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We compare the predictions of the Nambu-Goto effective string model with a set of high precision

Monte Carlo results for interfaces with periodic boundary conditions in the 3D Ising model. We

compute the free energy in the covariant gauge exactly, up to the inclusion of the Liouville mode.

The perturbative expansion of this result agrees both with the result evaluated several years ago by

Dietz and Filk in the physical gauge and with a recent calculation with the Polchinski-Strominger

action. We also derive the effective string spectrum which, because of the different boundary

conditions, is very different from the well known one of Arvis. Taking into proper account the

effective string corrections and exploiting some technical improvements in the simulations we

obtain precise estimate of the amplitude ratiosTc√
σ

, m0++√
σ

andσξ 2
2nd. We also discuss the behaviour

of the effective string free energy in the dimensional reduction limit (i.e., near the deconfinement

transition of the dual 3d gauge Ising model) and its relationship with the 2d Ising model interfaces
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1. Introduction

The properties of interfaces in three-dimensional statistical systems have been a long-standing
subject of research. In particular the interest of people working in the subject has been attracted
by the so called “fluid” interfaces whose dynamics is dominated by massless excitations (for a
review see for instance [1]). For this class of interfaces, thanks to the presence of long range
massless modes, microscopic details such as the lattice structure of the spin model or the chemical
composition of the components of the binary mixture become irrelevant and the physics can be
rather accurately described by field theoretic methods.

A simple realization of these fluid interfaces is represented by 3d spin models. These models
in the low temperature phase in which their global symmetry is broken admit different vacua which,
for a suitable choice of the boundary conditions, can occupy macroscopic regions and are separated
by domain walls which behave as interfaces. For temperatures between the roughening and the
critical one, interfaces are dominated by long wavelength fluctuations (i.e. they exactly behave as
fluid interfaces).

An effective model widely used to describe a rough interface is thecapillary wave model
(CWM) [2, 3]. Actually this model (which was proposed well before the Nambu-Goto papers [4, 5])
exactly coincides with the Nambu-Goto one, since it assumes an effective Hamiltonian proportional
to the variation of the surface’s area with respect to the classical solution.

Among the various realizations of fluid interfaces, a prominent role has been played in these
last years by the 3d Ising model, for several reasons. The universality class of the Ising model
includes many physical systems, ranging from binary mixtures to amphiphilic membranes. It also
shares the universality class with theφ4 theory; this allows a QFT approach to the description of
the interface physics. Last but not least, the Ising model, due to its intrinsic simplicity, allows fast
and high statistics Monte Carlo simulations, so that very precise comparisons can be made between
theoretical predictions and numerical results.

Another important reason of interest of interfaces in the 3d Ising model is that, thanks to the
duality relation with the 3d gauge Ising model, they are deeply related with Wilson loop observ-
ables. This is the ultimate reason for the validity of the Nambu-Goto effective string model for
interfaces. Indeed this mapping allows to create a dictionary between Lattice Gauge Theory (LGT)
observables and interface ones and makes the results obtained in the context of interface physics
immediately relevant also for LGT studies. In this respect, it is important to stress that by working
directly in the 3d Ising model one has a larger freedom in the choice of the boundary conditions. In
this work we shall exploit this freedom and address interfaces with periodic boundary conditions.
This choice is particularly useful if one wants to address subtle finite size corrections (as one has to
do in order to test the Nambu-Goto effective string picture) since the periodic b.c. allow to elimi-
nate any source of boundary corrections in the results, thus leading to a very clean and artefact-free
comparison between theory and simulations.

The aim of this contribution is to summarize a set of results recently obtained in this context
by our group [6, 7, 8, 9]. In particular we shall discuss the following items:

1] Explicit evaluation of the Nambu-Goto partition function (neglecting the anomaly) for inter-
faces [6].
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2] A collection of numerical results from a set of high precision Montecarlo simulations [7, 8]

3] The 2d limit of 3d interfaces [9].

2. The partition function of interfaces from the Nambu-Goto effective string

The Nambu-Goto bosonic string is defined by an action proportional, via the string tensionσ ,
to the induced area of a surface embedded in ad-dimensional target space:

S= σ

∫
d2

ξ
√

detg , gαβ =
∂Xi

∂ξ α

∂X j

∂ξ β
Gi j , (2.1)

where the proper coordinatesξ α parametrize the world sheet whileXi(ξ ) (M = 0, . . . ,d) describes
the target space position of a point specified byξ . We shall assume in the following that the target
space metricGi j is the flat one and neglect it.

The standard approach to evaluate the partition function is to fix the re-parametrizations of the
action by fixing the so-called “physical” gauge in which the proper coordinates are identified with
two of the target space coordinates, sayX0 andX1. The quantum version of the NG theory can
then be defined through the functional integration over thed−2 transverse d.o.f.~X(X0,X1) of the
gauge-fixed action. The partition function for a surfaceΣ with prescribed boundary conditions is
given by

ZΣ =
∫

(∂Σ)
DXi exp

{
−σ

∫
Σ

dX0dX1
(

1+(∂0~X)2 +(∂1~X)2 +(∂0~X∧∂1~X)2
) 1

2

}
=

∫
(∂Σ)

DXi exp

{
−σ

∫
Σ

dX0dX1
[
1+

1
2
(∂0~X)2 +

1
2
(∂1~X)2 + interactions

]}
.

(2.2)

Expanding the square root as in the second line above, the classical area law exp(−σA )
(whereA is the area of the minimal surfaceΣ) is singled out. It multiplies the quantum fluctua-
tions of the fields~X, which have a series of higher order (derivative) interactions. The functional
integration can be performed perturbatively (since we are studying an effective model we can ne-
glect the fact that the theory is actually non-renormalizable), the loop expansion parameter being
1/(σA ), and it depends on the boundary conditions imposed on the fields~X, i.e., on the topology
of the boundary∂Σ and hence ofΣ. The cases in whichΣ is a disk, a cylinder or a torus are the ones
relevant for an effective string description of, respectively, Wilson loops, Polyakov loop correlators
and interfaces in a compact target space. The computation was carried out up to two loops in [10].

The main problem of this approach is that the physical gauge is anomalous ind 6= 26 dimen-
sions. However it can be shown [11] that the anomaly decreases asR−3, whereR is the typical
scale of the boundary ofΣ and thus it could be possible that it does not affect the first two terms in
the loop expansion.

In [6] we proposed an alternative treatment of the NG model which takes advantage of the first
order formulation, in which the action is simply

S= σ

∫
dξ

0
∫ 2π

0
dξ

1hαβ
∂αXi

∂β Xi , (2.3)
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wherehαβ is an independent world-sheet metric,ξ 1 ∈ [0,2π] parametrizes the spatial extension
of the string andξ 0 its proper time evolution. Integrating outh, we retrieve the NG action eq.
(2.1). For each topology of the world-sheet, classified simply by its genusg, we can instead use
re-parametrization and Weyl invariance to put the metric in a reference form eφ ĥαβ (conformal
gauge fixing). For instance, on the sphere, i.e. at genusg = 0, we can choosêhαβ = ηαβ , while on
the torus, at genusg = 1, ĥαβ is constant, but still depends on a single complex parameterτ, the
modulus of the torus. The scale factor eφ decouples at the classical level and the action takes then
the form

S= σ

∫
dξ

0
∫ 2π

0
dξ

1 ĥαβ
∂αXi

∂β Xi +Sgh. , (2.4)

whereSgh. in eq. (2.3) is the action for the ghost and anti-ghost fields (traditionally calledc and
b) that arise from the Jacobian to fix the conformal gauge; we do not really need here its explicit
expression, the only important thing to know is that they correspond to a CFT of central charge
cgh. =−26. The fieldsXi(τ,σ), with i = 1, . . . ,d, describe the embedding of the string world-sheet
in the target space and form the simple, well-known two-dimensional CFT ofd free bosons. This
allows to evaluate exactly the sum over all possible surfaces for any value ofd. In the particular
case of the toroidal geometry (interfaces) in which we are interested one finds (see [6] for the
details):

I (d) = 2
(

σ

2π

) d−2
2

VT

√
σA u

∞

∑
k,k′=0

ckck′

(
E
u

) d−1
2

Kd−1
2

(σA E) , (2.5)

whereA ≡ L1L2 denotes the minimal area of the interface,u≡ L2
L1

is the ratio between the two
lattice sizes of the plane in which the interface lies (Li denotes the lattice sizes in theith direction),
VT = ∏d

i=3Li is the transverse volume,ck is thekth coefficient in the expansion of the Dedekind
function:

[η(q)]2−d =
∞

∑
k=0

ckq
k− d−2

24 , (2.6)

Kd−1
2

is the modified Bessel function of orderd−1
2 and

E =

√
1+

4π u
σA

(k+k′− d−2
12

)+
4π2u2n2

1

(σA )2 . (2.7)

denotes the spectrum of the NG string for this particular type of geometry.

It is important to stress that also in this case ford 6= 26 we must expect deviations from this
result. In fact the decoupling of the scale factor eφ persists at the quantum level only if the anomaly
parametrized by the total central chargec = d−26 vanishes; Weyl invariance is otherwise broken
and the modeφ has to be thought of as a field with a Liouville-type action.

Notwithstanding this there are a few non-trivial results of this analysis which are not affected
by the anomaly and deserve further attention:

• Eq.(2.5) gives an explicit prediction for the functional dependence onσ ,A ,u andVT of the
prefactor in the interface free energy which (as we shall see in the next section) nicely agrees
with the results of the MC simulations.
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Figure 1: Fig.1a: Comparison of the 2-loop prediction, the full Nambu-Goto result with the data for square
interfaces atβ = 0.223102 andβ = 0.226102. Fig.1b: F(2)

s − σL1L2 as a function of
√

σL1 for β =
0.223102,L3 = 96 andL2 = 64. Note that in the case of the Monte Carlo results the statistical error is
smaller than the symbol (circle). The 1-loop, 2-loop and full NG predictions are given as solid black, red
and blue lines, respectively.

• The spectrum reported in eq.(2.7) is different from the one obtained by Arvis in [12] for the
Wilson loop geometry and agrees with an independent calculation mentioned in [13].

• Eq.(2.5) in thed = 3 case allows a smooth dimensional reduction limit and suggest an ex-
pression for the 2d interface which agrees with an exact 2d calculation.

• Expanding eq.(2.5) in powers of 1/(σA ) we reobtain at the first two orders the same con-
tributions obtained in [10] with the physical gauge. This is probably the most interesting
result since it supports the idea that not only the first term in the expansion (the so called
"Lüscher term" [14]) but also the next to leading order could be anomaly free and universal.
This conjecture is further supported by the recent observation [15, 16] that the same term
also appears in the expansion of the Polchinski-Strominger action [17] which is essentially a
non-local, but anomaly free, version of the N-G action.

3. Monte Carlo simulations of interfaces in the three-dimensional Ising model

In order to test the above results it is mandatory to have very precise estimates of the interface

5
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free energy for different values ofL1 andL2. In [7] and [8] we obtained these estimates using two
different approaches. In [7] we used the "boundary flip” algorithm [18] which is particularly suited
for interfaces of small or intermediate size while in [8] we obtained the interface free energy by
a direct integration of the differencesEa−Ep over β (whereEa denotes the internal energy for
antiperiodic boundary conditions, and hence in presence of an odd number of interfaces, whileEp

denotes the internal energy with periodic b.c.). This second method is much more cumbersome
from a computational point of view, but it is mandatory if one is interested in large values of the
interface free energy. We refer to the original papers for all the details on the algorithms and on the
simulation settings and only list here the main results.

• As it was already observed in the case of Wilson loop [19] and of Polyakov loop correla-
tors [20], we found a very good agreement for large values ofRand a sizeable disagreement
asR decreases (see fig.1a). This deviation (due to the peculiar geometry of the interface
observable) cannot be due to boundary corrections and is thus an intrinsic feature of the
effective string description. In the case of square interfaces (i.e.L1 = L2 ≡ R) the NG ef-
fective string picture breaks down for values ofR smaller thanR∼ 2.5/

√
σ (see fig.1a). It

is important to notice that for square interfaces we see essentially no difference between the
prediction obtained using eq.(2.5) (black line in fig.1a) and the two loop approximation (red
line in fig.1a).

• In order to disentangle between the two predictions one must study asymmetric interfaces
because higher orders in eq.(2.5) become more and more relevant asu = L2/L1 increases.
This is evident in fig.1b where the two curves are well separated. Looking at fig.1b we
see that the MC data show a much better agreement with the two loop approximation than
with eq.(2.5). This deviation from the behaviour of eq.(2.5 may simply denote a breaking
of the effective string picture in this asymmetric limit. However it is also possible (and the
persistent agreement with the two loop approximation could support this interpretation) that
the effective string picture still holds but the corrections due to the anomaly (or equivalently,
in the covariant gauge framework, to the Liouville field) which affect the calculation of
eq.(2.5) cannot be neglected.

• Last, but not least, thanks to the improvement in the estimate of the interface string tension
σ we could obtain new predictions for a few amplitude ratios which are more precise than
any other existing estimate in the literature:

Tc√
σ

= 1.235(2)

m0++√
σ

= 3.037(16)

R− ≡ σξ
2
2nd = 0.1024(5)
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4. Universal behaviour of interfaces in 2d and dimensional reduction of
Nambu-Goto string

It is interesting to study theu→ ∞ (i.e. L1 << L2) limit of the eq.(2.5) for d = 3. This
corresponds to perform a dimensional reduction fromd = 3 to d = 2 and allows us to obtain an
effective description for bidimensional interfaces. The result is [9]:

Z =
(

2
π

) 1
2

L3meffK1(meffL2) , meff = σL1

√
1− π

3σL2
1

(4.1)

Eq.(4.1) is most probably an exact result for any 2d spin model and not just an effective approxi-
mation. Indeed it agrees with an exact calculation in the 2d Ising model. Moreover it arises from
a simple universal model for 2d interfaces, based on the first order treatment of an action given by
the length of the interface.
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