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also address the divergence problem of the color-non-singlet channels.
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1. Introduction

The long-distance color-dependent forces among quarks and gluonsare the key quantities
for the understanding of the internal structure of hadron as well as color confinement dynamics.
Quark interactions at short distances are characterized by one-gluonexchange potential, while
the confinement phenomena emerging at the hadronic scale (1fm) can not be described in the
perturbation theory.

In order to investigate the color-dependent heavy-quark potential in a lattice QCD simulation,
we adopt the Coulomb gauge that has an intuitive physical picture of quark-gluon dynamics. The
gluon has two physical transverse modes and the Coulomb gauge has no negative metric compared
with the covariant-type gauge. In particular, the time-time-gluon component generates a color-
Coulomb instantaneous interaction, which becomes important for studying quark-bound system.

The color confinement scenario in the Coulomb gauge has been extensively studied in various
situations[1, 2, 3, 4, 5, 6, 7, 8, 9]. This scenario was originally discussed by Gribov [10], and in
recent years, has been advocated by Zwanziger [1]. The color-Coulomb instantaneous potential
produces color confinement and lattice numerical simulations have already shown thatVcoul(R)

behaves as a linearly rising potential at long distances [4, 5, 6, 7].

A non-perturbative calculation on the confining color-dependent force was carried out by using
the lattice QCD simulation in Ref. [11]. Using Polyakov line correlators (PLC) [12], one can
calculate the color-dependentqq̄ andqq (diquark) potentials on a lattice. However, there exists the
color-singlet state in nature and the singularity of the color-non-singlet channel may emerge as the
lattice volume effect, which has not been investigated in the previous study [11]. Additionally, there
have been some of lattice studies which mainly focused on the diquark structure [13, 14, 15, 16].
It has been furthermore confirmed that in the deconfinement phase, the color-dependent potentials
are color-screened [17, 18, 19, 20].

In this paper, we report lattice QCD calculations of the color-dependent two-quark potentials
with the PLC in the Coulomb gauge, and mainly discuss the finite size volume effectof those
color non-singlet potentials. In section 2, we summarize the importance of the color-Coulomb
instantaneous potential in the Coulomb gauge. In section 3, the numerical results and the analyzes
are given. Section 4 is devoted to our summary.

2. Color-dependent potentials

2.1 Instantaneous potential in the Coulomb gauge QCD

The Coulomb gauge QCD has been quantized through the Faddeev-Popovtechnique [1] and
renormalizability of this theory has been also proved in terms of the Hamiltonian and Lagrangian
formalism [2, 3]. The use of the Coulomb gauge as a physical gauge leadsus to classify transverse
gluon modes and an instantaneous interaction, which is required to make quark bound states in
analogy with QED.

The Hamiltonian of QCD in the Coulomb gauge can be given by

H =
1
2

∫

d3x(Etr2
i (~x)+B2

i (~x))+
1
2

∫

d3xd3y(ρ(~x)V (~x,~y)ρ(~y)), (2.1)
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whereEtr
i , Bi andρ are the transverse electric field, the transverse magnetic field and the color

charge density, respectively. The functionV in the second term is made by the Faddeev-Popov
(FP) operator in the spatial direction,M = −~D~∂ = −(~∂ 2 +g~A×~∂ ),

V (~x,~y) =
∫

d3z

[

1
M(~x,~z)

(−~∂ 2
(~z))

1
M(~z,~y)

]

. (2.2)

From the partition function with Hamiltonian Eq. (2.1), one can evaluate the time-time gluon
propagator composed of the following two parts:

g2〈A0(x)A0(y)〉 = g2D00(x−y) = V(x−y)+P(x−y), (2.3)

where

V(x−y) = g2〈V (~x,~y)〉δ (x4−y4). (2.4)

The equation (2.4) is the instantaneous color-Coulomb potential at equal time and causes anti-
screening, so that this potential should be a confining potential to attract quarks in hadron. Note
that Eq. (2.4) in the case of QED as a non-confining theory is identified as aCoulomb propagator
〈−1/∂ 2

i 〉 or a Coulomb potential 1/r.

2.2 Color-Coulomb instantaneous potential on the lattice

In this study we employ a partial-length Polyakov line (PPL) which can be defined as [4, 5]

L(~x,T) =
T

∏
t=1

U0(~x, t), T = 1,2, · · · ,Nt . (2.5)

HereU0(~x, t) = exp(iagA0(~x, t)) is anSU(3) link variable in the temporal direction anda, g, A0(~x, t)
andNt represent the lattice cutoff, the gauge coupling, the time component of a gauge potential and
the temporal-lattice size. A PPL correlator in the color-singlet channel is defined by

G1(R,T) =
1
3

〈

Tr[L(R,T)L†(0,T)]
〉

, (2.6)

whereR stands for|~x|. From Eq. (2.6) one evaluates a color-singlet potential,

V(R,T) = log

[

G1(R,T)

G1(R,T +a)

]

. (2.7)

For the smallest temporal lattice extension we define

V(R,0) = − log[G1(R,1)]. (2.8)

HereV(R,0) in the Coulomb gauge is assumed to be the color-Coulomb instantaneous potential
Vcoul(R). TheV(R,T) in the limit T →∞ becomes the Polyakov line potential. These two potentials
are expected to satisfy Zwanziger’s inequality,Vphys(R) ≤ Vcoul(R) [21], whereVphys(R) is the
physical potential extracted from the Wilson loop. We finally apply the abovediscussion to the
otherSU(3) color-dependent potentials between two quarks [12].
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2.3 Infrared divergence of the color-dependent potential

In the Coulomb gauge QCD the color-singlet interaction only cancels the infrared divergence
[5]. For the instantaneous potential withR= x0−y0 (Eq. (2.2)) we introduce the ansatz

V(~R) = Ta
1 Tb

2

∫

d~p
(2π)3

d2(p) f (p)

p2 ei~p·~R, (2.9)

whered(p) is the expectation value of the Faddeev-Popov operator andf (p) means the deviations
of the factorization [23, 24]. On the other hand, the self-energy interaction not depending on the
distanceR is written as

Σ = (Ta
i )2

∫

d~p
(2π)3

d2(p) f (p)

p2 , (2.10)

where the Casimir invariant(Ta
i )2 = 4/3 in the fundamental representation of theSU(3) group.

The infrared (not ultraviolet) divergence emerges in both Eps. (2.9) and (2.10). If the term
d2(p) f (p) behaves as(1/

√
p)2 ·1/p that would be responsible for the linear potentialV ∼ 1/p4,

as have been analyzed in the Refs. [24, 27], then the infrared singularities unrelated to the linear
potential arise from two terms:

V IS(~R) = 4π(Ta
1 Tb

2 )
∫ ∞

0
dp

1
p2 , ΣIS = 4π(Ta

i )2
∫ ∞

0
dp

1
p2 . (2.11)

As a result, they are completely cancelled in the case of the color-singlet representation since
(Ta

1 Tb
2 )+(Ta

i )2 = (−4/3)+4/3= 0. Meanwhile, the other cases are proportional to the following
factors: 3/2, 2/3, 5/3 for 8, 3∗ and 6, respectively, implying that the color-sextet channel may
diverge most strongly.

3. Numerical Results

3.1 Simulation parameters and statistics

We performSU(3) lattice gauge simulations in the quenched approximation to calculate the
color decomposed PPL correlators. The lattice update was done by the heat-bath Monte Carlo
algorithm with a plaquette Wilson gauge action. The lattice configuration numbersfor the 184, 244

and 324 lattices are 600, 700 and 320; additionally, in order to investigate the volume dependence,
we added the 84 and 124 lattices with 200 configurations. The lattice configurations updated are
fixed to the Coulomb gauge by the iterative gauge fixing method [22], and we also use the temporal
gauge fixing that does not affect the Coulomb gauge feature. The lattice coupling constantβ for
all the lattices is fixed to 5.9 corresponding to the lattice cut-offa∼ 0.12f m [25].

3.2 Color-dependent potentials

Figure 1 shows numerical results for the color-Coulomb instantaneous potentialV(R,0), in the
color-singlet, color-octet, color-sextet, color-triplet (antisymmetric) channels. We find that both
the color-singletV1 and color-antitripletV3∗ potentials yield attractions at all distances, and are
linearly rising potential at large distances. On the other hand, the color-octetV8 and color-sextetV6

potentials are repulsive forces.
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Figure 1: Lattice numerical results of color-Coulomb
instantaneous potentials between two quarks. (β =

5.9,a∼ 0.12f m)
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Figure 2: Effective string tensions for the color-
singlet and color-antitriplet channels in lattice units.

We calculate an effective string tension for the color-singlet and color-antitriplet channels.
Here the effective string tension is defined asK = V(R+1)−V(R) in lattice units, which should
be a constant for large quark separations if it is a confining potential with afinite string tension. In
Fig. 2 we find that the Ks become stable over approximatelyR= 3∼ 4 as the lattice size increases.
When we use the data forR= 3−6 (R= 3−5 for the 184 lattice), we plotted in Fig. 3 the ratio
K1/K3∗ , which is found to be close toC1/C3∗ = 2. Note that our definition of the color-Coulomb
instantaneous part on a lattice in terms of the PPL correlator (Eq. (2.8)) does not completely
exclude a vacuum polarization effect.
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Figure 3: The vertical axis stands for the ratios
K1/K3∗ of the string tensions in the singlet and an-
titriplet channels and the horizontal axis is the spatial
lattice size.

0 0.025 0.05 0.075 0.1 0.125
1/L

-0.5

0

0.5

1

1.5

2

2.5

V
(1

,0
)-

V
8(1

,0
)

1
3

*

8
6

 β = 5.9

Figure 4: The volume dependence for the color-
dependent instantaneous potentials at the distanceR=

1 scaled by theV8(1,0) on the 8 cubic lattice.

3.3 Divergence of color-nonsinglet potentials

Here we consider the infrared divergence property of the color-dependent potentials while
the string tensions obtained from them have little volume dependence as shownin the previous
section. The short-distance Coulomb term∼ 1/R, which is not related to the color confinement,
may not matter on this argument. Figure 4 shows our non-perturbative numerical results, by which
we find that the color-singlet potential has little volume dependence and the absolute value of the
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color-nonsinglet potentials increases with the lattice volume. In addition, Fig. 4implies that the
magnitude of the divergence on the finite lattice seems to depend on the ratio being 4 : 9 : 10 for 3∗,
8 and 6 as observed in the section II. E; however, note that they will diverge equally to infinity in
the large volume limit. This indicates that the color-nonsinglet quarks can not exist independently;
finally, they will become a color-singlet state with finite energy to compensate insufficient color
degrees of freedom.

This numerical result does not contradict the Dual-Ginzbulg-Landau picture, in which one
understands that the color-singlet flux between two quarks is shrunk likea string while the color-
non-singlet flux will radiate rather than produce a closed string.

4. Summary

We have tried to calculate the long-distance color-dependent confining forces between two
quarks in the quenchedSU(3) lattice simulation with the Polyakov line correlator. We here focus
the color-Coulomb instantaneous term in the Coulomb gauge QCD, which has been discussed in the
Gribov-Zwanziger confinement scenario and is required to make the hadron bound state consisting
of quarks.

Our numerical simulation shows that the color-singletqq̄channel as well as the color-antitriplet
qq (di-quark) channel causes a linearly confining potential at large distances. The other color-octet
and color-sextet channels at large distances yield also repulsive forces which are weaker than the
attractive ones. In addition, we find that the string tensions in the color-singlet and color-antitriplet
channels have not significant volume dependence.

We also investigated the infrared divergence of color-non-singlet potentials and find that the
divergence on the finite lattice seems to be proportional to the color (Casimir) factor. In the infinite
volume limit the color-dependent potentials except the color-singlet channel will diverge. This
conclusion is consistent with the Dual-Ginzburg-Landau picture of the color confinement.

This approach that we take notice of the color-Coulomb instantaneous partmay be suitable for
further work to investigate three-quark color-dependent forces forthe understanding of baryons as
well as new multiquark particles. It is also necessary to study how the vacuum polarization term
affects the instantaneous forces because it is reported in Refs. [11, 26] that the octet (adjoint) chan-
nel calculated by the Polyakov line correlator with the vacuum polarization gives the complicated
distance dependence at large distances.
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