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1. Introduction

Non-leptonic kaon decays can be described in the contexCbfral Effective Theory (ChPT),
where the non-perturbative dynamics is encoded in the loeveyy couplings associated with the
AS= 1 Hamiltonian. These low-energy couplings can be deterdiiram first principles in lattice
QCD, by performing a matching of suitably chosen corretafimnctions computed in lattice sim-
ulations and in the effective theory [1]. Such matching $thdue carried out as close as possible to
the chiral limit.

In [2], a new strategy to reveal the role of the charm quarksmagheAl = 1/2 rule was
proposed. The idea is to consider the(8)Jflavour limit, that is a theory with four light quarks
corresponding to the,d,s andc, and compute the low-energy couplings of the corresponding
AS =1 Chiral Hamiltonian. In a second stage, the charm quark risasgreased towards its
physical value, monitoring the change of the low-energyptiags. In [3], the first determination
of the leading-order low-energy couplings of the @UAS = 1 Hamiltonian,g™, was presented.
For details on this computation and the precise definitiothe$e couplings we refer the reader to
references [2, 3].

In this work we present a new method to determifiein the so-calleck-regime [4, 5], from
correlation functions involving pseudoscalar densithest tontain topological poles ir/imV)",
when evaluated in sectors of fixed, and non-zero, topolbgltarge.

2. g+ from zero-mode wavefunctions

In the e-regime and in a fixed topological sector, correlation fiore involving quark propa-
gators may contain poles iry dnV)", wheren is some integer number, whenever the contribution
of the zero-modes to the spectral representation of thekquapagator gives a non-vanishing
contribution to the correlation function. The residues e poles are easier to compute than
the correlation functions themselves. The idea, first eoldn [6], is then to use the residues of
the topological poles to perform the matching, instead efftlll correlation function. Given a
correlation functiorC, (x1,X, ...), the residue can be isolated by

CV (X]_, X2, ) =

(:\a/?n fo Res=lim (mV)'Cy(x, %, .). 2.1)

In [6] the two-point function of the pseudoscalar densityswansidered in this context. The
presence of a pole in/ImV)? implies that the corresponding residue can be computed ifull
terms of the zero-mode wavefunctions, no propagator caatiputis required. On the effective
theory side, the same pole does appear and the residue istiofunf only the pseudoscalar
decay constant;, up to NLO. A numerical exploratory study in the quenchedragimation was
presented and the usefulness of the method to extract therevgy coupling- was confirmed.

In the present work, we extend this idea to the computatiothiae-point functions from
which the weak low-energy couplinggs. can be extracted. In particular we have considered the
following ratios:

limm_o(MV)? Yxy(FPA(X)0%(2)dy, PP(y))y

R = o) 54 (0P (OIE() o iMm-0(MV) 3y (3PP Y)IE D)
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A, (X0 — 20, Yo — 20) + OA, (X0 — Z0, Yo — 20)
By (X0 —20)By (Yo — ) (22)

whereP? = iWyTay, J 8 = YyR T2W andO™ are the four fermion operators transforming in the
84 and 20 representation of $4), for further details see [2]. i;(x) are the zero-mode wavefunc-
tions of negative chirality, we find:

1
Ao —20.Y0-20) = T3 X; (2 0 0Sx2wPu(@) 3 Sy 2yPyi(@),

Alo-2y0-2%) = 33 ¥ (T nSKIWPME@N WSKIRP YD) , 23
ex

xyz|J

! (x+a0)S(x+a0,2)—v.

wheren(x)S(x,2) = 4 = [(x20)Sx202) 55 S(x,y) is the quark propagatdt. It is
clear from egs. (2.3) that a number of inversions equal toewie topological charge, i.e|\2,
(with sourcesni(x) andn;(y), sincexy andyp need to be fixed) is sufficient to construct the corre-
lation function, whilst averaging over all the spatial giosis of the three sources. Such averaging
was only possible in the standard method of [2] through loadenaveraging (LMA), and only for
the contribution of the low-modes. The price of LMA is 2 x Nqw inversions, wherdljo,, was
the number of low modes treated separately. Typidslly, can be as large as 20, and hence the
numerical cost can be quite substantial.

The matching of the amplitudes in egs. (2.3) to the Chiraké&lie Theory results in the
following relation

+
QL L ~ [ki(MW)] RGI [iz} RE, (2.4)
RGI
wherek® (My ) are the Wilson coefficients of th@* operatorsZ* are their corresponding renor-
malization factors and, is the renormalization factor of the axial current. The Ré@les of these
factors have been computed non-perturbatively in [8]. @n¢ft-hand side of the equatiof; is
the ChPT prediction for the ratios of eq. (2.2) in theegime. At NLO,Z; only depend o and
the volume, as we show in the next section.

3. Prediction in Chiral Perturbation Theory at NLO

The result of the NLO computation of the two-point functiantihe denominator of eq. (2.2)
in the € expansion is

1 2
748,00 = ]| 1- 15 ) 4 pICER) (b 1) ] @)

wheret = xo/T, p = T/L andN is the number of dynamical flavours. The quenched regélj,

is the same leaving out the term in parenthésis;). The first term corresponds to the LO result,
that is the constanv|. In Figure 1 we show the result for this quantity at NLO forfeliént values
of |v|in a symmetric box of sizeé = 2 fm.

1Similar expressions are obtained for the opposite chyralit
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Figure 1: TA,(X) for N = 2 (solid) andN = 0 (dashed) as a function &/T. In both cases we take
F =93 MeV andL = 2 fm.

The results for the ratios of three to two-point functions ar

1 P
7 (%0 — 20,Y0 — ;<1 —> [112
v’ (X0 —20,Yo — 20) T =N

i% (91(Tx)+91(Ty) ~ a0 — () + (1 (;%)) (% Ty))] ’
(3.2)

wherety = (X0 —20)/T, Ty = (Yo—2)/T, B1 is a constant [4], and

2
() = 5 <<|r| —%) - 132> , (3.3)

(1) = [ML(D]°+ T [Ap(1)>+[BPAn(1)?] (3.4)
AZ0
H (1, Ty) = ()i (ty) — ha(tx — 1y) — (M (1x) — hy(1y) ) (x — 1y), (3.5)

where|p| = 2mp|n| with i = (n1, Nz, n3) a vector of natural numbers, the primes refer to derivatives
with respect tar, and

_ cosh(|p| (m—%)).

Ae(T) = =515 sinn(p1/2) (3.6

Again the expressions in the quenched theory are identi¢hisaorder, except that the ter(rp%)
is not there.

The ratios are therefore constants at LO, while at NLO thgyedd on the insertion of the
sources. There is also a significant dependende|adready at LO. Both these features of the chi-
ral corrections iz differ from those of the ratios constructed out of left-eutrcorrelators, used
in [2], where no|v| dependence, nor temporal dependence was found at NLO. jeedéference
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Figure2: Left: #*3(T/3—1T,2T/3—1T)/ (13F ﬁ) for N =0 andL = 2 fm with T /L = 1 (solid) and
T/L = 2 (dashed) as a function of= 75/ T. Right: ’%iﬂ(T/& 2T/3)/ (1:F ﬁ) - 1‘ as a function of..

between the chiral corrections in both cases probably esglifferent systematic uncertainties.
Different systematics in the two approaches serve as addltconsistency checks of the method.

In the left plot of Figure 2 we show the result fa#*; (T /3—1T,2T/3—1T)/(1F ) ina
box of L =2 fm for p = 1 andp = 2. Unfortunately NLO corrections seem to be rather larde sti
at 2 fm, as shown on the right plot of Figure 2.

4. Exploratory quenched study

We have recently carried out an exploratory study of the twd #hree-point functions in
eg. (2.2) in the quenched approximation. We have considbeesimulation parameters of Table 1,
which correspond to two lattices with the same physical wawf around (2 frrf), and different
lattice spacings.

We have used the overlap operator. For all the details omtipeementation and algorithms
we refer the reader to related previous work [7, 6, 2]. Heremieonly present our preliminary
results for the two-point functions. The results for theetpoint functions will be presented in
detail in a forthcoming publication.

In the left plot of Figure 3, we show the results By (t) as a function off =t/T compared
with a fit of the form

Bt —avip(L-2) (4.1)
v — Yv % T 2 ) .
where the NLO ChPT predictions of eq.(3.1) imply
B 1T |vf? G
av_M_l_Ztm’ Bv—tm- (4.2)

We show in the right plot of Figure 3, the dependencexpf- |[v| and 3, on |v|, together with
the fit to a parabola from whickL can be extracted. Although not very precise, the value of
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Figure 3: Left: TBy(t) as a function ot/T for the lattice Al (full symbols) and B1 (empty symbols).
The curves are fits of the Al data to NLO ChPT. Rigbt; — |v| and 3, as a function ofyv| for lattice
A1l (full symbols) and B1 (empty symbols). The curves are &itthe NLO expectation for Al (solid) and
Bl(dashed).

Lattice B \Y V| Ncont Xo/aYo/a

Al 5.8458 16 1-5 282 511
Bl 6.0375 24 2-5 236 8,16

Table 1: Simulation parameters

F so obtained is in agreement with more direct determinatiddiscretization effects in these
observables are quite small. An interesting check of thepwiat functions is provided by the
chiral Ward identity, which implies the relation

ZaBy (%0 —yo) = lim meV 5 (P3(x) P3(y))y. (4.3)
X

The right-hand side of eq. (4.3) is the topological-poletabation of the pseudoscalar two-point
function, that is the observable that was studied in [6].c8ifn has been computed before [9],
we can compare the two sides of the equation. The ratio okfhever the right-hand side of the
equation is shown in Figure 4 for the coarser lattice. Thaltésone in the chiral limit, as expected,
in all topological sectors studied. Although it is no susprithat the Ward identity is satisfied
given the exact chiral symmetry of the discretization, iaison-trivial test of the method that it
is also satisfied when both sides of the identity are truidceite¢he zero-mode pole contributions,
especially because the limmit — 0 can be done analytically on the right-hand side but not en th
left-hand side.
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Figure4: Check of the truncated Ward Identity.
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