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The pseudoparticle approach is a numerical method to canmath integrals without discretizing
spacetime. The basic idea is to consider only those fieldgorafiions, which can be represented
as a linear superposition of a small number of localizedding blocks (pseudoparticles), and to
replace the functional integration by an integration olerpiseudoparticle degrees of freedom. In
previous papers we have successfully applied the pseuitdpapproach to SU(2) Yang-Mills
theory. In this work we discuss the inclusion of fermioniddgin the pseudoparticle approach.
To test our method, we compute the phase diagram of the Im#&rdiional Gross-Neveu model
in the largeN limit as well as the chiral condensate in the crystal phase.
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1. Introduction

Recently there have been several papers proposing mode&&J{@) Yang-Mills theory with
a small number of physically relevant degrees of freedomes&hmodels include ensembles of
regular gauge instantons and merons [1, 2], the pseuddpaatproach [3, 4, 5], superpositions
of calorons with non-trivial holonomy [6, 7] and an ensemblfealyons [8]. The common basic
principle is to restrict the Yang-Mills path integral to 8egauge field configurations, which can
be represented as a linear superposition of a small numlecalized building blocks (pseudopar-
ticles), e.g. instantons, merons, akyrons, calorons onglyo

These models have been quite successful, when dealing reibhepns related to confinement.
First of all, the potential of two static charges is essdigtimear within phenomenologically rel-
evant distances. Moreover, a confinement-deconfinemergeptinansition can be modeled, and
numerical results for various gquantities, e.g. the strimmggion, the topological susceptibility, the
critical temperature or the low lying glueball spectrume ar qualitative agreement with results
from lattice calculations.

However, all these models exclusively consider pure Yankghtheory. Therefore, incorporat-
ing fermions is an interesting issue. In this paper we ptdgsnsteps in this direction: we propose
a method how to deal with fermionic fields in the pseudoplgrtpproach, and we test this method
by applying it to a simple interacting fermionic theory, thel-dimensional Gross-Neveu model
in the largeN-limit.

2. Fermionic fields in the pseudoparticle approach

2.1 Basic principle

The starting point is action and partition function of angdahy with quadratic fermion inter-
action:

Sy. 0.9 = /d”R(Jmeﬂ+i%@) (2.1)
7 = /DLpDLﬁ/D(pe’SW’"‘M’], 2.2)

where@ denotes any type and number of bosonic fields, e.g. the nafiakbgauge field in QCD,
andQ is the Dirac operator, which, of course, depends on thesenboelds.

To stay close to the spirit of the pseudoparticle approaehcansider fermionic field configu-
rationsy, which can be represented as a linear superposition of arfixexdber of pseudoparticles:

W = Y MG - (2.3)
] N e’
j-th pseudoparticle
Each pseudoparticle is a product of a Grassmann valuedrspjnand a functionG;, which is
localized in space as well as in time (the term pseudopartiefers to this localization). The
integration over all fermionic field configurations is defings the integration over the Grassmann
valued spinors);:

/DwD@“,:!/<ndmdm>“. (2.4)
]
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Integrating out the fermions yields

Swad®l = [ d*Ix2(¢) ~In det((6;/QG))) ) 25)

Z 0O /D(pe—seffective[q’]’ (2.6)

where the “fermionic matrix(G;|Q|Gj) is the Dirac operator represented in the pseudoparticle
basis. We will refer to this pseudoparticle regularizataaQ-regularization, and we will shortly
point out that thigQ-regularization is not suited to produce physically meghihresults.

In the case that déD) is real and positive, d&D) = /detQTQ). This suggests another
pseudoparticle regularization:

Swand®] = [ @i 2(0) - 3In (det((6)1Q7QIG;)) ). 27)

In the following section we will argue that th@'Q-regularization has significant advantages over
the Q-regularization (2.5).

Note that using eigenfunctions of the Dirac operator as Ugeparticles” yields the well
known finite mode regularization [9, 10].

2.2 TheQ-regularization versus theQ'Q-regularization

The problem of theQ-regularization (2.5) is that applying the Dirac opera@to one of
the pseudoparticle§; in general yields a function, which is partially outside fyseudoparticle
function space spdi®n }:

QGy(x) = Zaj’ka(X) +hjHj (%) (2.8)

with Hj normalized andH; L spaq{Gp}. If | SxajkGk| > |hy|, the situation is uncritical. How-
ever, as soon as , ajxGk| < |hj|, serious problems arise: when computing the fermionic imatr
elements(G;|Q|Gj), a significant part oQGy: is simply ignored, namel;Hj, because it is
perpendicular to the pseudoparticle function space {&pah

On the other hand, th®'Q-regularization (2.7) has the following advantage: boté left
hand sidegG;|Q" and the right hand side®|G;/) of the fermionic matrix elements;|Q'Q|G;/)
might be (partially) outside to the pseudoparticle funtpace spafG,}, but they form the same
function space spd®G;}, in which their overlap is computed. Of course, the abovélera of
partially perpendicular left and right hand side functipases does not exist anymore.

For more elaborate arguments, especially why one can eip@ditain correct results from
the QTQ-regularization, we refer to [11].

3. Testing the method: the Gross-Neveu model in the pseudogtizle approach

3.1 Thel+1-dimensional Gross-Neveu model in the larg®\-limit

As a testbed for our pseudoparticle method we use the GregstNmodel [12], which is
a four fermion interacting theory witN identical flavors. Action and partition function of the
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1+1-dimensional Gross-Neveu model are given by

N 2
S ,ﬁ(n)w(m) > (3.1)

N
7 = / < M Dw<”>DLﬁ<”>>eS, (3.2)

=1

N —n n g2
S — /d2x<nzlw<>(yo(do+u)+vlc91)w“— <

whereu is the chemical potential argithe dimensionless coupling constant. To get rid of the four
fermion term, one usually introduces a scalar figldntegrating out the fermions yields

Steave = N (%/dzxaz—ln(det(vO(c?o+u)+vlc?1+a))> (3.3)

z 0 / Do g Sefective (3.4)

with A = N¢?.

In the following we consider the largg-limit, in which the model can be solved analytically
[13, 14, 15]. This amounts to using an infinite number of fladdrwhile A = N¢? is kept constant.
Note that in theN — oo limit only a singleo-field configuration contributes to the partition function
(3.4) minimizing the effective action. Note also that in thegeN limit ¢ is proportional to the
chiral condensate, i.er = —g?yN_, gV ™.

3.2 Numerical results: the phase diagram and the chiral conensate

From a technical point of view computations in the pseudigarapproach are quite similar
to those in lattice field theory. The number of pseudopasidorresponds to the number of lattice
sites, while the distance between neighboring pseudofestplays a role similar to the lattice
spacing. The scale can be set by any dimensionful quantdyitazan be changed by choosing a
different value for the dimensionless coupling constardr & recent lattice study of the Gross-
Neveu model we refer to [16].

For the following computations we apply tiEQ-regularization (2.7). As pseudoparticles we
use a large number of uniformly distributed hat functionsyerprecisely B-spline basis functions

B-spline basis functions, degree 2
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Figure 1: B-spline basis functions in one and two dimensions.
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of degree 2 (cf. e.g. [17]), which are shown in Figure 1. Therene fermionic pseudoparticle
per unit volume, the spatial extension of the periodic sgaeeregion isL; = 144 and the tem-
poral extensiorig varies, corresponding to different temperatufes 1/Lo. The main reason for
considering such pseudoparticles is that they yield a Blensét of field configurations: they form
a piecewise polynomial basis of degree 2, i.e. any not towilyeascillating field configuration
can be approximated. Therefore, if the pseudoparticle odetie have presented in Section 2 is
a useful numerical technique, we can expect to reproduaeatoGross-Neveu results. In other
words, B-spline basis functions are suitable pseudojpestior testing our approach.

At first we perform computations of the chiral condensatat chemical potentigh = 0 and
temporal extensiohy = 8 for various values of the coupling constantAs it is in lattice calcula-
tions different values ok correspond to different physical extensions of the spametegion and,
therefore, to different values of the temperature. Frorsglemmputations we determine that value
of A, whereo just vanishesA. ;.. = 1.153. For all further computations we use= A iica- BY
doing this we have set the scale, since from novwLgplays the role of inverse temperature such
thatLy = 8 corresponds to the critical temperature of chiral symyneteaking.

After that, we perform a low temperature computatioh@t 48 or equivalentlyT = T, ca/6,
to obtain an approximation of the zero temperature valuéefchiral condensateoy = 0.221.

a) o(Wog,Tlog)log — A=1.153,L; =144

b) phase diagram for homogeneous ¢ - A =1.153, L, = 144 C) o(Wog)lo, — A=1.153, L, =144
0.6 T T T T T r T T
exact phase boundary o 1t Tloy = 0.283 (first order phase transition) s |
pseudoparticle results ~ # 2 Tlog = 0.377 (second order phase transition)
0.5 ¢ * o) LT TP
. g o8t T
g o04r * K]
= - c L,y '«u-,,'
® L] 8 o6t R 2
é 03 3 oc=0 g ., “
@ S
o -,
g 0 g o 04 F .,
5 o2} # ! 2 e,
L \ 2 “
[} .
2 02r L)
01} 3 3
£ 1
S .
< s
0 . . . . . . . ol . . a . H
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.45 0.5 0.55 0.6 0.65
chemical potential Wog chemical potential w/o,

Figure 2: a) o/0p as a function ot/ gp andT /gy (red dots) together with the analytically obtained phase
boundary (blue line) and the tricritical poifyt / do, T /0p) = (0.608 0.318) separating first and second order
phase transitions (black dot)) Phase diagram for homogeneous chiral condensate (reddetsdoparticle
results; green line: analytical result). Two sections trough the phase diagram shovarigyp as a function

of u/op atT /oo = 0.283 (first order phase transition) afidap = 0.377 (second order phase transition).
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This allows us to express all dimensionful quantities imgof gg.

Now we are in a position to compute the chiral condensatebittanry temperaturd /gy and
chemical potentiali/0y. Results for homogeneous chiral condensate are shown ime=&g to-
gether with the analytically obtained phase boundary [#3,ahd the tricritical point separating
first and second order phase transitions. Pseudopartidlaraiytical results are in excellent agree-
ment both for the phase boundary (cf. also Figure 2b) anchfootder of the phase transition (cf.
also Figure 2c, where we have plottedop as a function ofu/ gy for two different values oT / oy,
one in the first order region and the other in the second oedgom).

For inhomogeneous chiral condensate a third so calledatigbtise appears [15], where the
minimum of the effective action (3.3) is not anymore givenabljomogeneous chiral condensate
o. In addition to the fermionic fields we also represern terms of B-spline pseudoparticles (for
details cf. [11]). As before, the pseudoparticle phaserdiagand the analytically obtained phase
diagram are essentially indistinguishable (cf. Figure 3a)

We have also compared the pseudoparticle chiral condensat¢he analytically obtained
chiral condensate at various poinis/ 0o, T /0p) inside the crystal phase; again, there is excellent
agreement. Figure 3b shows the emergence of a crystallinetwgte: the kink-antikink structure
close to the left phase boundary changes to a sin-like behavinen approaching the center of the
crystal phase.

Note that we have performed the same computations also athdiveQ-regularization. As
expected the results are completely wrong, e.g. there ihimally symmetric phase even in the
simple case of homogeneous chiral condensate. One cap slasW that this is inherent to the
Q-regularization and not a problem of the number or the typesetidoparticles applied [11].

a) phase diagram for inhomogeneous ¢ - A =1.153, L, = 144 1n81de the Crystal phase
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Figure 3: a) Phase diagram for inhomogeneous chiral condensate (redms#udoparticle results; green
line: analytical result).b) The pseudoparticle chiral condensate Tolop = 0.141 and different values of

U/ 0p.
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4. Summary and outlook

We have proposed a method to incorporate fermionic fieldeenpseudoparticle approach.
While the naiveQ-regularization is not suited to produce any useful restisQ'Q-regularization
has the potential to yield correct and physically meanihgdaults. The computation of the phase
diagram of the Gross-Neveu model with tREQ-regularization both for homogeneous and for
inhomogeneous chiral condensate has been a first succtsstflf the pseudoparticle approach
applied to fermionic theories.

The next step is to apply the pseudoparticle approach to Q@Daidentify a small number
of physically relevant degrees of freedom, probably femugseudoparticles, which are able to
approximate typical low lying eigenmodes of the Dirac op@raThe goal is to obtain a model
with a small number of degrees of freedom, which exhibithhabtiral symmetry breaking and a
confinement deconfinement phase transition at the same time.
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