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1. Introduction

The long-distance color-dependent forces among quarks and ghwerthe key quantities
for the understanding of the internal structure of hadron as well as coldinement dynamics.
Quark interactions at short distances are characterized by one-gkotvange potential, while
the confinement phenomena emerging at the hadronic scale (1fm) cam migtsbribed in the
perturbation theory.

In order to investigate the color-dependent heavy-quark potential itigel®CD simulation,
we adopt the Coulomb gauge that has an intuitive physical picture of -glaok dynamics. The
gluon has two physical transverse modes and the Coulomb gauge hagativenmetric compared
with the covariant-type gauge. In particular, the time-time-gluon componemtrais a color-
Coulomb instantaneous interaction, which becomes important for studyimk-goand system.

The color confinement scenario in the Coulomb gauge has been extgssidied in various
situations[1, 2, 3, 4, 5, 6, 7, 8, 9]. This scenario was originally dismi®y Gribov [10], and in
recent years, has been advocated by Zwanziger [1]. The colde@b instantaneous potential
produces color confinement and lattice numerical simulations have already shatVeqy (R)
behaves as a linearly rising potential at long distances [4, 5, 6, 7].

A non-perturbative calculation on the confining color-dependenefaas carried out by using
the lattice QCD simulation in Ref. [11]. Using Polyakov line correlators (PLI2),[one can
calculate the color-dependend andqq (diquark) potentials on a lattice. However, there exists the
color-singlet state in nature and the singularity of the color-non-sing&trol may emerge as the
lattice volume effect, which has not been investigated in the previous stlifiyjdditionally, there
have been some of lattice studies which mainly focused on the diquark s&(it8)r14, 15, 16].
It has been furthermore confirmed that in the deconfinement phasealthelependent potentials
are color-screened [17, 18, 19, 20].

In this paper, we report lattice QCD calculations of the color-dependentitvark potentials
with the PLC in the Coulomb gauge, and mainly discuss the finite size volume effélazbse
color non-singlet potentials. In section 2, we summarize the importance obtbhe@oulomb
instantaneous potential in the Coulomb gauge. In section 3, the numeriaits @sd the analyzes
are given. Section 4 is devoted to our summary.

2. Color-dependent potentials

2.1 Instantaneous potential in the Coulomb gauge QCD

The Coulomb gauge QCD has been quantized through the Faddeev-eopnique [1] and
renormalizability of this theory has been also proved in terms of the Hamiltonhagrangian
formalism [2, 3]. The use of the Coulomb gauge as a physical gaugeuedd<slassify transverse
gluon modes and an instantaneous interaction, which is required to makelmuard states in
analogy with QED.

The Hamiltonian of QCD in the Coulomb gauge can be given by

H=3 [ @XER +BR) + [ dxdyp® 7 (%9)p(), 1)
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whereEi”, B; and p are the transverse electric field, the transverse magnetic field and the color
charge density, respectively. The functiéhin the second term is made by the Faddeev-Popov
(FP) operator in the spatial directiod, = —Dd = — (92 +gA x d),

1 = 1
7/(2’37):/dsz[M(z,Z)(_aé)M(zy) . 2.2)

From the partition function with Hamiltonian Eq. (2.1), one can evaluate the time-limoa g
propagator composed of the following two parts:

0*(Ao(X)Ao(y)) = g°Doo(X—Y) =V (X—y) +P(x—Y), (2.3)

where
V(x—y) = g%V (%,9))8(xa — ya). (2.4)

The equation (2.4) is the instantaneous color-Coulomb potential at equal tidheaaises anti-
screening, so that this potential should be a confining potential to attradtgjin hadron. Note
that Eqg. (2.4) in the case of QED as a non-confining theory is identifiedCasibmb propagator
(—1/02) or a Coulomb potential /.
2.2 Color-Coulomb instantaneous potential on the lattice

In this study we employ a partial-length Polyakov line (PPL) which can beetkfis [4, 5]
T
L(KT): r!UO(XJ)’ T:1727"'7Nt- (25)
t=

HereUp(X,t) = exp(iagAo(X,t)) is anSU(3) link variable in the temporal direction adg, Ag(X;t)
andN; represent the lattice cutoff, the gauge coupling, the time component ofa gatential and
the temporal-lattice size. A PPL correlator in the color-singlet channel iseteby

Gi(RT) = %(Tr[L(R,T)LT(O,T)D, (2.6)

whereR stands folX|. From Eq. (2.6) one evaluates a color-singlet potential,

Gl(RvT)
VIRT)=I —_— . 2.7
For the smallest temporal lattice extension we define

HereV (R, 0) in the Coulomb gauge is assumed to be the color-Coulomb instantaneous potential
Veoul(R). TheV (R T) inthe limit T — o becomes the Polyakov line potential. These two potentials
are expected to satisfy Zwanziger's inequallynysR) < Veoul(R) [21], whereVpnygR) is the
physical potential extracted from the Wilson loop. We finally apply the alaiseussion to the
otherSU(3) color-dependent potentials between two quarks [12].
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2.3 Infrared divergence of the color-dependent potential

In the Coulomb gauge QCD the color-singlet interaction only cancels theédfdivergence
[5]. For the instantaneous potential wih= Xo — Yo (EQ. (2.2)) we introduce the ansatz

2 -
V(R) =Tf‘T2b/ (ZdI?)sd (png(p)éﬁ'R,

(2.9)

whered(p) is the expectation value of the Faddeev-Popov operatoif godmeans the deviations
of the factorization [23, 24]. On the other hand, the self-energy inieranot depending on the

distanceR is written as 45 d2p)f(p)
f(p

S — (TR 2/ P P 2.1

where the Casimir invariarff;?)? = 4/3 in the fundamental representation of 8ig(3) group.
The infrared (not ultraviolet) divergence emerges in both Eps. (2@)Y210). If the term

d?(p) f(p) behaves agl/,/p)?-1/p that would be responsible for the linear potentiat- 1/p*,
as have been analyzed in the Refs. [24, 27], then the infrared siiiggamrelated to the linear
potential arise from two terms:

=

VIS( ):47T(Tf‘T2b)/ dp;z, Z'S:4T[(Tia)2/ dpplz. (2.11)
0 0

As a result, they are completely cancelled in the case of the color-singletsesiation since
(TETP) + (T3)? = (—4/3) + 4/3 = 0. Meanwhile, the other cases are proportional to the following
factors: 32, 2/3, 5/3 for 8, 3* and 6, respectively, implying that the color-sextet channel may
diverge most strongly.

3. Numerical Results

3.1 Simulation parametersand statistics

We performSU(3) lattice gauge simulations in the quenched approximation to calculate the
color decomposed PPL correlators. The lattice update was done by thbateavonte Carlo
algorithm with a plaquette Wilson gauge action. The lattice configuration nurfiretse 18, 24*
and 32 lattices are 600, 700 and 320; additionally, in order to investigate the volupandence,
we added the Band 12 lattices with 200 configurations. The lattice configurations updated are
fixed to the Coulomb gauge by the iterative gauge fixing method [22], andseeise the temporal
gauge fixing that does not affect the Coulomb gauge feature. The latligeircg constanf for
all the lattices is fixed t0.9 corresponding to the lattice cut-afi~ 0.12fm[25].

3.2 Color-dependent potentials

Figure 1 shows numerical results for the color-Coulomb instantaneoustiabté&( R, 0), in the
color-singlet, color-octet, color-sextet, color-triplet (antisymmetric) dedé We find that both
the color-singlet; and color-antitriplets- potentials yield attractions at all distances, and are
linearly rising potential at large distances. On the other hand, the calet™a@and color-sextéts
potentials are repulsive forces.
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Figure 1: Lattice numerical results of color-Coulomb

. ) Figure 2: Effective string tensions for the color-
instantaneous potentials between two quark8.=( . p . . .

singlet and color-antitriplet channels in lattice units.
5.9,a~0.12fm)

We calculate an effective string tension for the color-singlet and caititriplet channels.
Here the effective string tension is definedkas- V(R+ 1) —V(R) in lattice units, which should
be a constant for large quark separations if it is a confining potential vitfita string tension. In
Fig. 2 we find that the Ks become stable over approximdedy3 ~ 4 as the lattice size increases.
When we use the data fit= 3— 6 (R= 3—5 for the 18 lattice), we plotted in Fig. 3 the ratio
K1/Ks+, which is found to be close 16;/Cs- = 2. Note that our definition of the color-Coulomb
instantaneous part on a lattice in terms of the PPL correlator (Eq. (2.83) mecompletely
exclude a vacuum polarization effect.
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Figure 3: The vertical axis stands for the ratio%:igure 4 The volume dependence for the color-

Kl_/K3* of the string ten5|on§ in the S!”Q'et and ahaependentinstantaneous potentials at the distaree
titriplet channels and the horizontal axis is the spatlil scaled by th¥s(1,0) on the 8 cubic lattice

lattice size.

3.3 Divergence of color-nonsinglet potentials

Here we consider the infrared divergence property of the coloem#gnt potentials while
the string tensions obtained from them have little volume dependence as shtenprevious
section. The short-distance Coulomb teri/R, which is not related to the color confinement,
may not matter on this argument. Figure 4 shows our non-perturbative iwairresults, by which
we find that the color-singlet potential has little volume dependence and soéusbvalue of the
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color-nonsinglet potentials increases with the lattice volume. In addition, FignpHdes that the
magnitude of the divergence on the finite lattice seems to depend on the ragetb&in10 for 3,
8 and 6 as observed in the section Il. E; however, note that they wiligvequally to infinity in
the large volume limit. This indicates that the color-nonsinglet quarks carxisvirrdependently;
finally, they will become a color-singlet state with finite energy to compensatdficient color
degrees of freedom.

This numerical result does not contradict the Dual-Ginzbulg-Landaungicin which one
understands that the color-singlet flux between two quarks is shrunk kkeng while the color-
non-singlet flux will radiate rather than produce a closed string.

4. Summary

We have tried to calculate the long-distance color-dependent confiningsfietween two
quarks in the quencheslU(3) lattice simulation with the Polyakov line correlator. We here focus
the color-Coulomb instantaneous term in the Coulomb gauge QCD, which&asiseussed in the
Gribov-Zwanziger confinement scenario and is required to make themadund state consisting
of quarks.

Our numerical simulation shows that the color-singlethannel as well as the color-antitriplet
qq (di-quark) channel causes a linearly confining potential at large dista he other color-octet
and color-sextet channels at large distances yield also repulsivesfattich are weaker than the
attractive ones. In addition, we find that the string tensions in the cololesiaugd color-antitriplet
channels have not significant volume dependence.

We also investigated the infrared divergence of color-non-singlehpate and find that the
divergence on the finite lattice seems to be proportional to the color (Casawioyf In the infinite
volume limit the color-dependent potentials except the color-singlet chantealiverge. This
conclusion is consistent with the Dual-Ginzburg-Landau picture of the colafinement.

This approach that we take notice of the color-Coulomb instantaneousi@giie suitable for
further work to investigate three-quark color-dependent forcethounderstanding of baryons as
well as new multiquark particles. It is also necessary to study how the mapolarization term
affects the instantaneous forces because it is reported in Refs 6]ithaPthe octet (adjoint) chan-
nel calculated by the Polyakov line correlator with the vacuum polarizatiesghe complicated
distance dependence at large distances.
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