PROCEEDINGS

OF SCIENCE

K — mmr Amplitudes at Unphysical Kinematics Using
Domain Wall Fermions

Matthew Lightman*
Department of Physics, Columbia University, New York, NY 10027, USA
E-mail: | i ght man@hys. col unmbi a. edu

RBC and UKQCD collaborations

The use of chiral perturbation theory in extracting phyisica- 77T matrix elements from matrix
elements calculated at unphysical kinematics is outlitre@articular, the possibility of utilizing
pions with non-zero momentum in the final state, and of usiadigd quenching is discussed.
Preliminary (not physically normalized) = 3/2 (27,1)K — mrr matrix elements are calculated
on the RBC/UKQCD 2&x 64, Ls = 16 lattices, using 2+1 dynamical flavors and domain wall
fermions, with an inverse lattice spacingaf! = 1.72928) GeV. Effective mass plots are pre-
sented for a light sea quark massgf?= 0.005, and various valence quark masses. The plateaux
are fit andEq; — mk is extracted.

The XXV International Symposium on Lattice Field Theory
July 30 - August 4 2007
Regensburg, Germany

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



K — mrr Amplitudes at Unphysical Kinematics Using Domain Wall Fermions Matthew Lightman

1. Introduction

The decaK — rrris important to simulate on the lattice because QCD effemtsecinto play
since the typical energies are smaller than the s6alg. In particular, the direct CP violating
parameteiRe(&’/e) can be found from calculations & — 77T matrix elements [1, 2]. In order
to obtain reasonable precision in these calculations we f@ause 2+1 flavors of domain wall
fermions (DWF) on a 24x 64, Ls = 16 lattice.

Accurate simulation of physical pions would require a ladgex size than is currently avail-
able, therefore we make use of the tools of chiral pertushatineory §PT). xPT allows one to
make predictions of the dependence of matrix elements ok quasses when they are close to the
chiral limit. It can even be applied to the case of unphyskiaématics. Thus the best strategy is
to simulateK — it at unphysical kinematics, fit the results®T, and then usgPT to make a
prediction for the physical values of the matrix elements.

2. Four Quark Operatorsand xPT

The weak interactions are included in the lattice QCD sitmubaby evaluating matrix ele-
ments of the effective Hamiltonian [3, 4]

Hps—1 = % ZVCiIKMCi(“)Qi (2.1)

wherec;(u) are Wilson coefficients anflQ;,i = 1,...,10} are four quark operators. Therefore we
are interested in calculating matrix elements of the fouarkwperatorg); between &K and a
it state. These operators can be split into= 3/2 andAl = 1/2 parts, callech3/2 and Qil/2
respectively, wherdl is the change in isospin induced by the operator. They canlibefurther
classified by how they transform under the ch8al(3),. x QU (3)r symmetry, and the transforma-
tion properties (27,1), (8,8), and (8,1) are all found ameaagous of the operators [1, 2].

In xPT an effective Lagrangian [5] is written in terms of the field

2iq0:‘)\1

T = exp[ (2.2)

where theg? are the real pseudo-scalar meson fields. The leading ordeofpthe effective La-
grangian is

2 2
Lio= %Tr[auza“a + %Tr XTZ+2x) (2.3)

wherex = diag(m,, my, ms) andBy = rmm«%nu = n:ﬁtns = W”Efm. To represent the four quark oper-
ators inxyPT, one looks at the operators that have definite transformatioperties under isospin
and U (3). x J(3)r, and forms operators out of tt¥efield that transform in the same way. In
general it will be possible to form more than one such operated thus a linear combination of
all of these operators in which each operator is multipligcab arbitrary coefficient is taken to
represent the four quark operator [6]. These arbitraryfimiefits are called low energy constants
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(LECs). AxPT expression for & — T matrix element of a four quark operator at next to lead-
ing order (NLO) and with pions in the final state having zen@&momentum, generally contains

polynomials in the meson masses with ordérand ordemt terms, as well as non-analytic terms

in the meson masses known as chiral logarithms. The coeifficaf these terms contain LECs and

other parameters in the Lagrangian.

3. Extraction of the LECs

Matrix elements of four quark operators can be computed erdttice for several different
guark masses. The results can be fit toxfd formulae and the fit will yield LECs. The strategy
is to compute these matrix elements at unphysical kinesyatiorder to extract the LECs that
appear in thexPT expression for the physical matrix elements. However, deoto be able to
determine the necessary LECs uniquely with a limited nunobgauge field ensembles one must
either consider pions with non-zero momenta, or one musttrés partial quenching in which the
masses of the quarks in the fermion determinant (sea quar&gjifferent from the masses of the
propagating quarks (valence quarks).

3.1 Pionswith Non-Zero Momenta

xPT formulae forK — it matrix elements with pions having non-zero momentum haea be
worked out by Lin et. al. [7] and Laiho and Soni [8]. One drawkaf this method is that data with
non-zero momentum tends to be very noisy, especially as tmaentum increases. There exist
methods for dealing with this such as antiperiodic, and imegal twisted boundary conditions.

3.2 Partial Quenching

The largest 24x 64,Ls= 16 RBC/UKQCD 2+1 flavour dynamical lattice ensembles cutyen
available have sea quark massgs?= m3*®= {0.0050.01} andmz®*®= 0.04. In general it is
necessary to vary both the light quark and strange quarkealmasses in order to extract LECs.
Laiho and Soni [9] have treated the case of partially quethg®I at NLO with sea quarks of equal
mass. However, partially quenchg®T formulae at NLO for the case of unequal sea quark masses
do not yet exist in the literature and are in the process afgealculated by Christopher Aubin,
Shu Li, and Jack Laiho. The current plan is to focus primasiiythe partial quenching technique.
Non-zero momenta can then be incorporated as a consistback of the LECs obtained from the
former method.

Table 1 gives a list of sets of quark masses that would be muftito extract the necessary
LECs from an analysis of [9]. However, it is not guaranteeat these masses, with the sea strange
quark mass changed t;*®= 0.04 in all cases, will still be sufficient when one considgiRT
with unequal sea quark masses. This analysis was done naarely exercise to get a feeling for
the number of combinations of masses that would be needed.
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Table 1: A list of sets of quark masses at which to evaluate severaixmgements, from which the LECs
needed to calculate the physi¢al~ T matrix elements can be extracted.

n,fea: mgea m;/al mlvaI
0.01 0.01 | 0.01
0.02 0.02 | 0.02
0.02 0.01 | 0.01
0.005 0.035| 0.005
0.01 0.02 | 0.01
0.02 0.03 | 0.01

4. Matrix Element Calculations

So farK — it matrix elements of thal = 3/2 (27,1) four quark operator have been calcu-

lated. The operators that have a non-triial= 3/2 part that transforms as a (27,1) &€ Q2, Qg, Q10
It turns out by Fierz symmetry th@f/z, 2/2, 3/2, %2 are all proportional to a single operator

Q(27,1)(3/2) [10]_

QRMIE/2) = 3QY7 = 2Q3/f) =Sayu(1 — ¥®)dalloV* (1 — ¥°)ub + S (1 — V°) Ualloy¥ (1 — v)dly
— Sa¥u(1— ¥?)dadoy* (1— y®)d (4.1)

Furthermore, the Wigner-Eckhart theorem can be used te writ
2
<7-[+ T[+|Q/(27,1).3/2|K+> _ _§<n+nO|Q(27.l),3/2|K+> 4.2)

where
Q@32 Z gy (1— v°)dalipyH (1— v°)db (4.3)

The matrix element on the left hand side of Equation 4.2 ie&s deal with, and from this matrix
element one can see that only one diagram contributés$ t03/2 (27,1) matrix elements. This
diagram is shown in Figure 1.

S d m
K+
-
u

Figure 1. The one diagram that contributes to thle= 3/2 (27,1)K — mrr matrix element.

The Al = 3/2 (27,1) matrix elements have been calculated on the RBC/UBQ4 x 64,
Ls = 16 lattices, using 2+1 dynamical flavors and domain wall fen®, with an inverse lattice
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Table 2: Values ofE;; — mk obtained by fitting the plateaux of the effective mass pl&s.ors obtained
from the jackknife method are quoted. Heng?= 0.005 andmg®®= 0.04.

Mms m L Ms m Emr— Mk Ms mj L
0.04| 0.04| 0.4277(9) || 0.03| 0.01 | 0.1573(20)| 0.005| 0.005| 0.1835(25)
0.04| 0.03| 0.3459(9) || 0.02| 0.01 | 0.1930(20)| 0.04 | 0.001| -0.0483(46)
0.03| 0.03| 0.3737(10)|| 0.01| 0.01 | 0.2333(20)|| 0.03 | 0.001| -0.0135(39)
0.04| 0.02| 0.2496(13)|| 0.04 | 0.005| 0.0420(28)| 0.02 | 0.001| 0.0275(38)
0.03| 0.02| 0.2795(14)|| 0.03| 0.005| 0.0758(26)| 0.01 | 0.001| 0.0768(35)
0.02| 0.02| 0.3115(14)|| 0.02| 0.005| 0.1138(25)| 0.005| 0.001| 0.1076(30)
0.04| 0.01| 0.1249(21)|| 0.01| 0.005| 0.1579(25)| 0.001| 0.001| 0.1371(29)

spacing ofi~! = 1.729(28) GeV. (These lattices are described in more detail in [11BllI'®ources
att =5 andt = 59 are used for the kaon and two pions respectively. Averagesperiodic and
antiperiodic boundary conditions are performed in ordeddable the effective time length and
prevent contamination by ‘around the world’ propagationathk elements are evaluated with
the four quark operator at different times betwéea 5 andt = 59. Calculations are done with
sea quark masses®®= 0.04, m;®®= mj*@= 0.0050.01, and valence quark masses in the set
{0.001,0.005,0.01,0.02,0.03,0.04} and all possible combinations such tmaf' > m/@ (where

m = my = my).

Figures 2 - 4 show effective mass plots of the matrix elemsnd &unction of the time at
which the four quark operator is located. In these plots #eequark masses an€®®= 0.04 and
mp®@= 0.005, and the valence light quark mass is held fixed while thenea strange quark mass
is varied. The plateaux are fitted in a rangg <t < tmax Which is different for each curve, and
the fits are indicated by bold lines in the plots.

The effective mass is defined as

rmﬂ0=m<cg$n> (4.4)

whereC(t) is the value of the matrix element at tiheFor times far away from the sources and
sinks we expect that

C(t) = Aexp[(Epmmr— mg)t] (4.5)
and thus that
Mest(t) ~ Epr — Mk (4.6)

Therefore we expect the value of the plateau tiehg— my. Results for this quantity obtained by
fitting the plateaux are given in Table 2.

5. Conclusion and Future Plans

Calculations ofAl =3/2 (27,1)K — rrrrmatrix elements have been done on the RBC/UKQCD
2+1 flavour dynamical 24x 64, Ls = 16 lattices. To obtain physically normalized matrix eletsen
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Figure 2: Effective mass plots of th& — 7T matrix element as a function of the time at which the four

quark operator is located. The sea quark massesyfe= 0.005 andmg®?=
valence quark masses ang®' =

0.04 (left), mya =

0.04 in all plots here. The
0.03 (right), and various values of?' are shown as

different curves. A horizontal line (bold) is fitted in a raatg,in <t <tmaxWhich is different for each curve.
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Figure 3: Effective mass plots for valence quark masssﬁé% 0.02 (left), m"a'

values ofm?@ shown as different curves.
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Figure4: Effective mass plots for valence quark massq‘é"éz 0.005 (Ieft),m,VaI

values ofm?@ shown as different curves.
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it is necessary to use kaon, pion, and two pion correlatbeslatter of which are in the process of
being calculated. Then it will be possible to move onto mattements OQ§/2 and Q§/2 which
transform as (8,8). The next step is to calculate matrix efgmof theAl = 1/2 operators, however
these present additional computational difficulties ezlgb large vacuum subtractions.

These matrix elements on the lattice must also be renoretalia their continuum values.
This can be done using the technique of non-perturbativernealization (NPR). Work on NPR
for K — mmrrhas been done by Shu Li.

Finally, the matrix elements must be fit to NLZPT expressions as soon as they become
available. This should yield the LECs necessary to caleuta¢ physical value of th& — ot
matrix element. We would also like to calculate some mati@nents with pions that have non-
zero momenta, for example the first non-vanishing value aher@tum allowed by the lattice, and
use this as a consistency check of the results obtained festiajpgquenching. The RBC/UKQCD
is also working on another large lattice of dimensiond 884. Other lattice sizes could be used

to perform a continuum extrapolation.
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