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1. Introduction

The confinement puzzle has been with us ever since the birfuarftum chromodynamics
(QCD). By means of lattice calculations, it has been possibpenetrate the infrared nonperturba-
tive sector of QCD and recover a confining potential betweséati¢) quarks [1]. At present, how-
ever, available lattice sizes do not suffice to describe tlemGfunctions in the deep infrared [2].

The continuum approach, on the other hand, has the intgdieiature that the infrared limit
can be studied asymptotically. In the last decade, a newrsitasieling of infrared QCD has arisen
from studying continuum Yang-Mills (YM) theory via Dysorel8wvinger equations. The Landau
gauge has the advantage of being covariant and therefooeiriged many to intensive investiga-
tion of the infrared properties of YM theory [3, 4]. In Coulbrgauge, non-covariance brings about
severe technical difficulties which are only recently onthege of being overcome [5]. Neverthe-
less, the Coulomb gauge might be the more efficient choicdemwtify the nonabelian degrees of
freedom. It is well-known that screening and anti-scregmiontributions to the interquark poten-
tial are neatly separated in Coulomb gauge perturbaticoryt{]. As for the infrared domain, the
Gribov-Zwanziger scenario serves as a transparent condimemechanism [7, 8].

A further advantage of working in the physical Coulomb gaigyéhat one may pass over
to a Hamiltonian description. This opens up direct acceghdoheavy quark potential via the
expectation value of the Hamiltonian. In recent years,atimmal methods have been pursued to
solve the Yang-Mills Schrédinger equation with a Gaussigre tof wave functional [9, 10, 11,
12]. Despite Feynman’s critique [13], it turns out that thever functional is sensitive to infrared
modes and the variational method a powerful tool, at leasthfe qualitative description of YM
theory. With careful treatment of the operator ordering sufdmb gauge [14], it is possible to
find a strictly linearly rising heavy quark potential. We ogpon the latest results found in the
Hamiltonian approach to YM theory in Coulomb gauge. Thidudes the full calculation of gluon
and ghost Green functions and a running coupling. Furthesptbe 't Hooft loop, an (dis-)order
parameter for confinement, will be calculated using theltesitithe Green functions.

This paper is organized as follows. In section 2, the YantsMiamiltonian in Coulomb
gauge and the equations of motion are introduced. The lattielbe solved variationally and the
heavy quark potential and the running coupling are predeintsection 3. The 't Hooft loop is
discussed in section 4 and conclusions are given in section 5

2. Yang-Mills Schrodinger equation and Dyson-Schwinger eggtions

In the canonical quantization approach, we choi&) = 0 and impose the usual equal-time
commutation relations among the gauge fiafidx) and the conjugate momenturtf(x) to arrive
at the Weyl gauge Hamiltonian. Singég originally serves as the Lagrange parameter of the Gauss
law, the choice of Weyl gauge requires a restriction on tHbétli space,

DN W) = —gom W) (2.1)

whereg is the gauge couplingy3,(x) the density of external color charges, szfﬁ’ = &.5ab+gAiab
with A2 = A°fach_ Fixing the residual time-independent local gauge inveréaby the Coulomb
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gauge,dA; = 0, and eliminating the longitudinal part of the momentumraps I by means of
the Gauss law (2.1), one arrives at the Hamiltonian thatrdpenly on transversal fields,

H:%/(/1HJH+BZ+92/1PF/p)- (2:2)

The appearance of the Faddeev-Popov determinéafa| = det—D[A]J) is due to a non-trivial
change of coordinates to the transverse fields and turn® dog trucial to the infrared properties
of the theory. The latter term in Eq. (2.2) describes the Qb interaction of dynamical and
external chargep = —AlM + pny, via

F2(xy) = (x,a| (-D3)~*(~0%)(~Dd) " |y.b) (2.3)

and reduces to the familiar Coulomb law in the abelian theory
With the Hamiltonian (2.2) at hand, we may apply the varisioprinciple to find the wave
functional W[A] = (A|W). Inspired by QED, we choose [10]

WA — % / 9Aexp<—% / AwA) 2.4)

with a normalization constant/”. The factor of # ~%/2is chosen to alleviate the computation of
expectation values, similar to defining radial states inntwa mechanics. A different power of
# in the wave functional does not change the properties ofdhgisn [15]. One may think of
the variational parametev as in the inverse of the gluon propagator,

DP(x.y) = (W ATRIAL(Y) %) = 55%% (90 (xy) 25)

with tj; being the transverse projector. It is determined by solthe functional Schrodinger
equation, i.e. minimizing the enerd| H |WV). This gives rise to a non-linear integral equation in
w which we refer to as the gap equation. It was derived to tveg-larder in the energy in Ref. [10]
and reads in momentum spase={ |K|)

wW?(K) = K2+ x2(K) 4+ 1o(K) +12 . (2.6)

Here, x (k) abbreviates the so-called curvature and it is related by

. d® ~ . d(lk—q|)d
X0 = [ s (1 (o) A0S @7)
to the ghost propagator
(W] (=D3) 1 W) = é% : (2.8)

A Dyson-Schwinger equation for the ghost form faadanay be derived from the path integral, or
alternatively from the following operator identity fG{A] = (—Dd) *,

GAl = (=02) '+ (—0%) ' gAIGIA (2.9)
which yields 5
gy -1 Ne o diq o s o d(lk —al)
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Both in the ghost Dyson-Schwinger equation (2.10) and iretiu@ation for the curvature (2.7), we
have approximated the proper ghost-gluon vertex by itslaesl counterpart iO. This amounts to
the factorization

(AGIA]) = Dij (GIAI ) GIA]) ~ Dy (GA)) '} (G[A]) . (2.11)

The non-renormalization of the ghost-gluon vertex in gaughbere the gluon propagator is trans-
verse, such as the Coulomb and the Landau gauge [16, 17gsisgbat the above approximation
is a good one. Dyson-Schwinger studies in both four and t#limensional Landau gauge as well
as lattice calculations in four-dimensional Landau gaumg#iomed that the dressed vertex is close
to tree-level [18]. The case of three-dimensional Landaiggaesembles the Coulomb gauge and
therefore we adopt the approximation (2.11). This vertei-nenormalization will have crucial
impact on the IR sector of the solutions.

The other momentum dependent tditk) in the gap equation (2.6) reads

d3 o od(k—q)%f(k — - K)? — (k)2
|w(k):% #(H(k.q)z) ( (S)_q()2 a) [w(@) X(Q);(é()( ) — w(k)

and is due to the Coulomb interaction part of the Hamiltonielere, the form factof measures
the deviation from the factorization of the Coulomb potainti

(2.12)

(GIA|(~0%)GIA]) = (G[A]) (~9) f (GIA]) . (2.13)

In the infrared, we sef (k) = 1, factorizing the expectation value for the Coulomb prapag
(2.13) equivalently to the one for the ghost-gluon verte@ (2.11). In the ultravioletf (k) is
treated perturbatively, see [10].

In order to fix the Coulomb gauge uniquely, configuration spawist be restricted to the
compact fundamental modular region. As suggested in [&] ghtails the “horizon condition” for
the ghost form factor,

d~0)=o0. (2.14)

As we shall see, the horizon condition (2.14) has the coresegpithat all form factord, x andw
diverge in the infrared.

3. Green functions, heavy quark potential and running couping

The ultraviolet divergences encountered in the gap equéfi®) are removed by subtracting
the equations at an arbitrary renormalization sgaleAlternatively, one can eliminate the diver-
gences by adding appropriate counter terms to the YM Hamiétoand tdn_# [19]. This elim-
inates the UV-divergent constalf} from Eq. (2.6) and involves some renormalization constants
one of them can be chosen @s- limy_o(w(k) — x(k)) and fixed by the requirement of minimal
energy to be = 0. For details, see Ref. [20].

The solutions for the form factows(k), d(k) andx (k) can be seen in Fig. 1. In the asymptotic
infrared, the gluon form factosw(k) approaches the curvatusgk), reflecting the dominance of
ghost degrees of freedom, cf. Landau gauge [4]. VXitk) being infrared enhanced, the ghost
content of the solution makes propagation of gluons ovenasgtically large distances impaossible,
hence gluons are confined.
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Figure 1: Left: the gluon form factoro(k) and the curvaturgy (k)|. Right: the ghost form factat(k).

The correlation of the asymptotic infrared power laws is tiuhe non-renormalization of the
ghost-gluon vertex,

w(k):x(k)wd(k)rv%, fk)=1, k—0. (3.1)

Without imposing the horizon condition (2.14), solutionslf ¥ andw can be found that approach
finite values in the infrared [19] so that the energy funaiida dominated by the ultraviolet modes,
as speculated by Feynman [13]. Conversely, the infraredptaw solution (3.1) where the horizon
condition is satisfied are not subdominant to ultravioleda®and turn out independently of the
details of the wave functional. Even a stochastic vacu#pA] = 1, would produce the same results
for the infrared [15]. One may therefore be confident usirguriational principle.

The infrared enhancement of the form factos&k) andd(k) is qualitatively reproduced by
recent lattice calculations [21].

Equipped with the ghost form factdrk), the heavy quark potential can be found by choosing

pa(x) = 5% (5<3> (x—1/2) — 83 (x+r /2).) (3.2)

and recalculating the enerdid) with fixed w. There is only one contribution to the energy that
depends on the distancdetween the quarks. Using Eq. (2.13), it reads

2 C 43q A2

Ve(r) = g§/<‘PI PmF pm [¥) = / (gn?3 d ((2;(‘1) (1-€97). (3.3)
With the infrared behavior of the form factors (3.1), we fihdtiV;(r) rises linearly in the infrared
and thus confines heavy quarks as shown in Fig. 2. By matchaglope of the linear potential to
the lattice string tensioa, one may set the scale.

Apart from the solution in Fig. 1 with the asymptotic infrdrieehavior (3.1) there is one further
solution with slightly different infrared exponents foretipower laws. The latter was discovered
first [10], however, it does not have the same attractivaufeatas the one in Fig. 1. In particular,
the heavy quark potential is strictly linearly rising ontyr the solution presented here.

A nonperturbative running coupling may be extracted fromghost-gluon vertex [17, 11],

a(k) = %kdz(k) w k), (3.4)
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Figure 2: Right: the Coulomb potenti& (r). Right: the running coupling (k).

With a tree-level vertex, it can be shown that one finds a finitlie in the infrareda (0) =
1671/(3N¢) [11]. In the ultraviolet, we find the correct/In(k/u) scaling from one-loop pertur-
bation theory. However, the first coefficient of the beta fiorg [y, is off by a factor of §11.
This is due to the approximations and requires further tiyason. Recent lattice calculations
in Coulomb gauge [22] show qualitative agreement with thmnitng coupling presented here. In
comparison to the analogous running coupling in the Landaigeg [4], we do not find a bump for
intermediate momenta yielding a spurious zero in the betation. Note thatr (k) in Fig. 2 is a
monotonic function.

4. The 't Hooft loop

A (dis-)order parameter of confinement is the 't Hooft Io®f{C)) [23] whose operatoy (C)
is defined by the relatiod (C;)W(Cy) = ZHC1C)W(C,)V (Cy), whereW(C) is the operator of the
spatial Wilson loopZ is a (non-trivial) center element of the gauge group kf@;,C,) denotes
the Gaussian linking number. An explicit realizationdfC) in continuum Yang-Mills theory was
derived in ref. [24] and is given by

V(C):exp[i /d3wia[0](x)n?(x) . 4.1)

Here.o7[C] denotes the gauge potential of a (spatial) center vortexseshtagnetic flux is localized
at the loopC. SinceV(C)¥(A) = W(A+ /[C]) the 't Hooft loop is a center vortex generator.
Using the wave functional found in the variational solutafrthe Yang-Mills Schrodinger equation
in Coulomb gauge, as described above, the expectation Pal@) = exp(—S(C)) was evaluated
for a planar circular loofC and is was found that the exponent®(C) obeys a perimeter law
signaling confinement [20]. This result is in accord with timear behavior found for the static
color potential.

5. Conclusions

We have solved the Yang-Mills Schrodinger equation appnaxely and thus determined the
vacuum wave functional. Our solutions exhibit the phencanehconfinement of gluons as well
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as heavy quarks. As an improvement on previous results,dheyhquark potential rises strictly
linearly. The nonperturbative running coupling deriveahfrthe ghost-gluon vertex was presented
and the 't Hooft loop was calculated. It is promising that thsults have the crucial features of
nonperturbative physics, and that calls for further ingegions in the Hamiltonian approach.
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