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QCD with fermions in the adjoint representation (aQCD) is a model for which a deconfinement
and a chiral phase transition take place at different temperatures. In this work, we present a
study of the deconfinement transition in the dual superconductor picture based on the evaluation
of an operator which carries magnetic charge. The expectation value of this operator signals
monopole condensation and is an order parameter for deconfinement as in the case of fermions
in the fundamental representation. We find a sharp first order deconfinement transition. We also
study the effects of the chiral transition on the monopole order parameter and find them negligible.
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1. Introduction

Ordinary QCD, for which quarks are in the fundamental representation of SU(3), shows two phase
transitions, deconfinement and chiral symmetry restoration, which according to numerical simu-
lations take place at the same temperature. The coincidence of the two transitions makes it very
difficult to study the degrees of freedom which are relevant for each transition separately. On the
other hand, QCD with fermions in the adjoint representation of SU(3) (aQCD), is a model for which
the two phase transitions seemingly happen at distinct temperatures [1, 2]. Furthermore, contrary
to the case of standard QCD, quarks in the adjoint representation do not explicitly break the Z(3)
symmetry of the action, and the Polyakov loop is a good order parameter for deconfinement.

In this work, we study the deconfinement phase transition in the Dual Superconductor Picture
(DSP), in which confinement follows from dual superconductivity of the QCD vacuum, realized
as condensation of magnetic charges [3]. To study monopole condensation, we construct a mag-
netically charged operator whose expectation value vanishes exactly in the deconfined phase and
becomes nonzero in the confined phase [4, 5, 6, 7], thus defining an order parameter. Our main
goal is to take advantage of the features of aQCD to investigate the relation between dual super-
conductivity and the dynamics of chiral symmetry breaking. In particular, we study the behaviour
of the magnetic order parameter in the proximity of the chiral phase transition.

The authors of [1, 2] have performed simulations of aQCD with N f = 2 staggered quarks, and
found a deconfinement and a chiral phase transition at different temperatures, with βdec < βchiral.
The chiral transition has been further investigated in [2], where the authors made an extended
analysis to determine its order. Their results from the magnetic equation of state indicated a second
order chiral transition in the 3d O(2) universality class in the zero quark mass limit.

The outline is as follows. In Section 2 we briefly describe aQCD and the monopole conden-
sation order parameter. We summarize simulation details in Section 3. We discuss our results in
Section 4 and draw conclusions Section 5.

2. aQCD and monopole condensation

2.1 aQCD

Quark fields in the adjoint representation of SU(3) can be written as 3× 3 hermitian traceless
matrices

Q(x) = Qa(x)λa (2.1)

in terms of Gell-Mann’s λ matrices. For the fermionic sector of the action one therefore needs to
use the 8-dimensional, real representation of the link variables:

Uab
(8) =

1
2

Tr
(

λ
aU(3)λ

bU†
(3)

)
(2.2)

Including the pure gauge sector, in which links are in the usual 3-dimensional representation, the
full action reads:

S = SG[U(3)]+∑
x,y

Q̄(x)M
(
U(8)

)
x,y Q(y) (2.3)
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where M is the fermionic matrix. The Polyakov loop is defined by

L3 ≡ 〈 1
3L3

s
|∑

~x
Tr

Lt

∏
x0=1

U (3)
0 (x0,~x)|〉 (2.4)

and is an order parameter for the spontaneous breaking of the center symmetry. The Polyakov
loop is related to the free energy of an isolated static quark in a gluonic bath at temperature T :
L3 ∝ e−F/T [8]. This result justifies its use as an order parameter for the deconfinement transition:
the free energy is infinite in the confined phase implying L3 = 0, while it is finite in the deconfined
phase (L3 6= 0).

2.2 Monopole condensation

A possible order parameter for the deconfinement phase transition is given by the vacuum expecta-
tion value of a magnetically charged operator [4, 5, 6, 7]. This operator adds a magnetic monopole
to a given gauge field configuration: a non vanishing expectation value is the signature of monopole
condensation and of the Higgs breaking of the underlying magnetic symmetry. On the other hand,
in the deconfined phase, where the symmetry is restored, the vev of the magnetic operator drops to
zero. The evaluation of this order parameter involves a few steps. One starts by fixing the gauge
with a procedure known as Abelian Projection [9]. However, as shown in [5], the particular gauge
choice does not affect the behaviour of the order parameter. In practice, we can update the system
without an Abelian Projection, which is equivalent to choosing a different random gauge at each
step [6]. Next, for each configuration, the values of the action are evaluated in presence and in
absence of a monopole field insertion in the temporal plaquettes of a given time slice [4]. Then, the
expression for the order parameter is:

〈µ〉=
1
Z

∫
[dU ]e−S̃ =

Z̃
Z

(2.5)

where S̃ is modified by the presence of the monopole field. A much easier quantity to evaluate is
however

ρ =
∂

∂β
ln〈µ〉= 〈S〉S−〈S̃〉S̃ (2.6)

which is expected to have a large negative drop at the transition point. Close to the transition
(β ' βdec), a scaling behaviour of the type

ρ ' L1/ν f (L1/ν(βc−β )) (2.7)

is expected (for some function f ), with ν = 1/3 for a first order transition (scaling with spatial
volume).

3. Simulation details

We simulate two flavours of staggered quarks on two lattices, with sizes of L3
s ×Lt = 123×4,163×

4, and bare quark masses of amq = 0.01,0.04 for several values of β in the range 3.0−7.0. Since
the evaluation of ρ requires two simulations for each value of β , we use the exact RHMC algo-
rithm [10] in presence of the monopole insertion and the Φ algorithm [11] otherwise. Typical MD
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Figure 1: The Polyakov loop, with am = 0.01 and 163×4 lattice. Lines are left to guide the eye.

trajectories have a length of NMDδ t = 0.5, and an integration step δ t = 0.02−0.005 depending on
the mass. We employ the Conjugate Gradient to invert the fermion matrix. We also implement C∗

boundary conditions as they become necessary when simulating a monopole insertion [12]. The
simulations run on the ApeMille machine in Pisa and the ApeNEXT facility in Rome.

4. Results

For each configuration, we evaluate the plaquettes, the modified plaquette — in a different simula-
tion — to calculate the ρ parameter, the Polyakov loop, the chiral condensate and its susceptibility.
The Polyakov Loop, has the behaviour of a sharp first order transition for β ' 5.25 (see Fig. 1).
We take this value of the pseudocritical β as an estimate for βdec in our finite size scaling analysis.
We evaluate the ρ parameter and study its scaling behaviour. The expected negative peak is found
at values of β which are compatible with the discontinuity of the Polyakov loop (Fig. 2). By finite
size scaling analysis, we find that ρ has the scaling properties of an order parameter for a first order
transition for both values of the quark mass (see Fig. 3 and [13] for am = 0.04). Our main interest
is that of finding possible effects of the chiral transition on the magnetic order parameter. To do so,
we first perform a rough localization of the chiral transition by inspection of the chiral condensate
and its susceptibility (Figs. 4, 5). Our results for the light mass am = 0.01 are compatible with
with a chiral transition around βchiral = 5.8, in agreement with [1, 2]. For both the simulated quark
masses, we find that ρ does not change significantly in the vicinity of the chiral transition. We con-
clude that condensation of monopoles, associated to confinement, is a property only of the gauge
sector of the theory and is not affected by the chiral transition.
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Figure 2: The ρ parameter, with am = 0.01, Lt = 4, for two different spatial volumes.
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Figure 3: Scaling of the ρ parameter, am = 0.01, Lt = 4. βc = 5.25, estimated from the Polyakov loop at
Ls = 16.
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Figure 4: Chiral condensate, with am = 0.01, 163 ×4 lattice. A clear jump is also visible at the the decon-
finement phase transition.
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Figure 5: Susceptibility of the chiral condensate, with am = 0.01, 163×4 lattice.
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5. Conclusions

We presented the results of our study on the effects of the chiral transition on monopole conden-
sation for QCD with two flavours of staggered fermions in the adjoint representation. The appeal
of this model is in the fact that its chiral and deconfinement phase transitions happen at distinct
temperatures, making it possible to study the effects of one transition on the order parameter of
the other. Within the framework of the Dual Superconductor Picture, we study the vev of a mag-
netically charged operator which signals monopole condensation and is expected to be an order
parameter for deconfinement. Our analysis indicates a first order deconfinement transition, and
the magnetic order parameter is found to be unaffected by the chiral transition. This result gives
further evidence to the idea that the DSP mechanism of confinement is independent of the presence
of fermions [7].

The work of C.P. has been supported in part by contract DE-AC02-98CH1-886 with the U.S.
Department of Energy.
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