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We present a determination of the decay constants of the D and Ds mesons from lattice QCD, each
with a total error of about 2%, approximately a factor of three better than previous calculations.
We have been able to achieve this through the use of a highly improved discretization of QCD for
charm quarks, coupled to gauge configurations generated by the MILC collaboration that include
the full effect of sea u, d, and s quarks. We have results for a range of u/d masses down to ms/5
and three values of the lattice spacing, which allow us to perform accurate continuum and chiral
extrapolations. We fix the charm quark mass to give the experimental value of the ηc mass, and
then a stringent test of our approach is the fact that we obtain correct (and accurate) values for
the mass of the D and Ds mesons. We compare fD and fDs with fK and fπ , and using experiment
determine corresponding CKM elements with good precision.
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1. Introduction

Precision calculations in lattice QCD play a crucial role in testing our non-perturbative theo-
retical tools, by comparing the results of the calculation with precisely measured quantities. On the
other hand accurate calculations of non-perturbative QCD quantities are very important in the anal-
ysis of experimental data, for example in the determination of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements.

This is most clearly seen in the case of “gold-plated” processes, for example the leptonic decay
of Ds, Dd , π and K mesons. In this process the corresponding meson, with quark content ab̄ (or āb)
annihilates weakly into a W boson, with a width given, up to calculated electromagnetic corrections
[1, 2], by:

Γ(P → lνl(γ)) =
G2

F |Vab|
2

8π
f 2
Pm2

l mP(1−
m2

l
m2

P
)2. (1.1)

Vab is the corresponding element of the CKM matrix, and the decay constant fP parametrises the
amplitude for W annihilation. By combining a measurement of Γ with an accurate calculation of
fP (1.1) can be used to determine Vab. If Vab is known from elsewhere we can use (1.1) to get a
value for fP.

The decay constant fP is conventionally defined to be a property of the pseudoscalar meson,
calculable in QCD without QED effects, and is given by:

〈0|aγµγ5b|P(p)〉 = fP pµ . (1.2)

The calculation of fP is a hard non-perturbative problem, which at present can only be done
fully with lattice QCD. There are very precise experimental measurements for the leptonic decay
rates in the case of the π and K, and new results are appearing for D and Ds, which make the
calculations a highly non-trivial test of lattice QCD, and ultimately of QCD itself. This tests are
important to give us confidence in similar lattice QCD calculations of matrix elements in B systems,
for which experimental results are much harder to obtain.

2. Improved Staggered Quarks

We use HISQ staggered quarks in the valence sector, whereas the sea quarks are ASQTAD
staggered quarks with the fourth root trick [3, 4, 5].

The massless one-link (Kogut-Susskind) staggered Dirac operator is defined as:

D(x,y) =
1

2au0

d

∑
µ=1

ηµ(x)
[

Uµ(x)δx+µ̂,y −H.c.
]

, ην(x) = (−1)∑µ<ν xµ (2.1)

with u0 an optional tadpole-improvement factor. This operator suffers from doubling: there are four
“tastes” (non-physical flavours) of fermions in the spectrum, which couple through taste-changing
interactions. These are lattice artifacts of order a2, involving at leading order the exchange of a
gluon of momentum q ≈ π/a. Such interactions are perturbative for typical values of the lattice
spacing, and can be corrected systematically a la Symanzik. By judiciously smearing the gauge
field we can remove the coupling between quarks and high momentum gluons.
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The most widely used improved staggered action is called ASQTAD, and removes all tree-
level a2 discretization errors in the action [6, 7, 8].

The HISQ (highly improved staggered quarks) staggered Dirac operator involves two levels of
smearing with an intermediate projection onto SU(3). It is designed so that, as well as eliminating
all tree-level a2 discretization errors, it further reduces the one-loop taste-changing errors (see [9]
for a more detailed discussion.) This action has been shown to substantially reduce the errors
associated with the taste-changing interactions [9, 10, 11].

When we put massive quarks on the lattice, the discretization errors grow with the quark mass
as powers of am. Therefore to obtain small errors we would need am � 1. For heavy quarks this
would require very small lattice spacings. On the other hand, to keep our lattice big enough to
accommodate the light degrees of freedom, we need La � m−1

π . The fact that we have two very
different scales in the problem makes difficult a direct solution. What we can do instead is to take
advantage of the fact that m is large, by using an effective field theory (NRQCD, HQET). This
program has been very successful for b quarks [12, 13, 14].

The charm quark is in between the light and heavy mass regime. It is quite light for an easy
application of NRQCD, but quite large for the usual relativistic quark actions, amc

<
∼ 1. However,

if we use a very accurate action (HISQ) and fine enough lattices (fine MILC ensembles), it is
possible to get results accurate at the few percent level. A non-relativistic analysis [9] shows that
for HISQ charm quarks the largest remaining source of error is due to the quark’s energy, and can
be further suppressed by powers of v/c, where v is the typical velocity of the quark in the system of
interest, simply by retuning the overall coefficient of the Naik term to impose the correct relativistic
dispersion relation c2(p) = 1 for low lattice momentum p.

One advantage of the use of a relativistic action is the existence of a partially conserved current,
which implies the non-renormalisation of the lattice result for fP. We can extract fP from the PCAC
relation for zero momentum meson P:

fPm2
P = (ma +mb)〈0|āγ5b|P〉 (2.2)

3. Results

We use 2 + 1-flavours unquenched configurations generated by the MILC collaboration [15,
16, 17]. The parameters of the ensembles we have used for both the sea and the valence sectors
are in table 1. The lattice results are converted to physical units through the heavy quark potential
parameter r1, as determined by the MILC collaboration (table 1, [16]). The physical value of r1 is
determined from the ϒ spectrum calculated in NRQCD with b quarks on the same MILC ensembles
[13], with the result r1 = 0.321(5) fm, r−1

1 = 0.615(10) GeV.
We use multiple precessing random wall sources, which gives a 3-4-fold reduction in statistical

errors with respect to local sources.
The mass of the charm quark is fixed by adjusting the mass of the “goldstone “ ηc to its ex-

perimental value. The light (u/d) and strange quark masses are fixed using the experimental values
for the masses of π and K. Our results use masses for the light quarks that are substantially larger
(by a factor of around three) than the real ones. In order to get physical answers we extrapolate to
the correct u/d mass using chiral perturbation theory. Once the masses have been thus fixed, there
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Lattice/sea valence r1/a
u0aml , u0ams aml , ams, amc, 1+ ε
163 ×48
0.0194, 0.0484 0.0264, 0.066, 0.85, 0.66 2.129(11)
0.0097, 0.0484 0.0132, 0.066, 0.85, 0.66 2.133(11)
203 ×64
0.02, 0.05 0.0278, 0.0525, 0.648, 0.79 2.650(8)
0.01, 0.05 0.01365, 0.0546, 0.66, 0.79 2.610(12)
243 ×64
0.005, 0.05 0.0067, 0.0537, 0.65, 0.79 2.632(13)
283 ×96
0.0124, 0.031 0.01635, 0.03635, 0.427, 0.885 3.711(13)
0.0062, 0.031 0.00705, 0.0366, 0.43, 0.885 3.684(12)

Table 1: MILC configurations and mass parameters used for this analysis. The 163 × 48 lattices are ‘very
coarse’, the 203 × 64 and the 243 × 64, ‘coarse’ and the 283 × 96, ‘fine’. The sea ASQTAD quark masses
(l = u/d) are given in the MILC convention where u0 is the plaquette tadpole parameter. Note that the sea
s quark masses on fine and coarse lattices are above the subsequently determined physical value [17]. The
lattice spacing values in units of r1 after ‘smoothing’ are given in the rightmost column [16, 18]. The third
column gives the HISQ valence u/d, s and c masses along with the coefficient of the Naik term, 1+ ε , used
for c quarks [9].

is no remaining freedom to change any parameters, and in particular the results we obtain for the
masses of heavy-light mesons are a stringent test of our method.

Figure 1: Masses of the D+ and Ds meson.
The lines give the simultaneous chiral fits and the
dashed line the continuum extrapolation. Our final
error bars are given by the shaded bands. These are
offset from the dashed lines by an estimate of elec-
tromagnetic, mu 6= md and other systematic correc-
tions to the masses. The experimental results are
marked at the physical md/ms.

Figure 2: Results for the D, Ds, K and π decay
constants. Symbols as in the previous figure. At the
left are experimental results from CLEO-c [22, 24]
and BaBar [23] (Ds only) and from the Particle Data
Tables [2] for K and π .
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In addition to the chiral extrapolation, we have systematic errors coming from a variety of
sources [19], among them from the finite lattice spacing. Because we have three different lattice
spacings and very precise data, we can extrapolate to the continuum limit. This extrapolation is
linked to the chiral extrapolation through discretization errors in the light quark action. We there-
fore perform a simultaneous bayesian fit for both chiral and continuum extrapolations, allowing
for a range of expected functional forms in both. We tested the validity of the method by fitting
hundreds of fake datasets generated using staggered chiral perturbation theory with random cou-
plings. We fit simultaneously to the masses and the decay constants, that is, we fit mπ , mK , fπ and
fK simultaneously, and similarly for mD, mDs , fD and fDs . We present some of the results in figures
1 and 2.
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Figure 3: Ratio of decay constants fK/ fπ on very
coarse, coarse and fine ensembles, as a function of
the u, d quark mass in units of the s quark mass.
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Figure 4: Ratio of heavy-light decay constants
fDs/ fD on very coarse, coarse and fine ensembles,
as a function of the u, d quark mass in units of the s
quark mass.

We get an excellent agreement with experiment for the masses: mDs = 1.963(5) GeV (exper-
iment 1.968 GeV), and mD = 1.869(6) GeV (experiment 1.869 GeV). Our calculation also repro-
duces correctly the difference in binding energies between a heavy-heavy (ηc) and a heavy-light
(mD and mDs) state: (2mDs −mηc)/(2mD −mηc) = 1.249(14) (experiment 1.260(2)). This has not
been possible with charm quark calculations in lattice QCD before.

We also have agreement with experiment for the light-light decay constants [19]. The re-
sult for the ratio is very accurate, fK/ fπ = 1.189(7), and shows tiny discretization effects (fig-
ure 3). Combining this ratio with experimental leptonic branching fractions [17, 20] we get
Vus = 0.2262(13)(4), where the first error is theoretical and the second experimental. This gives
the unitarity relation 1−V 2

ud −V 2
us −V 2

ub = 0.0006(8).
Our results for the heavy-light decay constants are 4-5 times more accurate than previous

lattice QCD results and existing experimental measurements: fDs = 241(3) MeV, fD = 208(4)

MeV, and a ratio of fDs/ fD = 1.162(9) (see figure 4). For the double ratio ( fDs/ fD)/( fK/ fπ),
which is estimated to be close to 1 from low order chiral perturbation theory [21], we get a value
of 0.977(10).

The experimental leptonic branching rates, together with CKM matrix elements determined
from other processes (assuming Vcs = Vud) give a value for fDs of 264(17) MeV for µ decays
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and 310(26) MeV for τ decay from CLEO-c [22] and 283(23) MeV from BaBar [23], and for
fD 223(17) MeV from CLEO-c for µ decay [24]. Using our results for fDs and fDs/ fD and the
experimental values from CLEO-c [22] for µ decay (since the electromagnetic corrections are well-
known in that case) we can directly determine the corresponding CKM elements: Vcs = 1.07(1)(7)

and Vcs/Vcd = 4.42(4)(41). The first error is theoretical and the second experimental. The result for
Vcs improves on the direct determination of 0.96(9) given in the Particle Data Tables [2].

4. Conclusions and outlook

We have shown that the use of a highly improved relativistic action on fine enough lattices
is capable of delivering very precise results on systems with a charm quark. The high statistical
accuracy of our data combined with calculations at several values of the lattice spacing and light
quark masses allows us to make a controlled joint chiral and continuum extrapolation.

We can calculate accurately the mass of heavy-light systems, which provide a stringent test of
the calculation. We can calculate precise values for the decay constants of pseudoscalar heavy-light
mesons (as well as light-light mesons), and especially for the ratio of such decay constants.

The very precise calculation of the masses of heavy-heavy pseudoscalar mesons should make
possible a direct lattice determination of the mass of the charm quark. Because we use the same
relativistic action through the calculation for both the charm and the light quarks, we can also
obtain a very precise value for the ratio mc/ms, and therefore if mc is determined through another
method use the ratio to get ms.

Another quantity which we plan to calculate in the near future is the leptonic decay width
Γe+e−(ψ), as well as the semileptonic form factors for D → πlν , D → Klν .
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