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Several analytic approaches predict&#(N;) Yang-Mills theories in Landau gauge an enhanced
ghost propagato®(p?) and a suppressed gluon propagddp?) at small momenta. This pre-
diction applies to two, three and four space-time dimerssidhoreover, the gluon propagator is
predicted to be null ap = 0. Numerical studies by several groups indeed support aaneeial
ghost propagator when compared to the tree-level behayjwrdnd a finite infrared gluon prop-
agator. However, the agreement between analytic and noahstudies is only at the qualitative
level in three and in four dimensions. In particular, theanéd exponent of the ghost propagator
seems to be smaller than the one predicted analytically leadltion propagator seems to dis-
play a (finite) nonzero value at zero momentum. It has beemegrthat this discrepancy might
go away once simulations are done on much larger lattices iz the ones used up to now.
Here we present data in three and four space-time dimens&ng huge lattices in the scaling
region, i.e. up to 32%at 8 = 3.0 and up to 128at 3 = 2.2, corresponding t¥ ~ (85fm)3 and

V ~ (27fm)*. Simulations have been done on the IBM supercomputer at ttieetsity of S&o
Paulo.
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1. Introduction

In the Gribov-Zwanziger confinement scenario for Landawegd, 2] the gluon propagator
D(p?) is predicted to be infrared (IR) suppressed at small momém{aarticular, one should have
D(0) = 0, implying that reflection positivity is maximally violade This violation of reflection
positivity may be viewed as an indication of gluon confinetri8h At the same time, the Gribov-
Zwanziger [1, 4] and Kugo-Ojima [5] confinement scenariosdmt (in Landau gauge) a ghost
propagatoiG(p?) enhanced in the IR limit. This represents a long-range effled could be related
to quark confinement [1, 3, 4, 6].

Several analytic studies [7, 8, 9, 10] agree with the aboeeatos predicting, for small mo-
menta, a gluon propagat@¥(p?) 0 p?® -1 and a ghost propagat@(p?) 0 1/p?1+3), with the
relationap = 2ag + (4 —d)/2. Hered is the space-time dimension. Clearly,aif > 1 one has
D(0) = 0. In the four-dimensional case, one finds [8a8]~ 0.59 andap = 2as. Similar power
behaviors have also been obtained for the various vertetims of SU(N;) Yang-Mills theories
[9, 11, 12].

These results have been confirmed at the quantitative leveeitwo-dimensional case, using
lattices up to almost43fm)? [13]. In the three-dimensional case [14], one clearly seetRa
suppressed gluon propagator. However, using lattice veduap to about24fm)3, it was not
possible to control the extrapolation to infinite volume. particular, the data for the rescaled
gluon propagator at zero momentud0) could be fitted [as a function of the inverse lattice side
1/L = 1/(Na)] using the Ansatd + b/L® both withd = 0 and withd # 0 [14]. Herea is the
lattice spacing andll is the number of lattice points per direction. Finally, infaimensions, the
gluon propagator is clearly less divergent than in the kegel case [15, 16, 17, 18]. On the other
hand, even using lattices with a lattice side of about 10fnge does not see a gluon propagator
decreasing at small momenta [18]. One should stress, howteae the Landau gluon propagator
clearly violates reflection positivity, in two, three andufospace-time dimensions [13, 19, 20].
For the ghost propagator, the IR exponagtobtained using analytic studies has been confirmed
in 2d [13], while in the 3d [21] and in the 4d [16, 17, 22, 23] eashe exponent obtained using
lattice numerical simulations is always smaller than the predicted analytically. Let us also
recall that, in Ref. [24], it was shown that gluon and ghosippgator folISU(2) andSU(3) Yang-
Mills theories are in very good agreement from momentpne 1 GeV to aboutp ~ 10 GeV.
Similar results have been presented in [25]. These findinggest that the IR behavior of these
propagators is independent of the gauge gr8UpN.), as predicted analytically [7, 8, 9].

Finally, by solving Dyson-Schwinger equations on a finiterfdimensional torus [12, 26, 27]
one can show that the gluon propagator (at small momenta)sse® diverge for volumes up to
about (8fm)?, develops a plateau for ~ (9fm)* and is IR suppressed for a lattice side larger
than 10fm. Also, the extrapolation of these results to itdimblume gives a null gluon propagator
at zero momentum. At the same time, one obtains that, afteingting (for each volume) the
data corresponding to the first two non-zero momenta, thaetghropagator shows a power-law
behavior and, in the infinite volume-limit, one obtains tlRedxponentag predicted by analytic
studies [7, 8, 9].

From the above results, it seems necessary to extend pras@erical simulations to very
large lattice volumes in order to verify if the agreementaitd between lattice data and analytic
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results for the two-dimensional case [13] applies to ther8ti4d cases as well. Here we present
extensive simulations in three and in four dimensions, lierfSU(2) case, using huge lattices. In
particular, we considered lattice sidds= 140, 200, 240 and 320 in 3d At= 3.0 andN = 48, 56,
64, 80, 96 and 128 in 4d & = 2.2. In 3d, the number of configurations was about 630, 525, 350
and 45, respectively for the four lattice sizes, both forghen and for the ghost propagators. In
the 4d case we have considered for the gluon propagator 1gemtions folV = 128" and about
250 configurations for the other lattice sizes. For the ghogpagator we have 21 configurations
for the largest volume and about 100 in the other cases. Edntersion of the Faddeev-Popov
matrix we used the so-callgabint-sourcemethod [21, 23]. Note that the lattice volumes 320
B = 3.0 and 128 at B = 2.2 correspond, respectively, ¥~ (85fm)3 andV ~ (27fm)*. (See
Refs. [14, 28] for details about how the physical latticecépga has been set in the two cases.)
Also note that all our runs are in the scaling region.

These simulations have been done in the IBM supercomputd&Bt This machine has 112
blades with 2 dual-core PowerPC 970 2.5GHz CPU’s, a Myrimttvark and about 4.5 Tflops
peak-performance (occupying position number 363 inftBE500 list of November 2006).

2. Results

Considering the new data produced in the 3d case togethermWitdata from Refs. [14, 19],
we tried an extrapolation to infinite volume for the gluon geigatorD(0) as a function of the
inverse lattice side /L. The data for the propagator have been renormalized foligWRef. [13].
Results are shown in Fig. 1. It is clear from the plot thatehisrno sign of a propagator going
to zero ad. goes to infinity. Moreover, the data show a behavior of the §(0) ~ 1/L and an
infinite-volume extrapolation given b9 (0) ~ 2 GeV~2. This impliesap = 1.

In the 4d case (see Fig. 2), even considering very largedattblumes and relatively large
statistics, one cannot see a clear sign of a gluon propa@dio?) decreasing at small momenta.
Similar results have been presented at this conferencehgy gtoups [25, 29]. Clearly, also in
this case the data suggest = 1. On the other hand, violation of reflection positivity imfiomed
and the gluon propagator, considered as a function of theabpaparatiors, becomes negative at
s~ 1fm, in agreement with Ref. [30].

We have also tried to estimate the IR expornaffor the ghost propagator (in the 3d and 4d
cases) using the Ansa® p) = ¢/p?1*+2) and considering, for each lattice volume, either the two
smallest nonzero momenta or the third and fourth smallester@ momenta. Results are reported
in Tables 1. As one can see, this IR exponent seems to go tocazettee infinite-volume limit
is approached, in agreement with [16]. One should howevacenthat, forp ~ 500 MeV, the
exponentyg is about 0.3, also in agreement with Ref. [16].

3. Conclusions

The above results leave us with several open questions. frenattice point of view, one
should of course investigate if Gribov-copy effects andifoite-volume effects could explain our
results. Let us recall that an improved gauge-fixing metl3dd $§eems capable of reducing finite-
volume effects for the gluon propagator by enlarging theosatlowed gauge transformations. At
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Figure 1. Renormalized gluon propagator at zero momenfaiD(0) (in GeV?) as a function of the
inverse lattice side AL (in GeV) and extrapolation to infinite volume. The fit is giveyp b+ ¢/L® with
e = 1.04(5) andb = 2.05(5) GeV2.
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Figure 2: Unrenormalized gluon propagatatD(p?) (in GeV2) as a function of the momentupya (in
GeV) for lattice volume¥ = 80* (left) andV = 128" (right) at = 2.2.
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N3 aG N4 ag N3 ag N4 ag
140° 0.073(4) 48 0.093(7) 148 0.13(2) 48  0.19(4)
20  0.051(3) 56 0.063(6) 208 0.06(2) 56 0.18(4)
246 0.003(3) 64 0.049(9) 248 0.10(2) 64 0.17(4)
320 -0.021(9) 89 0.052(5) 328 0.01(5) 8¢ 0.15(2)
112" 0.038(6) 112 0.10(7)
128" 0.016(5) 128 0.06(3)

Table 1: Table for the ghost propagator IR exponeat in the 3d and 4d cases, obtained using either the
two smallest nonzero momenta (left) or the third and fountialéest nonzero momenta (right).

the same time, one needs to reconcile the above resultsheition-renormalizability of the ghost-
gluon vertex [32] and with the suppressionfp?) when considering simulations in the strong-
coupling regime [33], in the interpolating gauge ¢omgauge) [34] and in Coulomb gauge [35].
From the analytic point of view, it may seem necessary tonsicer partially the conventional
confinement scenarios [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12udsed in the Introduction. One
should of course recall that there are different solutidnSyson-Schwinger equations for gluons
and ghosts in Landau gauge [36, 37]. In particular, the tesaitained in Ref. [36] support a
finite non-zero gluon propagator and an essentially treeklghost propagator at small momenta.
Similar results are obtained in Ref. [38]. Phenomenolddests [39] also seem to favax(0) > 0.

We believe that a clarification of the present status of thgdk@jima/Gribov-Zwanziger sce-
nario will probably require new ideas and new methods, botrahalytic and numerical studies,
and that a key point will be a better understanding of the gantgrpolating between the Landau
and the Coulomb gauge [40].
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