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Thin and dressed Polyakov loops

1. Motivation

The phenomenology of QCD is governed by two prominent featuresnemént and sponta-
neous breaking of chiral symmetry. As one increases the tempefiatlveve some critical value
T, the theory becomes deconfined and chiral symmetry is restored. Tlgissdaghat there could
be a relation between the two phenomena. Establishing or ruling out sudtianevould be a
major insight into key mechanisms of QCD.

The finite temperature transition of pure gauge theory, where the syst@ngeh from the
confined(T < T¢) into the deconfined phag@& > Tc), can be understood as spontaneous breaking
of the center symmetry [1], and the Polyakov loop is a suitable order panamite(P) = 0
for T < Tc and(P) # 0 for T > T; (see Fig. 1). Concerning chiral symmetry breaking the order
parameter is given by the chiral condensate Wiphy) # 0 for T < T and(¢y) =0 for T > T..
The chiral condensate in turn is related to the spectral density of the Dpexator by the Banks-
Casher formula [2]:(¢p) = —mp(0), wherep(0) is the spectral density at the origin. When
increasing the temperature above the critical value, the spectral dengity @igin vanishes and
with it the chiral condensate (see Fig. 2).

In a series of recent papers, [3]-[6], the Polyakov loop, or otluiantties that serve as order
parameters for the breaking of the center symmetry, were related to $protra of differen-
tial operators on the lattice, in particular the Dirac and the covariant Laplpestors. In this
way also confinement is related to spectral quantities, as is chiral symmetkitng through the
Banks Casher formula. Since eigenvalues can be divided into IR aneldhis in a natural way,
the spectral representations allow one to analyze whether confinemembiisaded by IR or UV
modes. In this paper we review and extend our contributions to this engerpris

2. Derivation of spectral sums

2.1 Preliminaries

The thin Polyakov loop averaged over space is given by

1 , N
P = %;L(X) with  L(X) =Tre [ |_|

X4=1

whereL(X) is a straight line of links in temporal direction closed around the periodic demyrand
Trc denotes the color trace. Obviously, this quantity has a rather singulaorsuppie to this fact
it is known to have a poor continuum limit with large renormalization effects.

To address this problem, below we will define a new obsen@lewhich we refer to as the
dressed Polyakov loop with winding numbeitttgs a collection of loops all with the same numloer
of windings around compactified time. So, for examplé) is a sum of the thin Polyakov loop and
all other loops winding once around the lattice in time direction, where the lattps loay have
arbitrary complicated detours in spatial directions and are weighted piamairto their length.

In the following two sections we derive the spectral sums for thin and ede®slyakov loops.
For this purpose it is convenient to summarize our conventions: The statpérac operator is
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Figure 1. Scatter plot for the thin Polyakov loop in the complex plaoedn ensemble of quenched SU(3)
configurations. As the temperature increases (left to yitte Polyakov loop acquires a non-vanishing
expectation value.
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Figure 2. Histograms of the spectral density of the staggered laRicac operator as a function of the
modulus of the eigenvalues. Below the critical temperathesspectral density at the origin is non-zero.
NearT. the density at the origin decreases and vanishes aboveiticaldemperature.

given by
12 N
DY) = Myt 5 5 () [Un(X)Bcruy — U (X~ )" 8c-uy] (2:2)
IJ:

wheren, (x) = (—1)®™et-u-1 is the staggered phase. The covariant Laplace operator on the
lattice is defined as

N

AXY) = (8+mM)8y— § [Up(¥)8epy+Uu(x— 1) 8 py] - (2.3)
u=1

Below we will use the staggered Dirac operator for representing the thimknhtoop, while the
dressed loops are constructed from the Laplace operator. We dtogssver, that it is an easy
exercise to generalize our formulas, such that both the thin and the difesly@kov loops can be
obtained from both differential operators. The derivation can be drtéfurther to arbitrary lattice
operators with only nearest neighbor interaction (such as Domain Watliies). The advantage
of these operators is that they are numerically cheap.
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2.2 Thin Polyakov loops

In order to connect the thin Polyakov loop to spectral sums we follow thigadien in [3]. We
consider powers of the staggered Dirac operator (2.2) nfthgpower of the operator then contains
paths up to length, dressed with a product oflinks. For the special case where we consider the
operator to the powe¥;, wherel; is the time extent of our lattice, we obtain

1_ N 1 Nt
TreDM(x,x) = = Tre[JUa(%s) — = Trc [ Ua(X N —9)" (2.4)
C 2NI Csl:!L ZM Cc SI:!)
+ other loops, trivially closed
= 2% [L(X) = L*(X)] + other loops, trivially closed (2.5)

From the set of all loops that contribute we have singled out the thin Pohjakp and its complex
conjugate. These two straight loops are the only ones that can closelarompactified time. All
others are 'trivially closed’, i.e., they do not wrap around the lattice in tenhlnection.

The key observation is that a change of the temporal boundary conditions

Us(%N) — ZUs(RN),  [2 =1, (2.6)
wherezis a complex phase, only affects the Polyakov loops
L — zL, (2.7)

while the trivially closed loops remain unchanged. After such a changefitession (2.5) reads
TrcDM(x,x) = ZiN[[zL(X) — ZL*(X) ] + other loops (2.8)

whereDy; is the Dirac operator on a configuration where the temporal boundaditiors are
changed by a factar Averaging this expression over space and time we obtain

V.
TrD) = Z—Q(ZP—Z*P*JrX), (2.9)
whereX is the sum of all trivially closed paths. We make use of this behavior to cédneein-
wanted trivial contributions and project onto the thin Polyakov loop by takimgar combinations

(coefficientsy;) of this expression for three different boundary conditieng, andzs

3
P =2%%gTr(D}Y)
Pl

= P (zra1+zax+z3a3) — P (a1 + Zap + zza3) + X (ar+ap+ag) - (2.10)

~~

| | |
=1 =0 =0

This leads to a set of linear equations for the coefficianta, andag

1 Zp 73 ai 1
zzz||lal=0]. (2.11)
111 as 0
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One can show that this equation has a unique solution as long as the boomalditionsz; , z, and
z3 are different. For the particular choiee= 1 andz, = z; = el = zthe thin Polyakov loop is
then given by

N

P=2_
\i

>3 (A(‘>)N‘+zkz(AZ(”)N‘Hz(AZ@)N‘] : (2.12)

where the)\z(i) are the eigenvalues of the staggered Dirac operator for a given aguooindition
Z Similar expressions can be obtained for other differential operatdisedattice.

2.3 Dressed Polyakov loops

In order to obtain the spectral sum for the dressed Polyakov loopswesmthe Laplace operator
and apply a different strategy than used for the thin loops. First, wetectie covariant Laplace
operator on the lattice from Eqg. (2.3) in the following way

1 4 .
A== KH] L HOY) = 3 [Un00 8y +Unx— ) 8 iy (2.13)
u=1
where the hopping matrild collects all terms which connect nearest neighbors on the lattice and
the hopping parametex is related to the bare massvia k = (8+n?)~%. The inverse Laplace
operatorA~1(x,x) can be expressed as geometric series in terms of powers of
AY(x,x) = %K”lHj(x,x). (2.14)
J:

Since the hopping matrid contains only terms that connect nearest neighbors, the pét¥éxsx)

in (2.14) correspond to closed loops of lengtlagain dressed with the corresponding products of
the link variables. Thus we can organixe! in terms of loops and order these with respect to their
winding around time. We obtain (after taking the trace)

TrAt = STeA ™ xx) = 5 5 kT [ Uuly) (2.15)
X NeZ €% ()€l

where. %, is the set of loops that wind exactiytimes around the time direction atfid denotes

the length of a loog. It is important that now the sum on the right hand side contains loops
of arbitrary length, with all possible numbers of windings. To disentanglaliffierent winding
numbers we introduce U(1)-valued temporal boundary conditions fdcdptace operator which
are most conveniently implemented by the replacement

Us(RN) — € Us(RN) (2.16)

which corresponds to a parameterizatioa €% in (2.6). Each loop acquires a phase faaéF,
corresponding to its winding number

Tr(ng) = S S kT Uy(y) . 2.17
0 > > ¢ [T Yuy) (2.17)
nez le4 (y,p)el
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Integrating overp with a factor ofe %9 projects to winding numbeg and we end up with the
dressed Polyakov loop@ (which we normalize with/ = N3Ny),

1 /Tdo 1
pa@ = = —e""’qTr(Ad,)‘l = - k1 T, Uu(y). (2.18)
v Jan vig L

After the projection the loops still can be arbitrarily long but all have the samdimg numbe.
The individual loops are weighted with a factol ™2, where|l| is the length of the loop. This leads
to an exponential suppression of long loops and the rate of the suppréssletermined by the
value ofk. Nevertheless arbitrary long loops may contribute and the formula (2.18dssble
definition of dressed loops.

The final step to make the connection to spectral properties of the stddgieae operator is
to write the trace oveA ! as a spectral sum giving

L mdg g K 1

pa@ — = = =
Vi/on2m i=11-— K)\j(¢) v 1€,

K" Tre ] Uy, (2.19)
(Ysp)el

where)\j“’) is the j-th eigenvalue of the hopping matrk (2.13) for boundary condition angte.
The dressed Polyakov loop transforms in the same way as the thin Polyakovilous the dressed
Polyakov loops are proper order parameters for the breaking of titercgymmetry. They are
also not as singular as the thin Polyakov loops and thus are expectedeta hater continuum
limit with smaller renormalization effects. In an analogous way dressed Rnhyjakps can be
constructed also with the eigenvalues of the Dirac operator instead of piecksspectrum.

We stress that both equations (2.12) and (2.19) are exact results lith&hiadividual gauge
configurations. However, for a practical evaluation with numerically gerd gauge configura-
tions the two formulas have a different status. Equation (2.12) for the thjpslbolds to ma-
chine precision when the result of the spectral sum is compared to théaiedaation of the thin
Polyakov loop from the gluonic definition (2.1). The expression (2.18)He dressed loop on the
other hand contains an integral over a continuum of boundary conditibmat this integral can
indeed be approximated numerically in a sensible way will be demonstrated iexthsection.

| B | L’xN | alfm] | T[MeV] |
7.00 | 6 x 4,12 x4 | 0.3543) | 140
760 | 6 x 4,128 x4 | 0.1944) | 254
791 | 6%x4,128x4|01462) | 336
7.40 122 %6 0.234(2) 140
8.06 122 x 6 0.129(1) | 255
8.40 122 %6 0.0981) | 337

Table 1: Ensembles used in our simulations. For tRe<8! lattices 2000 configurations are available, for
128 x 4 and 12 x 6 we have used 20 configurations.
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3. Numerical analysis

3.1 Simulation details

For the numerical analysis of our spectral sums (2.12) and (2.19) wguesehedSU(3) gauge
configurations generated with the Luscher-Weisz action [7]. We worlattices with different
sizes ranging from®x 4 up to 12 x 6 at temperatures below and above the critical valugee
Table 1). For those we compute complete spectra of both the staggeredopaator and the
hopping matrixH of the Laplace operator for up to 16 different boundary condition. [atiee
spacing was set [8] with the Sommer parameget 0.5fm. All error bars we show are statistical
errors determined with single elimination jackknife.

3.2 Thin Polyakov loops

For the thin Polyakov loops we restrict ourselves to the three boundagitmmsz; = 1 and
L=12= é% =z which are used to derive the spectral sum (2.12). A different chomadv
change our results only marginally.

After computing all eigenvalues of the staggered Dirac operators we threl@ w.r.t. to their
absolute value and organize them in bins. For each bin we calculate a nomtleservables.
The first observable is the distribution of the eigenvalues, which we shdwigin3 for different
spatial and temporal extents of the lattice and for three different tempesatbiove, below and
approximately at the critical valu&. The l.h.s. set of those plots shows the distribution as a
function of the size of the eigenvalues in lattice units, while the r.h.s. plots aree Mne can
clearly see that the spectral density at the origin vanishes and chiral ggyrimeestored as one
increases the temperature above the critical value. The density of digesvaaches a maximum
after about three quarters of the eigenvalues and then quickly dropsa®tihe UV cutoff.

Fig. 3 is particularly important when one analyzes which part of the spaatantributes to
the spectral sum (2.12) for the thin Polyakov loop. For the interpretaticuai an analysis it is
necessary to take into account the global distribution of the eigenvalugdhiz is exactly what
Fig. 3 provides.

In the spectral sum (2.12) the thin Polyakov loop emerges through a &tfi&t eigenvalues as
the boundary condition is changed. It is interesting to analyze how straliffgyent eigenvalues
of the spectrum are shifted when the boundary condition is changedusiviity this question by
studying the averaged shift of the eigenvalues given by

S(A) = (1A =2 + A =Az[ + A= Az[) /3. (3.1)

Since above the phase transition the thin Polyakov loop obtains a finite vallesinvtine confined
phase it is approximately zero, the shift of the eigenvalues should clemngee increases the
temperature. This is exactly what we find in our results for the averagesshif presented in
Fig. 4). The individual data points are obtained by averaging over ahgajues in a bin and then
over all configurations in the ensemble.

It is obvious, that over the whole range of the spectrum the averagéssaifost zero below
the critical temperature. For high temperatures, however, we find large feln low-lying eigen-
values and little or no shift when the UV region is approached. The smatlagtiie UV end of
the spectrum disappears when finer and larger lattices are used.
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Figure 3: Distribution of the eigenvalues of the staggered Dirac afmerfor different lattices and different
temperatures. The |.h.s. plots are in lattice units, whiléh® r.h.s. we use MeV.

After understanding the global distribution of the eigenvalues and theirigitiier a change
of the boundary conditions, we can start to analyze the individual coitiits to the spectral sum
(2.12). This individual contribution is given by

N
oh) = G [N +2 A+ 202 (3.2)

Our results are shown in Fig. 5, where we plot the absolute value of thédoel contri-
butions after normalizing them with, i.e., we divide by the value of the thin Polyakov loop. It
is obvious that mainly the UV modes contribute to the thin Polyakov loop. Thisredusen is
essentially independent of the temperature and the size of the lattice. Thiadéng fivhich is not
a-priori obvious, given the fact that it is the IR modes that show the $agjefts in Fig. 4. On the
other hand, the large powk in the spectral sum (2.12) drastically enhances the contributions of
the UV eigenvalues.

Interesting are also the dips which form with increasing temperature at alsaufor N, = 4
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Figure 4. Average shift of the eigenvalues calculated as defined i(Ef) as a function oh. Again we
use lattice units in the I.h.s. set of plots and MeV on ther.h.

and at 08a and 19a for N; = 6. It can be shown that these dips are correlated with a change of the
direction of the shift of the eigenvalues fBrvalued boundary conditions relative to the eigenvalues
computed with periodic boundary conditions.

The plot in Fig. 5 shows that the individual contributions are biggest atitieend of the
spectrum. On the other hand, Fig. 3 shows that for the largest eigesvhkielensity shows a
sharp drop. Itis an interesting question which effect, size of contributosus density, wins out.
This question can be addressed by considering only partial sums 0).(2rLZig. 6, we show
such partial sums as a function of the cutoff, i.e., as a function of the tegeswvalue included in
(2.12). Again we divide by the Polyakov lodp such that when all eigenvalues are summed, i.e.,
at the largest value of in Fig. 6, the curve approaches 1.

For the 13 x 6 lattice, we find that for low and medium temperatures the partial sums over-
shoot by nearly a factor of two before they reach the correct valtledargest values of. Thus
the behavior of the partial sums is non-monotonic. On the other hand, fdrtemaeratures the
Polyakov loop should vanish. Thus the overshooting is not problematice $ire accumulated
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Figure 5: Contribution (3.2) of individual eigenvalues to the spakttum for the thin Polyakov loop given
by Eq. (2.12). As before we use lattice units in the |l.h.so§glots and MeV on the r.h.s.

contributions stay approximately zero over the whole range of the spectienalso find that the
thin Polyakov loop is recovered only after all UV modes are included in teetsgd sum. Again
we see the appearance of dips at exactly the same values which we leady édientified in Fig. 5.

So far we have only considered absolute values of quantities. Hoviiegd?plyakov loop and
also the spectral sums are complex numbers and we can analyze theienghase. In Fig. 7 we
plot the angleAg between the truncated sums and the resulting thin Polyakov loop as a function
of the cutoff used in the truncated sum. We show data for3ax12 and a 12 x 6 lattice, both
atT > T.. We find that on the former lattice the accumulated contributions start with thegwro
sign and recover the correct sign at the end. On the other lattice, altlstanting and ending with
the correct sign, there is an intermediate region in which the truncated ssithdnarong sign.
A comparison with lattices of different spatial size but the same temporaltaxtezals, that this
behavior depends only on the temporal extent.

A possible explanation for this phenomenon is the fact that the eigenvalokthe staggered
Dirac operator are purely imaginary. Tha4" is a real positive number, whil&*'*2 is real but

10
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Figure 6: Partial sums of the spectral formula (2.12), plotted as atfan of the cutoff.

negative. If we consider only the first term in the truncated sum we find:

P N N N
c(AY) = v ()\m) 47 ()\Z(l)) +z</\z<3>)
N O ~ 0, =0 N -
- 2—[0{4—2“&24—25{2*] e d=d 2—[0{+(Z*—|—z)or]
A A
2N .. | <ON=4n asa,d >0

S g — N , 3.3
V4[a al >0N=4n+2 asa,a<0 (3:3)

where we assume that the boundary conditions with pheesedz* lead to approximately the same
lowest eigenvaluér, which is larger in size than the eigenvalue at periodic boundary conditions
[9, 5]. Interestingly, this last relation between the relative sizes of theeddiges for non-trivial and
periodic boundary conditions seems to change in certain regions in thewpexf the staggered
Dirac operator, thus creating the observed sign change in the truneated §he points where
these sign changes occur depend only on the time extend of the lattice.

11
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are for a 12 x 4 lattice, while the lower plots are for 32 6.

3.3 Dressed Polyakov loops

For the thin Polyakov loops the numerical analysis of the last section deramssthat the
spectral sums for the thin loops are predominantly built up from the UV mddewever, as we
have already speculated above, part of the UV dominance might comettisingular nature
of the support of the thin loop. Thus it is interesting to perform the samedrspamalysis for
the dressed Polyakov loop. Such an analysis is planned for a futulieaiigdm. Here we focus
on the feasibility of computing the integral over the boundary angle in (2.t8)enically and
establish that the dressed Polyakov loop is indeed an order paramdter boeaking of the center
symmetry.

For the dressed Polyakov loops we compute complete spedttdarfl6 values of the bound-

ary angleg € [0, 7). The integrand in the spectral sum (2.19) is given by (omitting the normaliza-
tion and the phase expi¢Qq))

1y K
S(¢) = v lel—K)\J(d’) (3.4)

IntegratingS(¢ ) over ¢ with the phase exp-i¢q) projects to the loops with winding number
The important technical question is how smooth a functiog diis integrand is.

Fig. 8 shows the integrarf®(¢ ) averaged over 20 configurations abdyevith real Polyakov
loops (I.h.s. plots) and 20 configurations with complex Polyakov loops (r.hThg individual
curves are for different values of the mass paramatierthe vicinity of the critical mase, where
the Laplace operator ceases to be invertible. In the bottom plots a constaetitracted.

12
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Figure 8: The spectral sun$(¢) for the Laplace operator as a function ¢f The Lh.s. plots are from
an average over 20 configurations with real Polyakov loog ri.s. plots are for 20 configurations with a
Polyakov loop with phase  exp(i2r1/3). In the top plots the full sun$(¢) is shown, while in the bottom
plots the constart= [d¢ S (¢) was subtracted.

The plots show a clear cosine behavior for the ensemble with real Polyados (1.h.s.) and a
shifted cosine for the complex ensemble (r.h.s.). For low-lying modes a simpandence on the
phase at the boundary was observed in [10]. It is obvious that diyithie intervallO, 77) into 16
sub-intervals should be sufficient for a reliable numerical estimate of ttmegral in the case of
g =1, where the phase factor is simggsp —ising. This is the most interesting case of dressed
Polyakov loops with a single winding.

Fig. 8 establishes that a numerical integration gver feasible. We implement this integration
for the case ofj = 1 using Simpson’s rule. The resulting dressed Polyakov Riéptransforms
under center transformations in the same way as the thin Polyakowldefined in (2.1). Thus it
should be an order parameter for breaking of center symmetry, butvenesgpects that it shows
a similar behavior as shown in Fig. 1 for the thin loop. In order to test thisatapen we use 20
configurations below; and 20 abovd,. The latter all have a Polyakov loop which is essentially
real, i.e., configurations in the right leg of the distribution shown inrthes. plot of Fig. 1. On
these two sets of configurations we compare the thin loop with the dressedtlbmp different
values ofk. The corresponding results in the complex plane are shown in Fig. 9.

The plot shows clearly that foF < T; both, the thin and the dressed Polyakov loops cluster
around the origin, while abovg. they develop a non-vanishing value near the positive real axis.
Even the pattern in the distribution of the data points is similar for thin and dréssesl

13



Thin and dressed Polyakov loops

thin Polyakov loop
T T T

T<T,
T>T,

0.5

0.0 M

Im[P]

-0.5F

-1.0 1 1 |

-1.0 -0.5 0.0 0.5
Re[P]

Im[P]

dressed P

1.0

Q.51

Q.0

—05}+

-1.0

-1.0

olyakov loop, k = 0.112
T T

T
T>

< T,

Rw® o
& ° oW

I
-0.5 0.0

0.5 1.0
Re[P]

Im[P]

dressed P

200

100

o
T

100

—200

—200

olyakov loop, ¥ = 0.139
T T

T<T,
T>T,

%038
ke ]
§g, “H®

—-100 Q

100 200

Re[P]

Figure 9: Scatter plots of thin (I.h.s. plot) and unscaled dressegdRol loops (center and |.h.s. plots)
below (blue symbols) and aboWe (red symbols) for 20 configurations on a3126 lattice.

The analysis of Fig. 9 shows that the dressed Polyakov loop (2.19) imblsworder parameter
for the breaking of center symmetry. It is less singular and is expectediéoaharoper continuum
limit. We are currently analyzing the volume and temperature dependencedregsed loops and
will then return to studying which part of the spectrum predominantly cortggoto the spectral
sum for the dressed loops (2.19).
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