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1. Introduction

For quite some time now the infrared behaviour of the fundamental QCD Green’s functions has
been a focus of intense study (see, e.g., the reviews [1, 2] and references therein). Nonperturbative
effects have been and continue to be investigated in parallel with various functional continuum
methods and in lattice simulations. The infrared behaviour of gluon and quark propagators and
vertex functions, especially in Landau gauge, thereby is of particular relevance for an understanding
of confinement in the covariant formulation of QCD in terms of local quark and gluon fields [1].
They also serve for model building in a hadron phenomenology based on these elementary QCD
correlations via Dyson-Schwinger and Bethe-Salpeter/relativistic Faddeev equations [1, 3, 4].

Looking back at an intensive decade of research, results obtained in studies of Dyson-Schwin-
ger equations (DSEs) [5, 6], within stochastic quantisation [7, 8], and of the functional renormal-
isation group equations (FRGEs) [9, 10] all agree in an infrared vanishing gluon propagator D
coupled to an enhanced infrared-diverging ghost propagator G. In Landau gauge these are

Z(q? J(¢?
Dzﬁ(qz):(sab(auv—q;‘;’v) EIZ) and  G(g?) = & (qqz), (1.1)

where the dressing functions Z and J are predicted to follow power laws, namely
2(q’) < (¢*)® and  J(g*)e<(q?)  for ¢*—0, (12)

with exponents satisfying kp = 2k [5]. This infrared behaviour which is determined by a single
exponent K = kg can be generalised to vertex functions with an arbitrary number of ghost and
gluon legs in a simple counting scheme for the pure gauge theory [11]. Moreover, comparing DSEs
and FRGEs the uniqueness of this behaviour has been shown in Ref. [12]. Under the additional
assumption that the ghost-gluon vertex is finite and regular in the infrared, the value of the infrared
exponent is given by x = 0.596 [6, 7, 9].

Despite intensive efforts, however, this behaviour has so far not been confirmed in simulations
of lattice Landau-gauge QCD in 4 dimensions (see, e.g., [13, 14]). Rather the results of present
lattice simulations are, more or less, in favour of a non-vanishing gluon propagator and a diverging
ghost propagator with a K value much less than that given above. The remaining discrepancy
between the functional approaches and lattice QCD results is quite unsatisfying and needs clarifi-
cation.

One attempt at a better understanding of the discrepancy has been undertaken in DSE studies
on a finite torus. For recent results see Refs. [15, 16]. There, qualitatively good agreement has
been found when comparing the momentum dependence of gluon and ghost propagators as found
in lattice QCD to the solutions from finite-volume DSEs (see, e.g., Fig. 8 in Ref. [15]). In addi-
tion, these finite-volume solutions approach the infinite-volume DSE results when increasing the
volume. Therefore, the discrepancy between the functional approaches and lattice QCD results
might be due to finite-volume effects. Also, recent lattice results for an SU(2) gauge theory in 2 di-
mensions [17] (on much larger lattices) are in quite compelling agreement with the corresponding
infrared behaviour as predicted by the continuum studies.

The objective of this study is to provide more information about the infrared behaviour of
the Landau-gauge gluon and ghost propagators from a lattice-QCD perspective. For this, we first
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Table 1: Number of configu-
rations used for the different B latt. L [fm] #conf. B latt. L [fm] #conf.

7
values and lattice sizes. Ap- 2.3 16 2.7 100 25 32 2.8 100
proximate values for the edge 23 32 55 100 25 48* 43 50

length L are also given. For this 23 56* 96 70 25 56 50 70
we set /o =440 MeV and use 23 80* 13.7 67 25 80* 7.1 23
the oa? results from Ref. [19]. 23 1124 19.2 34 2.6 484 31 100

present numerical evidence that towards the low-momentum region both propagators are indepen-
dent of whether considering SU(2) or SU(3). Given this, we then use the numerically cheaper gauge
group SU(2) to dig even deeper into the infrared region of lattice Landau-gauge QCD by using large
symmetric lattice volumes. First results of this study have been presented previously [18].

For our study we use the standard Wilson gauge action to generate SU(2) gauge configurations
for a couple of lattice sizes ranging from 16* up to 112% at B = 2.3, 2.5 and 2.6 (see Table 1 for
details). After every 2000 hybrid-overrelaxation updates, the gauge configurations are gauge-fixed
to Landau gauge using an overrelaxation algorithm. As stopping criterion we chose

max Tr [(V,VLA,W)(V“AL“)T] <1071,
X

A, u are the lattice gluon fields given here in terms of gauge-fixed links Uy ;; as

1

Acu =Ap(x+0/2) = 2aize

(U — Uxp)

traceless

On each such gauge-fixed configuration the momentum-space gluon and ghost propagators are
measured. On the lattice, the former is defined as the Monte-Carlo average of the correlator

Dyt = (AL (0A; (k)

of Fourier-transformed gluon fields Au = Az T“. The ghost propagator can be estimated by
1 b
ab _ = —1\® ik(x—y)
G (k) - Vv <§ (M )xy e >U

where M is the lattice Faddeev-Popov operator in Landau gauge. For a definition of M and details
on its inversion we refer to [20, 21] and references therein.

2. Comparing SU(2) to SU(3) results

Our results for the SU(2) gluon dressing function are shown in Fig. 1 (left) together with corre-
sponding SU(3) data taken from Refs. [14, 22]. Looking at those figures, the data for the two gauge
groups are remarkably alike almost for the whole momentum region. A small deviation, however,
is observed around the hump which becomes more pronounced upon increasing the volume.
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Figure 1: The gluon (left) and ghost (right) dressing functions vs. ¢> for the gauge groups SU(2) (colour
symbols) and SU(3) (black symbols). All data sets have been renormalised at 4 = 3 GeV. The SU(3) ghost
data are taken from Ref. [14].

The near N -independence becomes even

more striking when comparing unrenormalis- 4l | SU‘(3)1 8= 6.0, ‘48i — -
) ) ~ SU(2): B =25, 48" —e—
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the gluon dressing function beyond 1-loop. —f‘ o o o o
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normalised ghost dressing functions of both ¢ [GeV?)
gauge groups are compared in Fig. 1 (right).

Figure 2: The unrenormalized gluon dressing function
as a function of ¢* (in physical units) for the gauge

group SU(2) and SU(3).

As for the gluon propagator, the dependence
on the gauge group is rather small. This is
also the case for the unrenormalised data (not
shown). A slight deviation in the slope is visible towards low-lying momenta, however. Whether
this is a gauge-group rather than a Gribov-copy issue remains to be investigated. Note that the
Gribov ambiguity is expected to introduce some systematic error, in particular for the ghost prop-
agator at lower momenta. For example, a bias towards larger values was observed in Ref. [20]
for momenta g < 1 GeV. Since the Landau-gauge condition for SU(2) is less ambiguous than for
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SU(3) the slight deviation in the slope could be related to this rather than to N.. We leave a detailed
investigation of this for a future study.

3. Studying finite-volume effects

Given the rather small N .-dependence, a finite-volume study has been performed for the nu-
merically cheaper gauge group, SU(2). For this the coupling constant has been fixed to = 2.3.
Various lattice sizes, ranging from 16* to 112, are considered. The lattice sizes in physical units
are listed in Table 1. Our data for the gluon propagator is shown in Fig. 3 where data sets have
neither been renormalised nor cone cut.! The statistics for the 112 lattice is still rather limited.

From the figure we conclude that the finite volume mainly affects the data only at the lowest
(non-zero) lattice momentum. At larger momenta the data agrees quite well, within errors, compar-
ing different lattice sizes. This suggests that indeed a cone cut does well in reducing finite-volume
effects, but data at momenta like kK = (1,1,1,0) (or permutations thereof) need not be excluded
necessarily from the analysis.

Comparing to the DSE studies on a torus [15], the finite-volume effect seen here agrees quali-
tatively with what has been observed there. However, at the presently available volumes we cannot
confirm an infrared-decreasing gluon propagator. Note that according to Ref. [15] these volumes
are already in a range where the gluon propagator is expected to decrease towards lower momenta.
Rather, our data suggests that the gluon propagator stays finite in the zero-momentum limit. Similar
results have been presented at this conference by Cucchieri et al. [24]. See also [25].
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Figure 3: The unrenormalised SU(2) gluon propa-
gator vs. ¢> calculated using different lattice sizes at
B = 2.3. Data shown with open symbols would be
subject to a cone cut.

Figure 4: As in the left figure but for the SU(2)
ghost dressing function. For comparison we include
data from [23].

L'A cone cut [22] is usually imposed to reduce finite-volume effects. Such data is specially flagged with open
symbols here and must be interpreted with due care. This should not be confused with a cylinder cut which we do apply

to reduce discretisation errors.
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The data for the SU(2) ghost dressing function for different volumes is shown in Fig. 4. There,
a small volume (16%) biases the smaller-momentum data towards larger values. However, the dom-
inant effect in the finite-volume DSE studies is in the opposite direction. It will be interesting to
consider larger volumes to see if this effect persists. Calculations for the ghost propagator on a 80*
lattice are currently in progress and will be reported elsewhere.

4. Conclusions

We have calculated SU(2) gluon and ghost propagators in Landau gauge at different lattice
spacings and volumes. A comparison of our data with corresponding SU(3) results reveals that
there is very little N.-dependence in the propagators over the whole momentum range as first re-
ported in [18]. In particular, towards lower momenta, any signs for an N.-dependence in the gluon
propagator disappear. Similar findings have been presented in Refs. [26]. Moreover, the results
found here are consistent with an approximate overall 1 /N, -scaling of the nonperturbative running
coupling constant [5]

g5(a)

o (p) = DL 2, (7.0%) ().

Here Z;, and J, are the lattice gluon and ghost dressing functions, respectively. g% (@) is the coupling

constant at the cutoff scale 1/a. 2

Some small N.-dependence is apparent in the gluon dressing function around its hump and at
large momenta. A slight variation in the ghost dressing function towards lower momenta may or
may not be related to N.. Alternatively, this might be caused by the Gribov ambiguity which is
known to introduce a systematic uncertainty here [20].

Our finite-volume study shows that the finite-lattice extent affects the gluon propagator at the
lowest non-zero lattice momentum beyond the statistical error. The finite-volume effects quali-
tatively follow those found in DSE studies on a torus [15, 16]. Of course, the volumes used at
present, especially for the ghost propagator, may not yet be large enough to confirm the predicted
finite-volume effects. However, our data provides indication of a plateau in the gluon propagator
for momenta around and below approximately 200 MeV, or roughly Aqcp, in contrast to the DSE
results on a torus. To see the onset of an infrared suppression at even smaller momenta still re-
quires a somewhat optimistic interpretation. Similar findings for SU(3) have been presented at this
conference [28]. It will be interesting to see whether and how the results change, in particular at
low momenta, when using the slightly more expensive modified lattice Landau gauge of [29] in
comparably large volumes.
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2Note that recently a lattice study has been commenced which considers this definition of ¢ to estimate the A
parameter of QCD. First preliminary results have been presented at this conference [27].
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