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1. Introduction

Yang-Mills theory in the Coulomb gauge has recently drawn a renewed attehtith in the
continuum [[L[R] and on the lattic§] [A, B, 6]. In the continuum at least, thiseistés mostly due
to the remarkable fact that Gaul3’ law can be resolved explicitly in Coulombegauhich gives
the remaining vector potenti@ a very intuitive notion similar to electrodynamidg [8]. Recent
variational approaches in the Schrédinger picture even support thefideonstituent gluoiil, 2],
which is almost non-interacting in the infrared and thus completely determindéd tispersion
relationw(p), i.e. the (inverse) equal-time gluon propagdddp) = %w(p)*l.

The obvious drawback of the Coulomb gauge is thanhifest_orentz invariance is lost at inter-
mediate stages; it may only be recovered at the end of the calculation.lfa¢tely, this problem
is reflected in the (tree-level) propagators of some fundamental fieldshahe instantaneous in
time so that many loop integrands are independent of the temporal loop momeotponent
ko. Such integrals are notoriously difficult to regulate with conventional tigctes, though they
are believed to cancel in the full theory [8]. Still, the issue of renormalisatid@@oulomb gauge
remains cumbersome, even at the one-loop I¢jel [9].

Similar problems arise on the lattice as well. While initial studies of the gluon prégraga
in Coulomb gauge displayed almost perfect scalifd][4, 5], recent stuslieg improved gf. tech-
niques indicate that the quality of gauge fixing has a significant impact oan&tactions; in
particular, substantial scaling violations may resjjit [6]. The same conolbsie been drawn ear-
lier in Landau gauge, where careful gauge fixing may alter the infragbel\bour of the propagator
quantitatively by as much as 20 % [7].

Even more severe descrepancies arise in the comparision of early lastitts weith the vari-
ational approach mentioned above. While both methods show good agteardea 2+ 1, their
results inD = 3+ 1 differ qualitatively both in the infra-red and the ulta-violet:

| | R | w ]

lattice [4,[3] || D(p) — const| D(p) ~ |p|~2

variation 1] || D(p) =0 | D(p) ~ |p|~?

All these findings emphasise the need for a thorough corroboration oéledg8alts in Coulomb
gauge, in particular with regard to the quality of gauge fixing. In the ptesdn | will present
the first results in this program, viz. the equal time gluon propagatbrin2+ 1 andD = 3+ 1.
Further studies on the ghost propagator and the Coulomb form factouaently underway and
will be presented elsewhere.

The plan of this talk is as follows: In the next section, | will briefly discussgfutechniques
and demonstrate that they are effective in reducing the Gribov problachudhat the heart of
most gf. issues. Section three presents our findings for the gluongatmpa Some of this data
is still preliminary, and so is the quantitative analysis, but our results so fdy ibgth scaling
violations in the UV and a significant suppression in the IR. The last pointawgsrthe qualitative
agreement with variational studies, although the quantiative agreementusisétisfactory. In the
last section, | will conclude with a brief summary and outlook.



Coulomb gauge Green functions and Gribov copies ifiZUhttice gauge theory Markus Quandt

2. Gauge fixing techniques

Coulomb gauge on the lattice can be defined as the maximisation of the funttional

3
_3—\/3tr222tru (x,t) = max, ngiuNi. (2.1)

Here,U,(x) are the link variables, the sum overuns over all sites in a fixetime-slice t= const
and the maximisation is along the gauge orbit, i.e. with respect to all gauge ret@irrt) of the
link field U, (x). As indicated, the Coulomb conditid® < max can be implemented at each time-
slicet independently This leaves a residual invariance of space-independent but timedksge
gauge transformatior@(t), i.e. a global gauge rotation in every time slice.

For the equal-time gluon propagator

3 3

D(p) ~ [ a5 5 (OO A(Y.0) = ol o) @22)

the residual gauge fixing is irrelevant and it is sufficient to fix only the timeeshicwhich the
measurement is taken. This is no longer true for other correlators subk As— Ag propagator
related to the static Coulomb potential. Moreover, recent perturbative st{i}liendicate that
possible scaling violations iD(p) may be attributed to the loss of covariance at equal times; it will
then be necessary to consider the full gluon propagator at all (uhdimaes, and Coulomb gauge
fixing at all time slices must be augmented by a suitable choice for the resjduaietry.

The Gribov problem, which is at the heart of most g.f. issues, can bessgn as the fact
that (2.1) has manjocal maxima which may, however, give inequivalent contributions to non-
gauge invariant quantities such as the Green functions. Uniquenebsg eanfiorced by searching
for the global maximum of [2.]1), an NP-hard problem. Our strategy to reduce the influgince
Gribov copies is to prepend the standard (over)relaxation algorithm lyitead preconditioning
step combined with multipl&ribov repetitiongrom random starts. This method is a less expensive
substitute for full simulated annealing and works well for small to medium sizemiak up to
V ~ 36"

2.1 Preconditioning

The periodic boundary conditions on the lattice allow for a somewhat laygemetry than
just the periodic local gauge rotations. This is well-known from3kk2) lattice center symmtry:
In this case, one multiplies all linkso(t,x) pointing out of a fixed time-slicet = const by(—1).
This construction flips the sign of all Polyakov lines, but it leaves all pltga€and thus the action)
invariant; it is therefore a genuine symmetry of the system. In Landau gangecan generalise
this construction to all four directions, giving a total dff2ossible combinations dlips [f].

1For simplicity, we work exclusively with the colour gro= SU(2).
2Gauge potentials are extracted from the link variables in the usual faskiem@ (a?) improvement of the basic

formulaAy = £ [Uu(x) —UJ(x)].
3The actual location of the time sli¢és irrelevant, since a center flip at a different time-sticean be decomposed
into a flip att followed by a strictly local, periodic gauge transformation.
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Figure 1: The equal-time gluon propagator at the smallest non-zdtcdamomentum, measured as a
function of the numbeN of Gribov repetitions. Data was collected on & 2tice with 8 = 2.15 (left) and
B = 2.20 (right); a total of 200 thermalised configuration werelgsed for each data point.

In the Coulomb case, the gauge fixing is carried out in a fiXedi®e-slice, i.e. the flips are
only carried out in spatial directions, and only tHe ub-planes perpendicular to a given direction
(at fixedt) are flipped. Thereconditioningconsist in trying all 2 twists to maximisés [U] prior to
the acutal relaxation step. This can be viewed as a non-local upda¢seaging a large symmetry
transformation that no local relaxation algorithm is likely to find. Flips can atsimterspersed at
any time during relaxation, although they are most efficient early on, whealgorithm has not
yet converged onto a target maximdm.

2.2 Multiple Gribov repetitions

The gf. sequence consisting of preconditioning, relaxation and daratéon can be repeated
multiple times with random starting points. This inspects different regions ofettuels space and
converges to distinct Gribov copies. What makes this repetition effectibaisa relatively small
numbem of copies gives a large increase in the gf. functional, while subsegejeetitions beyond
a certainplateaupoint do not give any substantial improvement within reasonable computation
time.

This can be seen in figure 1, which plots the equal-time Gluon propaDggrat the smallest
non-zero lattice momentum, as a function of the nunibef Gribov repetitions. The net effect of
the improved gauge fixing is generally to supprB$pmin). Even forN as small adN = 2,...,5,
the corrections are in the range of 10%. Further copies give smallerctions; it is then a matter
of experiment to find the optimal tradeoff between CPU time and gf. quality,.optinal N will
depend quite sensitively on the lattice size and other simulation parameterg. 1rofie can see
the plateau setting in rather quickly, while our largest lattides=(36% required up toN = 30
repetitions.

4The (over)relaxation algorithm is iterated until the local gf. violation, i.e.(thaximal norm at all sites of the)
local gradient of[(2]1) is smaller than 1¢.
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3. Results

3.1D=2+1

In this case, our findings in fig. 2 are in fair agreement to previous latticelesions [#[5].
Our improved gauge fixing scheme has again the tendency to suppressah@igppagator in the
infra-red, but sinc®(|p|) — 0 at smallp| even without gf. improvment, thgualitativebehaviour
of the gluon propagator is unchanged.

In the UV, we observe scaling in the sense that the various propagatascior different
values of the coupling can be multiplied by a momentum-independent faZt@®) such that alll
curves coalesce to a single line. There is a tendency for the scaling tosheelfsct than without
the gf. improvement, but this is well below the error bars of our numericallaiion.

Quantitatively, the suppression of the gluon propagator in the infra-rad large as 10% —
15%. To fit the curve in the deep IR and UV region, we have placed twootutbe data. In the
IR, a power ansatz yields

D(lpl) = p|*- (1 +Calpl*+- ), a ~ 0.85(10). 3.1)

Since the curve flattens towards the maximum, the expanénsomewhat depending on the exact
location of the IR cut. A\ = 0.5GeV, we havex = 0.81, while it increases to the above value
o = 0.85 for A = 0.4GeV. With our present lattice sizes, we cannot go much lower with the IR
cut, but the present trend does certainly not rule out the valeel preferred by Hamiltonian
approacheqJ1].

In the ultra-violet, a power-law decay

D(lp) ~Ip[7Y,  y~15(1) (3.2)

is possible, but the exact value of the expongdepends quite sensitively on the location of the
UV cut. A double-logarithmic plot in the deep UV i®t a straight line at large momenta, which
points to sizeable logarithmic corrections. In fact, an ad-hoc ansatz
1
Ip|-In|p|®

with d = 0.51 can fit the data equally well. The conclusion is that our present dasandbeontain
large enough momenta to distinguish between a logarithmic or a power-likeibehawvthe UV.

D(p)

3.2D=3+1

The left panel of fig. 3 shows the results for the largest lattice that weidered. The improved
gf. scheme is now seen to makeguaalitativedifference, both in the IR and the UV.

At low momenta, the propagator is cleadyppresseds compared to less intricate gf. proce-
dures. The power-law fit explained in the last subsection reveals agéhent of

a ~0.24(12),

again with significant variations as the IR cut on the data is changed. Hoveevaluex =0, i.e. a
gluon propagator going to a constantas- 0 [A,[B] seems much more unlikely than the vanishing
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Figure 2. The renormalised equal-time gluon propagator for variaugptings and lattice sizes. For the
significance of the two data cuts, see the main text.

D(0) = O predicted by variational calculatiofi [1]. On the other hand, the comparigith the
D = 2+ 1 case indicates that much smaller momenta must be sampled to rule out one oethe oth
option.

In the UV, the most striking difference to previous lattice results is the aksehperfect
scaling, i.e. the gluon propagator does not seem to be multiplicatively relieabia. This can be
clearly seen in the logarithmic plot in the right panel of fig. 3. In a multiplicativelyormalisable
situation, we would expect the curves for all couplify have the samslopeat large momenta
—which is clearly not the case.

One can now proceed and renormalise anyway such that a common anrie observed in
one p-region or the other (the right panel of fig. 3 has been renormaliseduefiiin the IR). In
particular, one could try to fit the deep UV region, at the expense offisiity a common curve in
the IR. From such a fit, it is even possible to extract a power-like behaviou

D(p) ~ [p|™“, a=157.

which is in fair agreement with reff][4]. Our present data, howevegsdwt warrant such a pro-
cedure. In particular, an ad-hoc logarithmic ansatz as in the last sulsseaiidd work equally
well. To summarize, the scaling violations displayed by our improved gf. scla@enso severe
that any attempt to extract a consistent UV behaviour from a multiplicativermeadisation seems
ill-adviced.

Comparable problems with renormalisation were also found in other studiesyengpim-
proved gf. schemes. Continuum perturbation theffry [9] attributes tHegaaolations to the
instantaneous nature of the propagator considered here.

4. Summary and conclusions

In this talk, | have presented first results for the equal-time gluon propageeasured in an
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Figure 3: Left panel: The equal-time gluon propagator for variousigal of the coupling constant. The
gauge fixing includes preconditioning and a minimum of 3h@virepetitions for each measurement; mul-
tiplicative renormalisation focused on the IR data. Riglgl: The same data in a logarithmic plot.

improved Coulomb gauge fixing scheme. The general observation is a cagn#uppressiorof
the propagator in the infrared, andoss of scalingat very large momenta. Although the numerics
is not fully compelling, the IR data points ®(0) = 0 as a likely scenario even f&r=3+1. The
failure of multiplicative renormalisation in the UV has also been observed im sthdies treating
Coulomb gauge with improved gf. techniques; in perturbation theory, thigdagian presumable
be attributed to a loss of covariance for the equal-time propagator.

To make the present numbers more convincing, we have to go to smaller mowigictamay
involve a simulated annealing step in the gf. pipeline. To get a handle on tihegssaue, it would
also be interesting to study the gluon propagator at non-equal times, usimgpdete gauge fixing
that also destroys the residual symmetry in Coulomb gauge. Further intigstgyavolve the
ghost propagator and the Coulomb form factor, which are of immediatearetevfor the physics
of the gauge system. These studies are currently underway and wikberped elsewhere.
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