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1. Introduction

More than ten years ago, using a model generalizing randamixtteeory, M.A. Stephanov [1]
predicted, that irsU(3) gluodynamics abové; the different Polyakov loop sectors behave differ-
ently. In the complex-valued Polyakov loop sectors theatliondensate should turn to zeroTat
substantially abov@.. For SU(2) lattice gluodynamics, where the Polyakov loop is real, iswa
predicted that the chiral condensate stays non-zewpy >+ 0, for all temperature¥ > T in the
sector with a negative averaged Polyakov I&oq O.

As for SU(3), Gattringeret al. [2] came to a different conclusion. They defined a new observ-
able, the gap in the Dirac spectrum, and used it as an ordamgder for the restoration of chiral
symmetry. It was found that the spectral gap opens up at ogéesiemperaturg = T; in all three
Z3 sectors. Here we examine whether Stephanov’s predictiotnéoDirac spectrum remains valid
in the case 08U(2) gluodynamics in the deconfined phase.

2. Improved action

Ensembles 0O(100) statistically independent quench8d)(2) configurations are generated
with the tadpole improved Liischer-Weisz action o G lattices. This action is known to sup-
press dislocations. The form of the action is :

S= Bimpzsp. LI (2.1)
p

where S, and §; denote the plaquette andZl rectangular loop terms in the actioBy ¢ =
%Tr(l—Uthr). The factorug = (W1X1)1/4 is the input tadpole factor. It is determined from
Wi = ((1/2)TrUp) computed at zero temperature [3]. The deconfining phassitiGmoccurs at
Bimp = Bc = 3.248(2) for N; = 6, which corresponds t&./\/0 = 0.71(2) [4].

3. Massless overlap Dirac operator

The massless overlap Dirac operator has the form [5]

Doy = g <1+ DW/\/D\J}VDW> , 3.1)

whereDy = M — p/a is the Wilson Dirac operator with a negative mass telknis the Wilson
hopping terma is the lattice spacing. The optimal value of ih@arameter is found to bedlalso
for the lattice ensembles under investigation. Anti-pgiddperiodic) boundary conditions in time
(space) directions are imposed to the fermionic field.

In order to compute the sign function

Dw //DlyDw = ¥ sgn(Hw) (32)

whereHy = y5 Dy is thehermitianWilson Dirac operator, we use the minmax polynomial approx-
imation. The overlap Dirac operator constructed this wagerves the chiral symmetry even on the
lattice and allows to study the properties of the Dirac mddas first principles. It will be called

D in the following and replaces the continuum Dirac oper&et D, y, whereD, = d,, —igA,

is the covariant partial derivative with the gauge field lgaokindA,;.



Study of the topological structure of $2) gluodynamics at T> 0 E.V. Luschevskaya

o6l  Tm.=120 — |
0.25 —
T, =097 —— 05 |
02} ]
04t
—~ 015 | o
(&4 & 03]
o
01 I 02 L
0.05 | ] 01|
0 - o S— S —
8 6 -4 2 0 2 4 6 8 8 6 4 2 0 2 4 6 8
Q Q

Figure 1: Probability distributions of the topological char@efor two temperatures below and aboke

4. Topological susceptibility Xiop(T)
We solved the Dirac equation numerically for its eigensyste

D L.Un = )\n l.Un (4-1)

by diagonalization oD. As a first application we search for the exact zero modesir Tinenber
is related to the total topological char@g,, of the lattice configuration through the Atiyah-Singer
index theorem :

Qtop = Qindex=N- —N,, (4.2)

whereN_ andN, are the numbers of fermionic modes with negative and pesitiirality ¢ ys o,
respectively. For the lattice ensembles the expectatitrev&;,p) should vanish, bu{cQtzop) mea-
sures the strength of global topological fluctuations. Tp®logical susceptibility is

_ (Qfp)

top = Vv 9

(4.3)

whereV is the four-dimensional lattice volume in physical units Fig. 1 (left) we see a histogram
of the topological charge in the confinement phase, clodegttransition. Fig. 1 (right) shows the
corresponding histogram for a temperature higher up in ¢doerfinement phase. Both histograms
can be approximately fitted by Gaussian distributions.

Let us now discuss the topological susceptibility as fuoxcof temperature. In Fig. 2 (left) we
show, that the topological susceptibiligop in the negative Polyakov loop sectdr € 0) agrees
at all T within two standard deviations witljop in the positive Polyakov loop sectoL ¢ 0).
In Fig. 2 (right) we compare our final data fgtop(T), which are forT < T. averaged over all
configurations and fol > T. only over the subsample with > 0, with the results of Allest
al. [6]. These authors presented the values of*19 xtop//\ﬁ at various values o for Wilson'’s
action representing different temperatures. We tdpk= 14.15(42) MeV [6] and extracted their
susceptibility x;op(T) from these data. The topological susceptibility is slowgckasing with
increasing temperature for both sets of data. Notice thabtlerlap definition of) results in a
systematically higher susceptibility than the improveddfigneoretic definition employed by the
Pisa group.
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Figure 2: The topological susceptibilityiop as function ofT separately fol. > 0 andL < O (left), and
comparison of our final result with that of Ref. [6] (right).
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Figure 3: The spectral density of eigenmodes of the overlap Diracaipefor two temperaturek < T; on
the 26 x 6 lattice.

5. Spectral density, chiral symmetry restoration and different Zy sectors

The chiral condensat@py) is related to the densitp(A) of the non-zero eigenvalues at
A — 0 via the Banks-Casher [7] relation:

— . . 1p(A)

Wyl == m I v &1
The non-zero modes are globally non-chiral, but the near-pees are still locally chiral and
correlated with lumps of the topological charge densitye Tlamber of modes belonging to this
near-zero band is proportional to the total voluvhdn the chirally broken phase the required limit
(5.1) of p(A) is non-vanishing at = 0 [7]. In the chirally symmetric phase one expegf{d ) =0
in a finite region around the origin,e. that the spectrum develops a gap. For the confinement
(chirally broken) phase we find indeed that the spectral itleirs physical units is practically
constant (almost independent), as can be seen in Fig. 3. Comparing resultofdigurations
with L > 0 andL < 0 we found that at lowA the densityp(A) is somewhat higher for negative
Polyakov loop sector.
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Figure4: The spectral density of eigenmodes of the overlap Diracaspefor four temperaturek > T; on
a 2@ x 6 lattice, evaluated separately according to the sign ohtieeaged Polyakov loop.
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Figure 5: The spectral gap fo8U(2) lattice gauge theory as function of temperature, evaluségarately
according to the sign of the averaged Polyakov loop.

For the deconfinement phase, when we take only configuratiithsn average Polyakov loop
L > 0, Fig. 4 (left) shows thap(A) gradually decreases with increasing temperature, irndgat
the decrease of the chiral condensate until a gap opens &mavigker. For configurations with

L < O Fig. 4 (right) shows thap(A) at low lambda is nonzero and even grows with increasing
temperature.

6. Spectral gap

The spectral gag, was defined by the smallest eigenvalue, which does not bétoagero-
mode. In Ref. [2] Gattringeet al. have shown foSU(3) gluodynamics that the gap, as function of
temperature, has a similar behavior for the real and bottpt®tsectors corresponding to the phase
of the averaged Polyakov loop. The phase transition ocduitseasamel, and with increasing
lattice volume the gap is decreasing. AnalogouSly(2) gluodynamics has only two sectors in the
deconfinement phase, distinguished by the sign of the yadakd) averaged Polyakov loop. We
show in Fig. 5 a clearly defined and rapidly growing gap forfgurations withL > 0, whereas for
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Figure 6: The average IPR within spectral bins for one temperalweT,.
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Figure 7: The average IPR within spectral bins for four temperatdres T, separated according to the
sign of the averaged Polyakov loap

configurations with_ < 0 the gap remains very small up to temperatures several tilghsr than
Te. The small gap is a finite-volume effect and can be made tskidnithe limit of spatial/z — co.

7. Localization in different parts of the spectrum

The scalar density of an eigenmodgg (x) corresponding to an eigenvalleis denoted as
pr(x) = L,U;{(X) Y, (x), such thaty, p) (x) = 1 by virtue of normalization. The inverse participation
ratio (IPR)I, is the natural measure of the localization. For any finiteinaV it is defined by

=V p(x). (7.1)

The IPR characterizes the inverse volume fraction of sibesiihg the support op, (x). From
Fig. 6 we conclude that for the temperature close but bdlomear but belowl the IPR (localiza-
tion) monotonously increases with decreasing eigenvalihere is no clear mobility edgé. The
monotony is not perfect among the lowest one or two bins. Tousof the low lying modes, the
higher ones are continuously less localized. We found thttis temperature for configurations

IForT = 0 the localization of overlap eigenmodes has been investiga Refs. [8, 9].



Study of the topological structure of $2) gluodynamics at T> 0 E.V. Luschevskaya

with negative Polyakov loog, < 0, the modes are somewhat less localized. In Fig. 7 we shaw tha
with increasing temperature the average IPR within thea&spe eigenvalue bins is increasing.
The effect sets in for higher and higher eigenvalues cooredipg to the mobility edge moving
outward in the deconfinement phase with the gafd.for 0. In the negative Polyakov loop sector
the IPR is constant at a low level, except fox 500 MeV, where the tendency of the IPR to grow
exists but is very weak.

8. Summary

We performed first measurements of the topological sudiibigtivith the help of the overlap
Dirac operator in finite temperatu®J(2) gluodynamics. We found that the topological suscep-
tibility in the confinement phase is almost constant andaw/isi decreasing in the deconfinement
phase, in agreement with previous results [6]. We did not $iygtematic effects of the sign of
the averaged Polyakov loop on the topological susceftibilihe chiral condensate, however, be-
haves completely different in tHe < O sector. Chiral symmetry remains broken, the spectral gap
stays close to zero for all > T; in agreement with Stephanov’s model predictions. A miaopsc
explanation in terms of the interplay of holonomy and toggl$4] needs to be worked ot. This
difference is accompanied by a different localization lvireof the lowest fermionic eigenmodes
in the two sectors.
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