The analysis of Fig. 9 shows that the dressed Polyakov loop (2.19) is a suitable order parameter
for the breaking of center symmetry. It is less singular and is expected to have a proper continuum
limit. We are currently analyzing the volume and temperature dependence of thedressed loops and
will then return to studying which part of the spectrum predominantly contributes to the spectral
sum for the dressed loops (2.19).
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