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The low energy eigenmodes of the continuum QCD Dirac operator are extended, but on the lat-
tice, due to discretization effects, the Dirac operator can have localized eigenmodes. These non-
physical modes can introduce strong lattice artifacts for observables that are sensitive to chiral
symmetry, especially in mixed action simulations. We study how these lattice artifacts depend on
the parameters of the overlap operator and their effect on the distribution on the Dirac eigenmodes
and the topological susceptibility.
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1. Introduction

Mixed action simulations combine the advantages of chiral operators in the measurement with
relatively fast configuration generation, but their success to a large extent depends on how close the
valence and sea quark actions are. At the very least one requires that the valence action does not
introduce any new (large) lattice artifacts. Our goal is to find the “best” overlap action, in the sense
of smallest lattice artifacts within a group of simple actions, to use with our ongoing Wilson action
dynamical simulation[1 – 3]. In a mixed action situation the valence operator interacts with the sea
quarks through the vacuum, therefore it is best to match the valence fermions to the dynamical ones
via physical quantities that are sensitive to the vacuum but independent of the valence quark mass.
We have considered two such observables, the topological susceptibility and the distribution of the
infrared eigenmodes of the valence Dirac operator[4].

In the phase where chiral symmetry is spontaneously broken the low energy eigenmodes of the
Dirac operator are expected to be extended, delocalized. The lattice Dirac operator can have many
localized eigenmodes, but as long as these modes remain separate form the low energy infrared
modes, they do not affect physical predictions. We have investigated the localization properties of
the eigenmodes of the Wilson Dirac operator and several different overlap operators. We found
that while both the Wilson and overlap operators have localized eigenmodes, these modes do not
mix with the infrared modes of the Wilson Dirac operator, but can become part of the low energy
spectrum of the overlap operator. The density of these non-physical modes depend on the param-
eters of the overlap construction, on the gauge configurations and on the lattice spacing. We can
relate these modes to the localized modes of the kernel operator and argue that they are due to
dislocations of the gauge configurations. These non-perturbative lattice artifacts can strongly affect
chiral observables in mixed action simulations.

Our observation suggests that in order to minimize scaling violations in overlap simulations it
is not sufficient to rely on perturbative O

�
a � improvement but that non-perturbative lattice artifacts

due to dislocations also have to be considered.

2. Notations and parameters

While this work is motivated by dynamical simulations with nHYP smeared improved Wilson
fermions[1 – 3], the lattice artifacts of the overlap valence operators can be equally studied on
quenched configurations. We used about 1000 124 configurations generated with Wilson plaquette
action at β � 5 � 8458 (a � 0 � 12fm).

Our definition of the massless overlap operator is

Dov � R0

�
1 	 d

�
d†d ��
 1 � 2 
�� d � DK � R0

� (2.1)

where DK is the kernel operator and R0 denotes the center of the overlap projection. We choose
DK to be the Wilson operator with nHYP smeared gauge connections [5, 1], both unimproved and
with tree level (cSW � 1) clover improvement.

The choice of the parameter R0 in the overlap construction is rather arbitrary, as long as it
is larger than the eigenvalues of the physical, infrared modes of the kernel operator but smaller
than the doubler modes, and the resulting overlap operator is local. Since the infrared edge of
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Figure 1: The spectrum of the two kernel operators used in this study. Both are nHYP smeared Wilson
operators, one with tree level cSW % 1 clover coefficient (left panel), the other with cSW % 0 (right panel).
The different plot symbols correspond to different localization levels of the corresponding eigenvectors .

the spectrum, λcrit, varies with the kernel operator, the quantity ∆R0 � R0 � λcrit characterizes the
overlap operator better than R0 itself. We have chosen two different ∆R0 values with both of our
action, R0 � 1 � 0 (∆R0 � 0 � 7) and R0 � 0 � 7 (∆R0 � 0 � 4) with the unimproved cSW � 0 action and
R0 � 1 � 0 (∆R0 � 0 � 92) and R0 � 0 � 3 (∆R0 � 0 � 22) with the improved cSW � 1 � 0 action. All four
actions lead to a local overlap operator.

3. The eigenvalue spectrum of the kernel and overlap Dirac operators

First we consider the eigenvalue spectrum of the kernel operators. Figure 1 shows the 40
lowest magnitude eigenvalues on 100 configurations with both the c SW � 1 and cSW � 0 kernel
actions. The spectrum of the nHYP smeared c SW � 1 operator appears much more chiral than the
unimproved one, its eigenvalues are concentrated around a unit circle. This is what makes this
action appealing in dynamical simulations.

A simple and very intuitive measure of the localization of the eigenmodes is the participation
number or inverse of the inverse participation ratio IPR [6]

p � IPR 
 1

IPR � V ∑
x & ψ

�
x � & 4 � (3.1)

where ψ
�
x � is the normalized eigenvector of the Dirac operator. In Figure 1 the different plot-

ting symbols correspond to different participation numbers of the eigenmodes, and one observes
a strong correlation between p and ∆R, the distance from the outer edge of the circle. Toward the
center of the eigenvalue circle all modes appear to be localized with small p for both actions. How-
ever the spectrum of the clover improved action has many more localized modes in the vicinity of
the physical, IR range.
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Figure 2: Low energy eigenvalues of the kernel and overlap operator on a configuration where the overlap
operator has a localized IR mode. The lines connect the overlap and kernel modes with the highest overlap,
and the magnitude of the inner product of the modes is also shown.

The participation number is only a qualitative measure: while a very small p certainly implies
a localized mode, a large value does not necessarily mean a coherent extended one. Finite volume
analysis can distinguish the localized and extended modes. If the typical eigenmodes in a given
region of the eigenvalue circle correspond to extended modes, their average participation p̄ should
be volume independent, while in the region where most of the eigenmodes are localized p̄ will
decrease with the inverse of the volume. Comparing data on 124 and 164 lattices we found constant
p̄ values for ∆R / 0 � 03 and 1 0 V dependence for ∆R 1 0 � 05 for the c SW � 1 spectrum. This finite
volume analysis suggests that on the 124 lattices eigenmodes with participation number p / 0 � 40
at ∆R � 0 � 05 are already localized.

The overlap construction “projects” all the modes to the Ginsparg-Wilson circle. A typical
example of how the overlap construction transforms the kernel modes is shown in Figure 2, where
we compare the eigenvalues of the cSW � 1 kernel operator and the corresponding overlap operator.
All but one of the kernel eigenmodes shown are extended with large participation numbers, the
only exception is the mode in the inner part of the circle that has p � 0 � 04. The eigenmodes of the
overlap operator are also extended with one exception, the mode with the lowest imaginary value
has p � 0 � 08. The extended overlap eigenmodes connect strongly to a kernel mode, with overlap
between the wave functions of 80% or larger as indicated in the figure. The extended, near infra-red
eigenmodes change little under the overlap projection, their eigenvalues basically move straight out
to the Ginsparg-Wilson circle. The localized mode, on the other hand, behaves differently. Both the
overlap and kernel wave functions are sharply concentrated, they couple mainly to a small instanton
or dislocation. The overlap of the wave functions is sizable, ~70%, but the eigenvalues are quite
different. The overlap eigenvalue is small, the most infrared among the eigenmodes. In general
localized modes tend to stay localized under the overlap projection, their overlap eigenvalue is
frequently small, without modifying the eigenvalues of the extended modes.

To quantify the observations from Figures 1 and 2 we have measured the participation number
of the low eigenmodes of our four overlap operators. Figure 3 shows the distribution for the first
non-zero modes in the ν � 1 topological sector. The result supports what we have expected based
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Figure 3: The distribution of the participation number of the first non-zero overlap eigenmodes in the ν % 1
sector, normalized by the number of configurations.

on the eigenmodes of the kernel operator. The c SW � 1 improved action kernel operator with
R0 � 1 � 0 has a lot of localized modes - possibly more than 50% of the first eigenmodes are localized.
The other actions are considerably better. When R0 � 0 � 3 is used even with the clover improved
action, many of the localized modes are already to the right of the overlap center and projected to
the ultra-violet. Setting the clover coefficient c SW � 0 has a similar effect. Even with R0 � 1 � 0,
corresponding to ∆R0 � 0 � 70, there are only a few localized modes, and their number drops even
further when R0 � 0 � 7 (∆R0 � 0 � 40) is chosen.

4. Consequences of localized overlap eigenmodes

The distribution of the low lying Dirac eigenmodes should follow the universal predictions
of Random Matrix Theory for the extended eigenmodes of the quenched systems if the volume is
large enough, but localized modes embedded in the IR can spoil the agreement. According to RMT
the probability distribution of a given eigenvalue of the Dirac operator in a fixed topological sector
is a universal function and for quenched systems depends only on one free parameter, ΣV 0 a, where
Σ is the chiral condensate [7].

In Figure 4 we present our results for the cumulative (integrated) distribution using the four
different Dirac operators and compare them to the RMT predictions. As is evident from Figure
4, the first eigenmodes are well described by RMT, but the agreement gets progressively worse
for the higher modes. In general the cSW � 1 � 0 operators are worse than the unimproved ones.
While the cSW � 1 � 0 smeared kernel action has much better chiral properties and the corresponding
overlap operator is also more local than with the unimproved kernel, it also has many more localized
eigenmodes in the IR overlap spectrum. These eigenmodes influence the distribution of the Dirac
eigenmodes and ruin the agreement with the analytical predictions.

The topological susceptibility χ �JI ν 2 K 0 V is defined via the index of the overlap operator. It
is identical to the sum of the chirality ( L 1) of the real modes of the kernel operator up to λ / R0

[9]. The real modes of the kernel operator are easiest to identify by measuring the eigenvalues of
the Hermitian operator γ5DK and identifying when an eigenmodes crosses zero [10, 11]. In Figure
5 we show the dimensionless quantity χr4

0 as a function of R0 for the nHYP smeared cSW � 0 and 1
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Figure 4: The cumulative distribution of the first three eigenmodes in the ν % 1 topological sectors. Left
panel: cSW % 1; right panel: cSW % 0. The smooth thick lines are the RMT predictions.
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Figure 5: The topological susceptibility as a function of the overlap parameter R0 with thin link and nHYP
smeared overlap. The dashed horizontal line is the continuum prediction from Ref. [8].

kernel overlap actions, and also for the unimproved thin link kernel overlap action. To set the scale
we use r0 0 a � 4 � 032 from Ref. [12]. Recent studies of the topological susceptibility using a pure
gauge FF̃ topological charge operator predict χr4

0 � 0 � 0524
�
13 � [8], while calculations with a thin

link overlap operator give χr4
0 � 0 � 059

�
3 � [13] in the continuum limit. In Figure 5 we observe not

only large cut-off effects, but strong dependence on the R0 parameter, especially for the cSW � 0
actions. This is the consequence of the large number of real eigenmodes toward the center of the
eigenvalue circle seen in Figure 1. Most of these modes are lattice artifacts, dislocations. Overlap
operators with smaller R0 values are less sensitive to these inner modes and therefore show smaller
lattice artifacts.

Comparing results we obtained for the topological susceptibility and for the eigenvalue distri-
butions we observe that lattice artifacts, or deviation form the continuum, correlate closely for both
observables with the density of localized overlap eigenmodes (Fig. 3).
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5. Conclusion and Discussion

We have investigated the lattice artifacts of different overlap operators in quenched systems
as reflected by the topological susceptibility and the distribution of the low energy eigenmodes.
We related the observed cut-off effects to the existence of localized low energy eigenmodes in the
overlap spectra.

While these localized modes, due to lattice dislocations, are lattice artifacts and will go away in
the continuum limit, their presence can cause significant scaling violations at finite lattice spacing.
One can minimize these by choosing a better kernel operator, like the nHYP smeared operator we
considered here, and by tuning the R0 parameter of the overlap construction as small as the locality
of the overlap operator would allow.

In this paper we considered only quenched systems, but mixed action simulations suffer from
the same problem. Fully dynamical overlap simulations should fare better as there the localized
eigenmodes are suppressed just like any other small eigenvalue mode, so while they are present,
their number is at least not inflated. Nevertheless an overlap operator that has small lattice artifacts
in quenched should also have smaller lattice artifacts in dynamical simulations.
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