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The effective coupling of QCD is measured by using the gauge configurations produced by the
MILC collaboration in which the Kogut Susskind (KS) fermion is incorporated and by using
that produced by the RBC/UKQCD collaboration in which the domain wall fermion (DWF) is
incorporated. We fix the gauge to the Landau gauge and to the Coulomb gauge. The infrared
effective coupling in the Coulomb gauge agrees with the recent extraction at JLab, but that in the
Landau gauge shows infrared suppression. The suppression is expected to be due to the color
anti-symmetric ghost propagator which in the unquenched configurations has stronger infrared
singularity than the color diagonal ghost propagator. The Coulomb form factor in the infrared
depends on the kind of the fermion incorporated in the system and the temperature.

The quark has the effect of quenching randomness and the fluctuation of the color anti-symmetric

ghost propagator is reduced in the unquenched configuration, and the Kugo-Ojima parameter c is

closer to 1 in the unquenched configuration than in the quenched configuration.
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Roles of the quark field in the infrared lattice Coulomb gauge and Landau gauge QCD Sadataka Furui

1. Introduction

We fixed gauge configurations of the MILC collaboration[1, 2] and the RBC/UKQCD collaboration[3]
to Landau gauge and to Coulomb gauge and studied the infrared features of the lattice QCD by com-
paring the gluon propagator, the ghost propagator, the effective coupling etc. In the case of finite
temparature MILC f t , we assign the β = 5.65,5.725 and 5.85 data correspond to T = 143,172.5 and
185 MeVρ , and in the unit of critical temperature Tc by T/Tc = 1.02,1.23 and 1.32, respectively.

β N f m 1/a(GeV) Ls Lt aLs(fm)

MILC f t1 5.65 2 0.008 1.716 24 12 2.76
MILC f t3 5.725 2 0.008 1.914 24 12 2.47
MILC f t5 5.85 2 0.008 2.244 24 12 2.11

MILCc 6.83(βimp) 2+1 0.040/0.050 1.64 20 64 2.41
6.76(βimp) 2+1 0.007/0.050 1.64 20 64 2.41

MILC f 7.11(βimp) 2+1 0.0124/0.031 2.19 28 96 2.52
7.09(βimp) 2+1 0.0062/0.031 2.19 28 96 2.52

MILC2 f 7.20(βimp) 2 0.020 1.64 20 64 2.41

MILC3 f 7.18(βimp) 3 0.031 2.19 28 96 2.52

DWF01 2.13(βI) 2+1 0.01/0.04 1.743(20) 16 32 1.81
DWF02 2.13(βI) 2+1 0.02/0.04 1.703(16) 16 32 1.85
DWF03 2.13(βI) 2+1 0.03/0.04 1.662(20) 16 32 1.90

2. The Lattice Landau gauge QCD

We measured Kugo-Ojima confinement parameter[4] of various configurations in Landau
gauge[5, 6, 7]. The Kugo-Ojima parameter is defined by the two point function of the covariant
derivative of the ghost and the commutator of the antighost and gauge field(

δµν − qµqν

q2

)
δ abu(q2)

=
1
V ∑

x,y
e−iq(x−y)

〈
tr

(
Λa†Dµ

1
−∂D

[Aν ,Λb]
)

xy

〉
,

(2.1)

as c = −u(0). It is a scalar function at vanishing momentum in the continuum theory, but in the
lattice simulation, we measured the magnitude of the right hand side of the eq.(2.1) with µ = ν
polarizations of Aν and Dµ , and then observed in the case of asymmetric lattices there is a strong
positive correlation between the magnitude and the lattice size of the axis whose directions are
perpendicular to the polarization. In Figure 1 the temperature and polarization dependence of the
Kugo-Ojima parameter of MILC f t is presented.

Data in Table 1 show that the parameter c of MILC2 f and MILC3 f are consistent with 1 while
the data of quenched 564 configuration are about 0.8. Using the covariant derivative

Dµ(Ux,µ) = S(Ux,µ)∂µ +[Ax,µ , ·]
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and the parameter e defined as

e =

〈
∑
x,µ

tr(Λa†S(Ux,µ)Λa)

〉
/{(N2

c −1)V},

h = c− e
d

and dimension d = 4, it follows that h = 0 in the continuum limit means the horizon

condition[8].

βimp/β cx ct c e/d h

quench 6.4 0.827(27) 0.954(1) -0.12(3)
6.45 0.814(89) 0.954(1) -0.14(9)

MILC2 f 7.20 1.01(13) 0.74(4) 0.94(13) 0.9365(1) -0.01(13)
MILC3 f 7.18 1.07(13) 0.76(3) 0.99(16) 0.9425(1) -0.05(17)

Table 1: The Kugo-Ojima parameter of the quenched 564 lattice and that of the MILC2 f and MILC3 f . cx is
the polarization along the spatial directions, ct is that along the time direction, c is the weighted average of
cx and ct , e/d is the trace divided by the dimension and h is the horizon function deviation.

The running coupling in the ˜MOM scheme in Landau gauge is given by the product of the
gluon dressing function and the ghost dressing function squared:

αs(q) = q6DG(q)2DA(q).

We fit the scale by comparing with the perturbative QCD(pQCD) result at the high momentum
region.
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Figure 1: Kugo-Ojima parameter u(0) of
MILC f t configurations of T/Tc = 1.02(blue di-
amonds), T/Tc = 1.23(red stars) and T/Tc =
1.32(green triangles).

Figure 2: The running coupling αs(q)/π of
MILC f in Landau gauge The pQCD result of
Nf = 3 (upper dash-dotted line) and Nf = 2
(lower dashed line) and the extraction of JLab
are also plotted(blue boxes).

Recently an experimental extraction of an effective strong coupling constant was published
from the Thomas Jefferson National Accelerator Facility(JLab) collaboration[9]. Using the Bjorken
sum rule at 0 momentum, they predicted that the strong coupling constant approaches π . This pre-
diction and data for Q > 0.4GeV shown in Figure 2 are consistent with our lattice results. The
infrared suppression in the Landau gauge does not agree with JLab result.
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3. The Lattice Coulomb gauge QCD

We adopt the minimizing function FU [g] = ||Ag||2 = ∑x,i tr
(

Ag
x,i

†Ag
x,i

)
, and solve ∂ g

i Ai(x, t) =

0 using the Newton method. We obtain ε =
1

−∂D
∂iAi from the eq. ∂iAi + ∂iDi(A)ε = 0. Putting

g(x, t) = eε in Ug
i(x, t) = g(x, t)Ui(x, t)g†(x+ i, t) we set the ending condition of the gauge fixing

as the maximum of the divergence of the gauge field over N2
c −1 color and the volume is less than

10−4, Maxx,a(divA)a(x) < 10−4. This condition yields in most samples

1
8V ∑

a,x
(divAa

x)2 ∼ 10−13.

We measure the color-Coulomb potential by first defining

V ab
Coul(x,y) =

〈〈a,x|M−1(−∂ 2)M−1|b,y〉〉 ,

where the outermost bracket denotes ensemple average, a,b are color indices, x = (x, t) and y =
(y, t). We perform the Fourier transform

V ab
Coul(q) =

1
V ∑

x,y
e−iq·xV ab

Coul(x,y, t)e
iq·y =

〈〈a,q|M−1(−∂µ)∂µM−1|b,q〉〉

=

〈
∑
µ
〈φµ

aq|φµ
bq〉

〉
=

〈
∑
µ,x

φµ
a,q∗(x)φµ

b,q(x)

〉
(3.1)

where we define
1√
V

∑
y
|b,y〉eiq·y = |b,q〉 (3.2)

and
φµ

b,q(y) = ∂µM−1|b,q〉 (3.3)

We evaluate ψb(y) as a solution of the differential equation for a plane wave source ρ(y)

(−∂D)ψb(y) = ρb(y) (3.4)

and define φµ
b(y) = ∂µψb(y). Following the DSE[13], we express the color-Coulomb potential as

VCoul(q) = DG(q2)q2 f (q)DG(q) (3.5)

where DG(q) is the ghost propagator and f (q) is the Coulomb form factor.
The color-Coulomb form factors of MILC2 f , MILC3 f and DWF m = 0.01 shown in Figure 3

indicate that αCoul(q)depends on the kind of fermion. In the case of DWF, we excluded exceptional
samples whose VCoul(q) at zero momentum is extremely large ( there are a few such samples in
DWF m = 0.01 among 50 samples). The results of MILC f t shown in Figure 4 indicate its temper-
ature dependence.

The gluon propagator obtained as an average of data measured at each time slice does not
depend much on the kind of fermion and temperature as shown in Figure 5 (MILC2 f and MILC3 f )
and in Figure 6(DWF).
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Figure 3: The color-Coulomb form factor f (q)
of DWF m = 0.01(green triangles), that of
MILC2 f (violet stars) and MILC3 f (magenta dia-
monds).

Figure 4: Same as Figure 3 but that of MILC f t ,
T/Tc = 1.02(blue diamonds), T/Tc = 1.23(red
stars)，T/Tc = 1.32(green triangles).
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Figure 5: The Coulomb gauge transverse gluon
propagator DA(q) of MILC2 f (violet stars) and
MILC3 f (magenta diamonds).

Figure 6: The Coulomb gauge transverse gluon
propagator DA(q) of DWFm = 0.01(green tri-
angles), m = 0.02(magenta diamonds) and m =
0.03(orange stars).

In the pQCD region the running coupling is defined from the color-Coulomb potential αCoul(q) =
11Nc−2Nf

12Nc
q2VCoul(q). In the infrared region, we measure the running coupling in Coulomb gauge as,

αI(q) = q5DG(q)2DA(q)

where DA(q) is the gluon propagator.
The gauge field Ax,µ and the link variable Uµ(x) are related by, Uµ(x) = eλ aAa

x,µ in [14], but

Uµ(x) = eΛaAa
x,µ in our case, where Λa =

λ a

√
2

with Gell-Mann’s SU(3) generator λ .

Conformance with the unit length transporter e
λa
2 Aa

µ (x) in the continuum theory yields the gluon
dressing function DA(q) that approaches 2 in large q. Conformance with the transporter eΛaAa

µ (x)

i.e. the normalization of Ax,µ such that DA(q) approaches 1 yields the αI(q) consistent with the
JLab result. We multiply 1/2 to DA(q) in the calculation of αI(q).

The running coupling αI(q) of MILC2 f and MILC3 f are shown in Figure 7 and that of MILC f t

is shown in Figure 8.
We observe that αI(q) of MILC2 f , MILC3 f and DWF (Figure 9) agree with the extraction of

JLab.
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Figure 7: The running coupling αI(q)/π of
MILC3 f and MILC2 f in Coulomb gauge. The
pQCD result of Nf = 3 (upper dash-dotted line)
and Nf = 2 (lower dashed line) are also plotted.

Figure 8: The running coupling αI(q2)/π of
MILC f t . T/Tc = 1.02(blue diamonds), T/Tc =
1.23(red stars) and T/Tc = 1.32(green triangles).

We emphasize that the adjusted parameter is only the normalization of the gauge field which
appear in the transporter as a coefficient of Λ.

In case of zero temperature quenched con-
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Figure 9: The running coupling αI(q2)/π of
DWF m = 0.01(green triangles), 0.02(magenta dia-
monds) and 0.03(orange stars).

figuration, the Kugo-Ojima color confinement pa-
rameter c is about 0.8. In case of unquenched
configurations it is consistent with 1 at zero tem-
perature and decreases as temperature rises.

The A2 condensate is finite and ghost con-
desate parameters is small at zero temperature,
but near Tc they are consistent with 0. The gluon
propagator in the Landau gauge and in the Coulomb
gauge are infrared finite. Its large volume limit is
yet to be investigated.

The running coupling of the Coulomb gauge
αI(q) may approach π at zero momentum, inde-

pendent of the kind of fermion.

The infrared suppression of the running coupling in Landau gauge may be due to the singular-
ity of the color anti-symmetric ghost propagator that disturbs the color diagonal ghost propagator.
Quark has the effect of magnifying the square norm of the color anti-symmetric ghost propagator
and reduces its fluctuation[11]. We observed that the color diagonal ghost propagator is tempera-
ture independent. Color anti-symmetric ghost propagator of a system containing dynamical quarks
is temperature dependent[12].

Presence of dynamical quarks is crucial in defining infrared features of the QCD. Lattice data
always suffer from finite size effect. Comparison with theoretical approaches as Dyson-Schwinger
equation[10] is important. Calculation of the effective coupling in other scheme and comparison
with experimental data are also challenging issues[15, 16].

The numerical simulation was performed on Hitachi-SR11000 at High Energy Accelerator
Research Organization(KEK) under a support of its Large Scale Simulation Program (No.06-03

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
3
0
1

Roles of the quark field in the infrared lattice Coulomb gauge and Landau gauge QCD Sadataka Furui

and No.07-04), and on NEC-SX8 at Yukawa institute of theoretical physics of Kyoto University
and at Cybermedia Center (CMC) of Osaka University. We thank Alexandre Deur for sending the
results of JLab, the MILC collaboration for supplying very useful data, and the BNL lattice QCD
group for the information on the gauge configurations of the RBC/UKQCD collaboration.
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