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1. Introduction

Color confinement is not yet fully understood from QCD firghpiples but lattice simulations
have anyway provided evidence for a deconfining transitading place where other important
phenomena happen, like chiral symmetry restoration.

In this paper we study how deconfinement at finite chemicadri@t u compares to what
happens ati = 0 and how it is related to the restoration of the chiral synmnietthe QCD phase
diagram: this interplay could help clarifying the very natof confinement. The topic has already
been studied in previous literature: in particular prefiary results about deconfinement at high
densities and low temperatures have been obtained in Redr{hanalysis in the largh; limit has
been performed in Ref. [2], while the relationship amongahial transition, confinement, and
other observables such as the topological charge susiigptilas been investigated in Ref. [3].

However previous studies have mainly used the expectatibureof the Polyakov loop to de-
tect the deconfinement transition, a parameter not suifabtbe theory with dynamical fermions,
where the center symmetry to which it is related is alreapylieixely broken. For that reason in
the present study we look for different order parametersddfin a specific model of confinement
but valid also in full QCD.

The framework is that of the dual superconducting model @ QICD vacuum [4, 5, 6], where
confinement is associated to the breaking of an abelian guaingtry and to the condensation
of magnetic charges. In this context we may use the disordeampeter(.#)'developed by the
Pisa group [7, 8], which consists in the expectation valuarobperator that creates a magnetic
monopole.(.#) has been shown to be a good probe for color confinement botirengauge [9,
10] and in full QCD [11, 12]: by means of this parameter we asig to look to the confining
properties of the various phases in the QCD phase diagram.

Since the sign problem makes a numerical study of finite e@CD very difficult, here we
restrict ourselves to QCD with two colors, where such a gl missing because the determinant
of the fermionic matrix is real. In principle no significariffdrences are expected.

We have simulated 8 flavours of staggered fermions of mgss 0.07 using an exact HMC
algorithm. We have usdd; x L; lattices withL; = 6 andLs = 8,12, 16.

A full account of our results has been published in [13].

2. The disorder parameter(.#)

The magnetically charged operata# (X,t) creates a magnetic monopolexit by shifting the
field by the classical vector potential of a monopcﬁi@(x —V), and can be written [8] ag7 (X,t) =
exp[}afd?’x E. (V,t)b, (y—%)|, where the electric fiel&, (¥,t) is the momentum conjugate to the
quantum vector potential. Its expectation value, detgddiumal superconductivity, can be expressed
on the lattice ag.#) = Z/Z, whereZ is the normal QCD partition function, whilé is obtained
from Z by a change in the pure gauge act®&n— S: a monopole field is added to the temporal
plaguettes at the monopole creation timeslice.

Iwe change the usual notation for the disorder operétor, in order to avoid confusion with the notation for the
chemical potential.
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The numerical study of a ratio of two different partition @ions such as #) is very difficult:
that is why we will rather study susceptibilities of the dider parameter, from which the behaviour
of () at the phase transition can be inferred.

For instance, if we are interested(in7) (8), as when studying the = 0 phase transition, we
look to [7, 8, 9]

7} Jd, ~ 0 ~

— | =—InZ——1InZ= —(Ss& 2.1
aB n<%> aB n aB n <S>S <S>S ( )
where the action used for Monte Carlo sampling is indicatethb subscript.

At finite temperature and density we are interested inste#uki behaviour of.#) at fixed3,
i.e. fixed temperaturéand variablgll = au. For that reason we look at

p:

oo =2 In{.) = ‘9;—”;—‘9;—”; — (No)s— (No)s (2.2)
whereNy is the quark number operatdiNg) = ( Tr %’:4 -M~1)} ), andM is the fermion matrix

The disorder parameter can be recovered as the integral Of {&th the initial condition
() =1 atB = 0: in particular{.#') abruptly falls at the phase transitiongfhas here a sharp
negative peak anfl#) is exactly zero beyond the deconfining phase transitioreiptak diverges
in the thermodynamical limit. A similar behavior is expeattfer pp if a deconfining transition is
met atu # O starting from a point in the confined phaseuat O.

The two susceptibilitiep andpp do not only locate the position of the critical superconahgrt
transition line, but also may be used to detect its tangeatualy in the3 — [1 plane the gradient
i(//l> = (%, %) = (p, pp){(A), is orthogonal to the critical line, whose slope is then
equal to—pp/p.

3. Numerical results

3.1 The deconfining transition at zero chemical potential

We will first check the coincidence of the deconfining andaHireaking transitions at = 0.
In Fig. 1 [left] we show the peaks of;, the disconnected part of the chiral susceptibiliy, the
Polyakov loop susceptibility, anglp, the plaguette susceptibility. Our estimate for the |aoati
of the transition (from a fit to the chiral susceptibility) is = 1.582(2), to be compared to those
obtained by fitting the Polyakov loop susceptibilify (= 1.587(4)) and the plaquette susceptibility
(Bpr = 1.5755)). p (Fig. 1 [right]) displays a peak at the same coupling, heneean state that at
¢ = 0 deconfinement and the chiral restoration coincide.

3.2 The deconfining transition at non zero chemical potentia

At fixed B we look to the behaviour of.#) as a function ofii by means ofop. We have
considered only values @ below ([ = 0), in particular = 1.50 andB = 1.55: in this case we

2We remind thap is related to the temperature via= 1/(Lta(8)) whereL, is the lattice temporal extension.
3An additional factor 2 is actually needed for our case withe§jgered flavors.
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Figure 1: Plaquette, Polyakov and chiral susceptibilities on th&x16 lattice (normalized data) [left]p
parameter [right].

know that(.#') # 0 atl = 0 and we expect to meet a phase transition because the (psetickd
temperature lowers with increasing chemical potentiak Blwest value off (8) examined, from

a rough two-loop estimate of thfe-function, corresponds t6/T;(u = 0) ~ a(8 = 1.582)/a(B =
1.5) ~ 0.4. In Fig. 2 [left] we show the chiral susceptibility on a®166 lattice atf = 1.55 and

B = 1.50. A fit locates the peak positions, that is the (pseud@atifi corresponding to chiral
restoration; we obtaific(8 = 1.50) = 0.340(10) and (8 = 1.55) = 0.215(10). In Fig. 2 [right]
we show insteaghp as a function ofii at the same values @ and on various lattice sizes. For
small chemical potentialgp is independent of the lattice size and practically vanighimhile at
the chiral transition it has a sharp negative peak deepedeeper as the spatial size is increased.
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Figure 2: Chiral susceptibility peaks [left] vep peaks [right] at differenf’s. Vertical bands correspond to
the L derived from the chiral susceptibility.

3.3 The transition line

Having collected different locations of the deconfinemeshiir@l transition) line, we can fit
the dependencg.(u) in the wholef — [i plane. With a quadratic fi.(f{1) = A+ B2, we get
A = 1582816), B= —0.071(4) and x?/d.o.f. = 0.26. The good value of?/d.o.f. tells that a
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parabolic behavior fits well the critical line down To/T; ~ 0.4; indeed a quartic termi* has a
coefficient compatible with zero. The estimated locatiothef (pseudo)critical points is shown in
Fig. 3 together with the fitted transition line.
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Figure 3: Chiral transition line (red) vs superconducting transitime (green) with error ranges [left]
extracted from data of table [right].

The ratio—pp/p at the transition point has been used as an evaluator ofdpe ef the critical
line (see Fig. 4), as claimed in Section 2: a good agreemehttheé slope of the fitted transition
line in theB — [I plane can be appreciated.

— \§ \ \ -~
= J
[} § 2 o p 1.58
-100F ¢ ; e Pp B 156
-2001- ¢ % % % + ¢ E 154

w

o

o

T

—e—
—e—
—a—
|
o
wn
[

T [T T T[T T [ TT T[T T T [TTT[TT

g o

600, oy 1 1T

ol
=]
=1
|
=]
s
=]
.
[
e
L
o
¥
[
=]
w|
=]
w|
o
o)
B

Figure 4: p andpp at8 = 1.5 on a 16x 6 lattice [left]. From this we compute pp/p and draw the tangent
on the transition line [right]. A nice agreement (within cstandard deviation) can be appreciated

We can therefore draw two important conclusions from ouultes dual superconductivity
(confinement) disappears in presence of a critical den§ibaryonic matter; moreover the criti-
cal line in theT — u plane corresponding to deconfinement coincides, at ledsinaour present
uncertainties, with the chiral transition line.
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3.4 A few remarks on saturation

Due to the Pauli exclusion principle, we cannot place moaa thne fermion with given quan-
tum numbers per lattice site: when this limit is saturatethfen propagation gets quenched and the
theory becomes equivalent to a pure gauge theory. Saturiatiben an unphysical lattice artifact
which may invalidate numerical results, and we need to bg e@reful in locating its onset.

We have looked to saturation effectsfat= 1.55. In Fig. 5 [left] we show the behaviour of
some observables as a functionfofip to i = 1.6. For [ slightly abovefl, the fermion density rises
roughly with a cubic dependence in the chemical potentsagxpected for a gas of free fermions,
but then it saturates, departing from the cubic behavimmfi ~ 0.6 — 0.8 on. Also the Polyakov
loop stops rising at a similar value af and then drops down; in the same region the plaquette falls
to its quenched value. The full saturation is reachedifer 1.4 — 1.6.

The susceptibilities of the disorder parameter (Fig. Sfifigdisplay a positive unphysical peak
at 1 ~ 0.7 following the negative peak @t~ 0.3 which corresponds to the physical deconfinement
transition. That means that the disorder paramé#), at first dropping to zero thus indicating
deconfinement, then rises again due to saturation: actiedl{saturation transition” leads to the
SU(2) pure gauge theory, which ft= 1.55 andL; = 6 is confined.

Even if the saturation transition @t~ 0.7 is well separated from the physical transition at
[t ~ 0.3, we notice that the “saturation line” in tie— [i plane has a positive slope fp/p from
the saturation peaks of Fig. 5 [right] is greater than zeFbat means that at lowg the saturation
transition could happen at lower values ofwhich added to the fact that the physigal with
decreasing?, can easily cause an overlap of the two transitions, phlyarwéunphysical, at lower
values off3 (Fig. 6).

Therefore one should be careful about the possible efféd®auali blocking on the study of
finite density QCD in the strong coupling regime. The warnggeneral even if the situation may
depend on the temporal extdntof the lattice as well on the number of flavors and colors.
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Figure 5: Effects of Pauli blocking: as the fermion number saturatferént observables indicate the onset
of a “quenched” phase [left]p and pp individuate the unphysical transition with peaks of diffiet sign
(—pp/p > 0= positive slope for the critical line) [right].
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Figure 6: Physical transition line (continuous) vs unphysical saion line (dashed) [left]: g8 = 1.45 the
saturation prevents a deep peakgrto form as for greater values gf[right].

4. Conclusions

We have shown how a finite density of baryonic matter indueesafinement and that, in the
region explored, the deconfinement transition coincides wahiral symmetry restoration also at
U # 0. Furthermore we have given a general warning on the pesefféct of Pauli saturation on
the study of the QCD phase diagram at IBw

References

[1] S. Hands, S. Kim and J. I. Skullerud, hep-lat/0604004.
[2] L. McLerran and R. D. Pisarski, arXiv:0706.2191

[3] M. D’Elia and M. P. LombardoNucl. Phys. Br52(2006) 124 [hep-lat/0602022Phys. Rev. X0
(2004) 074509 [hep-lat/0406012].

[4] G.'tHooft, High Energy Physicdn proceeding oEPS International ConferencPalermo 1975
[5] S. MandelstamPhys. Rept23(1976) 245.

[6] G. Parisi,Phys. Lett. B50(1975) 93.

[7] L. Del Debbio, A. Di Giacomo and G. Paffulhys. Lett. BB49(1995) 513 [hep-lat/9403013].
[8] A. Di Giacomo and G. PaffutiPhys. Rev. 56 (1997) 6816 [hep-lat/9707003].

[9] A. Di Giacomo, B. Lucini, L. Montesi and G. Paffut?hys. Rev. 51 (2000) 034503
[hep-1at/9906024]Phys. Rev. 31 (2000) 034504 [hep-1at/9906025].

[10] J. M. Carmonat al. Phys. Rev. B4 (2001) 114507 [hep-lat/0103005].

[11] J. M. Carmonat al. Phys. Rev. B6(2002) 011503 [hep-lat/0205025].

[12] M. D’Elia et al. Phys. Rev. 01 (2005) 114502 [hep-lat/0503035].

[13] S. Conradi, A. D’'Alessandro and M. D’Eli®@hys. Rev. 6 (2007) 054504 [arXiv:0705.3698].



