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1. Introduction

It was recently pointed out that in most confining gauge theories, besidefsindamental
string (of tensiorno) which is formed between a pair of static sources in the fundamental expres
tation f, there is the freedom of taking the sources in any representatioti, for instance, the
gauge group is SIN) there are infinitely many irreducible representations at our disposal. How-
ever, as the sources are pulled apart, no matter what representati@sén cthe asymptotically
stable string tensioay, depends only on thd—ality k of 2. As a consequence the heavier strings
decay into the string of smallest string tensign The corresponding string is referred to as a
k-string. This kind of confining object can be defined whenever thggauoup admits more than
one non trivial irreducible representation.

In a previous work{[l1], some of us have proposed an expressiohefdow temperature asymp-
totic expansion for these string tensions. An interesting consequenaelofa expansion is that
their ratios are expected to be constant ufiderms. The low temperature data presented in sup-
port of this expectation were taken from Monte Carlo simulations on a pantisygéem, namely a
(2+1)-dimensiona¥., gauge model.

The main conjecture we want to verify in this work is tt@{(T)/o(T), at least in tha#Z,
gauge system, is in fact independent of the temperature iwliode of the confining regime. To
check this idea we used the fact that the Svetitsky-Yaffe (SY) conjefllietlows to reformulate
the system in a totally different perspective, based on a two-dimensidagtable theory.

It turns out that the deconfinement transition of the BPgauge model is second order and,
according to the SY conjecture, belongs to the same universality classaib tyanmetric Ashkin-
Teller (AT) model.

The two-dimensional AT model can be seen in the continuum limit as a bosomicrowal
field theory plus a massive perturbation driving the system away fronritieatline (i. e. a sine-
Gordon theory). Thus, a map between the AT critical line and the sinegBgutiase space is
provided. This theory is integrable, and the masses of its lightest phytatas ¢first soliton and
first breather mode, of masskk and M;) correspond to the tensiorms(T) and 02(T) nearT,
whose ratio, in this context, can be analytically evaluated and turns out to be
GZ(T) M1 T

TI|_r!1Tc ) =M= 23|n§(2v— 1), (1.2)

wherev is the thermal exponent.

1.1 The (2+1)dZ4 gauge model and its dual reformulation

The most general form &, lattice gauge model admits two independent coupling constants,
with partition function

Z(Bepro) =[] 3 ebelPripthi/zes), (12)

I & =+14i

in which the gauge fielt); on the links on a cubic lattice is valued among the fourth roots of the
identity and the sum in the exponent is taken over the elementary plaquetteslaitide. Such a
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theory can be reformulated as two coupledgauge systems (s€é [1] for details):

I {U=+t1V=+1} lep lep

From the data in[[1], obtained by means of finite-temperature measuremeRtdyakov-
Polyakov correlation functions, and particularly from those referringht point P identified
by (a,B) = (0.050,0.207), the string tensiong and 0> can be evaluated in thE — 0 limit as
temperature-independent quantities:

oa?=0.0208510), 0»a?=0.0335622),

wherea is the lattice spacing. Their ratio, which has been argued to equate thel change of
the CFT related to the 2-string, is then given by

02
i 1.610(13) . (1.4)

2. The Svetitsky-Yaffe conjecture and the Sine-Gordon model

The mapping induced by the Svetitsky-Yaffe conjecture leads to a subssamidification in
the study of the critical properties of the deconfining transition, allowing tdysituas a standard
symmetry-breaking transition which takes place in a spin model. In the pressaitve deal with
the symmetric Ashkin-Teller model in two-dimensions.

The action for this model is given by:

Iar =~ Y [J(og0y + 0202) + da(07 0y 0707)] . (2.1)
Xy)

Such a model has been extensively studied in the past, and a numbectasxidts have been
derived [3]. It is useful to note that it can be seen as a perturbatitdmedbaussian model, and in
such a bosonic language the thermal perturbation can be written ¢ coderef is a marginal
parameter equivalent th. Hence we are left with

Ay = /dzx @aucpa“ep T cosB¢> , 2.2)

which is the action of the Sine-Gordon model. Furthermore, since the cdrirese of the gauge
theory is mapped in the high-T phase of the Ashkin-Teller, we will only carsite case > 0.

Such a QFT is of particular interest because it is integrable, and this is thereasion for
rewriting the action of the model near the critical point in a bosonic form. tatgtity means that
an infinite number of integrals of motion exists. The main consequence in imgnsions is the
fact that the scattering theory is very constrained, becausg-thatrix is factorised in products
of two-body interactions, and inelastic processes are forbidden.lldivi® that the latter can be
computed exactly together with the mass spectrum.
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2.1 Operator correspondence, mass spectrum and correlation furions

We already know, from the Svetitsky-Yaffe original work, that the Pkbyaoop in the funda-
mental representation corresponds to the spin operator. Then, follohérgpme reasoning used
in [A], it is possible to deduce that the Polyakov loop in the double fundaineqtasentation is
related to the so-callepolarisationoperator?? = g'0?, whereg! ando? are the spin variables
defined in [2]1). Its bosonic form and the corresponding anomalous siomsrare given by

2
gdu Xkoz:g—n; (2.3)
we also notice that#?) = 0 in the high-T phase of the model.

Sine-Gordon mass spectruff [3he exact knowledge of the S-matrix allows to access to the
exact mass spectrum of the theory. Without entering the details, the speafrine SG model
is given by a soliton/anti-soliton doublet of fundamental particles of nhMsand a number of
soliton/anti-soliton bound states, called breatl&,svhose number is a function @?. By defin-
ing the coupling constard in the following way
_ T’

- 8m—p2’
we have that fo€ > m, i.e. B2 > 4m, no bound states are present and hence the spectrum is given
by the soliton/anti-soliton doublet only (repulsive regime). Eot 1, i.e. B2 < 4, we are in the
attractive regime and the breath&sappear as simple poles of the S-matrix (see for exarfiple [5]).
The next step is to associate particle states to operators in the high tempphatsee It has been
done in [§] by taking into account their properties of symmetry and localitg ddnsequence is
that the spin operator is naturally associated to the mass of the soliton, aralatisgtion operator

is associated to the mab4 of the breatheB;. Hence, following the Svetitsky-Yaffe conjecture,
the ratio of string tensions in the confining phase near the transition is gyven b

M1 &
— = 2sin>. 25
M sm2 (2.5)

This result, being a dimensionless ratio, is expected to be universal in the lim@. This fact can
be explicitly seen by expressing the coupliign terms of some critical exponent. It is possible to
work out the following relation betweefand the thermal critical exponent

P =sin

¢ (2.4)

E=m2v-1) — % = 2sing(2v—1). (2.6)

Correlators at large distanc€he previous analysis of the mass spectrum allows to compute
the leading behaviour of the correlatdrso) and (% &) at large distance by means of their spec-
tral expansion over form factors (the interested reader can ref@r[@ for the details).

The analysis of the previous section allows immediately to write down the leadimgfoer
(oo) and(Z ) correlators in the high-T phase of the theory, up to an inessential piapality
constant

(0(x)0(0)) ~ Ko(M[x]),  [x| — o
(Z(02(0)) ~ Ko(My[x]),  [x] — e, (2.7)

whereKg denotes the modified Bessel function of order zero, Bndvi; are the masses of the
soliton and the first breather respectively.
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2.2 Baryon vertices and mass spectrum

As noticed in [[L], the balance of the string tensions for a given verteasgikie following
expression for the angles at the center of the junction of three arbitrstryngs
of (T) + og(T) — o(T)
201(T)ox(T)  °

cosg = and cyclic permutations of the indices. (2.8)

The rigidity of the geometry of the vertex is then ensured by requiring that angles are kept
fixed when the temperature varies. As a consequence, all the stringnieasas are constant up
to a given order irfT, namely as far as the effective string picture is valid.

A similar picture emerges when studying the gauge system near the deogtfanisition.
The scattering theory describing the system in such a case can exhibit biaes whose mass,
is given by the following relation

M = M2 +mj5 + 2mympcost,,  triangle of masses (2.9)

wheref = iu*f2 is the purely imaginary value of the rapidity corresponding to the creationeof th
particlemy,, andmy, m, are the masses of the initial state.

In the present case the process of coalescence of two fundamentg sito a 2-string corre-
sponds to the scattering of a soliton/anti-soliton pair creating the boundstefer such a process
we know thaiu%: r— & which, once inserted iff (3.9), gives

¢

M .
M2 = 2M%(1—cosf) — Wl:2$|n§ (2.10)

which is nothing but the mass formula used in the previous Section.

3. Monte Carlo setting and procedure

3.1 Mass ratio by correlators

As introduced in Subsectidn P.1, we can determine the MtidM using the large distance
asymptotic behaviour of correlators; actually, exploiting the SvetitskyeYedinjecture, we mea-
sured the Polyakov-Polyakov correlat@s (R) of the (2+1)dZ4 gauge theory:

G (R) = (P£(0)P},(R)). (3.1)

In Section[I]L we have explained we can study this theory by means of simslatiothe AT
model and in[[9] the measurement of Polyakov-Polyakov correlatorstmthe fundamental and
double fundamental representatioB$R) : andG(R)+¢, is described in detail.

We have taken 1f0measures on the 64 7 lattice in the phase space poiltN; = 7 is chosen
because it is the lowest possible value above the deconfinement tranSitimlations have been
done for each value dR in the range[15--44]. These data are fitted using an expansion of the
Ko(mR) Bessel function, truncated to first two terms, in a rafign, Rmax, WhereRynax= 44; we
have verified the results are stable wii#, varies in the rang&@2--33). Therefore, it is possible
to determine the two masses:

aMi; = 0.069815) (x2/d.of.~13), aM;=004338) (x2/d.of~12),
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from which we can determine the ratio:
02(T ~Te)/o(T ~Te) = Mss /M = 1.612(46). (3.2)

This result, obtained near the critical temperature, is compatible with the zapetature value
(L-4), providing a strong evidence for our conjecture.

3.2 Estimating 0>/ 0 through the thermal exponentv with finite-size scaling

To use the formula for the mass ratio, Hg.|2.6), we need a quite precisetedtimtae thermal
critical exponenv in the phase space poiRt It can be obtained by means of a finite-size scaling
analysis of the plaquette operator or some related observable that we détig (1), , whereL is
the spacial size of the lattice. Let us notice that in the SY context the plaqpettator is mapped
into a combination of the unity and the energy operator of the correspo@did[I0].

In order to exploit the computational advantages of the dual transcriptitve gauge model,
it is convenient to evaluate directly the internal energy of the 3D AT modeielt by

1

(He= 32,

(Sar) - (3.3)
We decided however to use the corresponding (density of) susceptivity
(= (@@= (0%, (3.4)
whose power-law to compare with has the form
(X)=b-L:9 (3.5)

with the advantage that no constant additive terms are present, whichlamdty spoil the stabil-
ity of the numerical results.

At the practical level, the system at the couplfturns out to be critical for a temperatufg
such that 6< Tic < 7, hence, having to work with integer inverse temperatures, it is not peseib
avoid some approximate method. In particular we decided to define two netg gdiandP;, at
which the system is critical for temperaturés= 1/7 andT = 1/6 respectively, and then, with a
linear interpolation, construct the corresponding quantity for the origioat of phase transition
P. To perform the simulations, we used a cluster-based nonlocal updatétaig an adaptation
of the Swendsen-Wang prescription, which is described in more detd].in [1

We used. = 200 finite-temperature lattices to find the couplings correspondiflg amdF,
and at such critical points we toak(10°) measurements of the plaquette at 26 values of spatial
sideL, ranging fromL = 10 toL = 165. The data fitted very well to the expectation frara- 70
already, so we could extract two values of the critical index

VT:1/6 = 0800419) [22] R VT:l/? = 0794Z18) [38] s

in which the first uncertainty refers to the statistical fluctuations while thengkiscan estimate of
the systematic error in the measurement.
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By linear interpolation along the couplings, the valuevand the (coupling-dependent) criti-
cal temperaturé@; was calculated for the very poiRt We found

Tc
— =1.039312 P) =0.798419)[27). 3.6
NG 112, v(P) 419)[27) (3.6)
By plugging it into the formula for the mass ratjo (2.6), we obtain the followingltdsr the
mass ratio: M
Wl(P) = 1.612471)[102, (3.7)

which is well compatible with the less accurate estimate coming from the quantit[gisaind thus
well supports our conjecture.

4. Conclusions

In this paper we studied the ratio of the string tensiosd ) /o (T) near the deconfining point
T, of a 3DZ4 gauge model and compared the result with a general formula which istedgede
true nearT = O for a generic gauge theory in three or four dimensions. In this particake we
have combined numerical experiments with known exact results of an ibted@@ quantum field
theory that belongs, according to the Svetitsky-Yaffe conjecture, toaime siniversality class of
the critical gauge system.

An interesting property of the integrable model is that the mass ratio of the tygiqalhstates
of the theory, which should equate the string tension ratio Mgaran be expressed as a simple
function of the thermal exponemt (see Eq[(2]6)). We used two different methods to evaluate
such a ratio, and both the estimates give compatible results which nicely aighebewatioo, /o
evaluated al = 0 (see Eq[(1]4)). We then conclude that, at least in this model, the k-stririgrtens
ratios do not depend on.
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