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Omnes dispersion relations make a connection between factark for exclusive semileptonic
decays and phase shifts in the corresponding elastic sogttehannels. We describe two appli-
cations. In the first, we use lattice form factor calculasiém learn about phase shifts in elastic
swave isospin-12 channels foKm, Brr, Dit andDK scattering. The aim of the second appli-
cation is to make the determination of the CKM matrix elenmaagnituddV,,| from exclusive
semileptonid@ — 1T decays competitive with that from inclusive decays. Herais&many sub-
tractions in an Omnes dispersion relation to motivate a Erfifling function, allowing data to
constrain thep shape of the differential decay rate and theory, primaaitiide results, to provide
normalisation via form factor values.
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1. Omnes dispersion relations

Mandelstam'’s hypothesis of maximum analyticity and Watsdheorem relate the phases of
the form factorsf in exclusive semileptonié! — 7 decay (whereM € {B,D,K}) to the phase
shifts in the elastitl T— Mt scattering amplitudes in the correspondifigand isospin channels.
We have

ft(s+ie) T(s+ig) _ 2509
ft(s—ie) T(s—ig)

wheresy, = (my +mg)? andT (s) is the scattering amplitude, related to the phase sig} by

,  S>s (1.1)

8rmis (2509

TS = 5172 5 ~1) (1.2)

whereA is the usual kinematic function. The (inverse) scatteringlétude, in the appropriate
isospin and angular momentum channel, is found from [1, 2]
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Here,V is the two-particle irreducible scattering amplitudeis the scattering length ang is
calculated from a one-loop bubble diagram. This descripiatomatically implements elastic
unitarity, which is necessary for the phase shift to be extfrom equation (1.2).

(1.3)

For multiple multiple subtractiond,(¢?, fi) :i =0,...,n}, the Omnés result reads
n
J
rLf " xexp{ls(e (e P[] (o) (1.4)
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One can balance the number of subtractions against know/lefdd In the first application below
we use (one or) two subtractions and form-factor input imi@tion to extract the scattering length
in the corresponding elastic scattering channels [3]. &gbcond application we make many
subtractions to motivate a simple parametrisation of tmenftactors for exclusive semileptonic
B — m decays, allowing the extraction ¢, from lattice form factor results combined with
experimental partial branching fraction information [#, 5

2. ElasticsswaveKm, Brr, Drrand DK scattering lengths

We use lattice calculations of the scalar form fadigg?) in exclusive semileptonic decays for
input. In the Omnes dispersion relation we use one or twaactibns to retain dependence on the
phase shift and apply lowest order chiral perturbation théGhPT) or heavy meson chiral pertur-
bation theory (HMChPT) for the two-patrticle irreducible plitudesV needed for equation (1.3).
In our fits we can then determine the scattering lengtfg, and the form factor valuedy, at the
chosen subtraction points.



Phase shifts antl/,| from exclusive semileptonic decays J.M. Flynn

1.1 <
140 K
1 . 120 .
> 100 o
o 09 g
N P
Y= (2}
0.8 =
0.7
0.6
-0.6 -0.4 -0.2 0 0.8 1 1.2 1.4
q?/ Ge\V? Vs/ GeV

Figure 1: The left hand plot shows thi§s form factor fo(g?), with a 68% error band, obtained from a fit
using a twice-subtracted Omnés relation, implementingeali relation betweefy(0) and the scattering
length as described in the text. Red points are the fornofasputs and the blue square shows the result
from [6] for fo(0) (not fitted). The right hand plot shows the isospif2 K 1T sswave phase shift with a 68%
error band (grey). The phase shift plot also shows expetahdata points from [7-11].

2.1 Elastics-wave Kt scattering

For the isospin-12 scalarK 1t channel, the lowest order ChPT expressionvas (with f; =
92.4MeV)

V(9 = gz (BB Sot m - mB2). (2.1)

We take calculated values of the scalar form factoKigrdecays fromN;s = 2 domain wall fermion
results by RBC [6]. Since this reference does not provideatisiextrapopolated values for the
form factor except at = 0, we perform our own simple chiral extrapolation, as désctiin [3],

to provide input pair$g?, fo(g?)). To reduce the dependence on the phase shift at large vdlines o
centre-of-mass energy while retaining sensitivity to tbettering length, we use subtraction points
atg® = 0 andeg = —0.75GeV?. Our two-subtraction fit shows almost complete anticotiata

of fo(0) and the scattering length,a, so we redo our fit, implementing a linear relation between
them as a constraint (we deduce the relation from a sindl&rastion fitf. Our results are:

fo(qf) = 0.827(32), fo(0) = 0.94810), mya=0.17917) (2.2)

and our fitted form factor and phase shift are shown in Figur&He phase-shift plot also shows
experimental points for comparison: we emphasise that we hat fit these data, so the agreement
with the phase shift determined from a lattice calculatioweary encouraging. Since the Omnes
integration reaches values where massive resonance gaheaauld be relevant, we estimate the
associated uncertainties by incorporating the exchangeafdK* resonances as well as nonet
scalar mesons with masses above 1GeV, using the isopRiK-f scattering amplitude from [12].
This also incorporates some next-to-leading ChPT effabs find no appreciable changes in the
fitted form-factor values, while the scattering length eases by 6%. We have also examitkagl
coupled-channel effects finding again no appreciable admsmngthe form-factor values and this

1The anticorrelation is not unexpected because the lowdst @hPT expressions fd(0) and the scattering length
are linearly related, depending only opiff (apart from masses).
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time a decrease of up to 5% in the scattering length. Compitiiase effects, we ascribe an 8%
systematic error to the scattering length, leading to dtresu

mya = 0.179(17)(14). (2.3)

2.2 Elastics-wave Bt scattering

For the two-patrticle irreducible isospin-ds-waveBr scattering amplitude we use the leading
contact term from the heavy meson chiral perturbation hddMChPT) lagrangian [13],

V(s) = 1 (2(m§+m,%) —3s+ M) : (2.4)
4£2 S

We have not included a contribution from thehannelB*-exchange diagram depending on the
leading HMChPTB*Brrinteraction term, since this vanishessgtand has magnitude less than 1%
of that from the expression above over a large range of

We take input scalar form factor values from the lattice Q@Igulations by the HPQCD [14]
and FNAL [15] collaborations, assuming that the statistizeors are uncorrelated, while the sys-
tematic errors are fully-correlated. Note that the HPQC#uits are updated from those we used
in [3], while we have also added points read off Figure 7 in[M/e also use the lightcone sum
rule result forfo(0) = f (0) from [16].

We use two subtraction points gt = 0 andg?,.x = (mg — my)? and thus perform a three-
parameter fit tofg(0), fo(g2,,) and the scattering length,a. We find

fo(0) = 0.257(31), fo(0P ) = 1.18(21), mya=0.32(29). (2.5)

The fitted form factor and phase shift are shown in Figure 2.00&erve that the fitted value for
fo(Q%a) agrees within errors with the heavy quark effective theamdjction in the soft-pion
limit [17], fo(mg) = fg/fr+ O(1/md) ~ 1.4(2) (using fg = 18927)MeV [18]). Our central
phase-shift curve shows evidence for a resonanggsat 5.6 GeV, although we cannot give an
upper bound for the resonance mass.

2.3 Elasticsswave D and DK scattering

To discuss th@ 1t phase shift we use equation (2.4) with the obvious replanemg — mp.

For theDK phase shift we project into the isospin zero channel, wherévwto-particle irreducible
amplitude again takes the same form with the appropriatstisutions of masses and the replace-
mentf; — fx ~ 110MeV.

We take input scalar form factor values from the Fermilal-BHHPQCD lattice QCD calcu-
lation of reference [19]. The chiral extrapolation procedadopted there leads to parameters for
a Becirevic-Kaidalov (BK) [20] parametrisation &(g?), and hence an explicit functional form,
rather than values at a set gt points. We therefore generate a toy Monte Carlo ensemble of
BK parameters and minimise the integrated squared-difter®f the BK fit-function and a twice-
subtracted Omnés fit function to determifag0), fo(02,,,) and the scattering length. We note that
this fit could be avoided by using the Omneés parametrisatiovughout the analysis of the lattice
data.



Phase shifts antl/,| from exclusive semileptonic decays J.M. Flynn

1.4
140
1.2 120
1 o 100
o ()
5 0.8 O 80
= =
= 06 £ 60
’ © il
0.4 v 40t |l
0.2 20 A,'l
0
0 5 10 15 20 25 ) 6 6.5 7 7.5
q?/ Ge\V? Vs/ GeV

Figure 2: Brrisospin-1/2 scalar form factor and phase shift, together with 68% cenfié level bounds
(grey bands). The points on the form factor plot are the imfrdm [14—16]. The dashed curves on the
phase shift plot show the effect on the statistical uncetyaof reducing the input errors to/4 of their
current value. The intercept of the phase shift with the zmnial line at 90 indicates the position of a

resonance.

For theDm case, we find a scattering lengtixa = 0.29(4). The output phase shift shows the
existence of ath = 1/2 swave resonance atZ1)GeV.

For theDK case, we find in almost all of our Monte Carlo trials that thattering length is
huge, effectively infinite, telling us that Re'!(s) = 0 as can be seen from equation (1.3). Hence
there should be a resonance at threshéma; + mk)? = (2.36GeV)2. This can be understood
by noting the existence of a‘Ostate,DJ,(2317), discovered by Babar [21], which is likely an
isoscalar [22]. Neglecting isospin-violating decaysDip7®, this state could be considered as
an isoscalas-wave DK bound state. In this case, following Levinson’s theoren],[#3 phase
shift close to threshold has the formt+ pa+-- - -, wherep is the centre-of-mass three-momentum.
Three-parameter fits (two subtractions aydhow that the scattering length is effectively zero, so
we assume that the phase shiftisver the range where the integrand of the phase-shift ialtégr
significant and obtain an excellent two-parameter fit usimggubtractions.

3. |Vupb| from exclusive semileptonidB — 1 decay

For our second application we use an Omnés representatidicf = (Mg, —?) f, (g?) with
many subtractions [4, 5] to motivate the fit-function

l n

L 0) = g [] [+ (8) (8 —)] ", (3.)

B*

We include fo information with a similar Omneés representation fiig?) = fo(g?) and apply
the constraintf, (0) = fp(0). This provides an alternative to parametrisations basetherz-
expansion [24, 25]. Adopting the fit procedure describedbjnywe combine experimental binned
partial-branching fraction information [26—29] fdr, (to determine shape) with lattice [14, 15,
30, 31] and LCSR [16] form-factor calculations &f and fy (for normalisation and partial shape
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Figure 3: Results obtained from the fit to experimental partial bramglfraction data and theoretical form
factor calculations. The top left plot shows the two formtdas with their error bands, the lattice and LCSR
input points (dots: green LCSR, red HPQCD, blue FNAL-MIL@yadexperimental’ points (black triangles,
upward-pointing for tagged and downward pointing for ugiedjdata) constructed by plotting at the centre
of each bin the constant form factor that would reproducetréal branching fraction in that bin. The top
right plot shows the differential decay rate together wihth €xperimental inputs. The bottom plots provide
more details of the inputs and fits by showing on the leff(0g. — q?) f. (9?)/m3.] as a function of?, and

on the rightPef, as a function of-z[24, 25]. The dashed magenta curve in the bottom right platdsbic
polynomial fit inzto the Omnes curve.

information). From a fit with subtraction points £,1/3,2/3, 1}02,,,. We determine:

Vup| = (3.47+0.29) x 10-3 f,(0Ra) = 7.73+1.29
f,(0) = fo(0) = 0.245+0.023 fo(2,00/3) = 0.338-0.089 (32)
f, (02,0/3) = 0.475+0.046 fo(202,,,/3) = 0.520-+0.041 '
f,(202,,/3) = 1.07£0.08 fo(Q2,,) = 1.06-0.26

We also determine the combinatidn| . (0) = 8.5(8) x 10~* and the total branching fraction
B(B® — mr 1Tv) = (1.3740.08+0.01) x 10°* (3.3)

where the first uncertainty is from our fit and the second imftbe uncertainty in the experimental
BC lifetime. The result forVyy| is in striking agreement withv,p| extracted using all other inputs
in CKM fits and shows some disagreement wity,| extracted from inclusive semileptor&— 7
decays. In Figure 3, we show our fitted form factor and diffiéie¢ decay rate distribution.
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