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1. Introduction

Hadronic matrix elements (HMESs) of four-fermion operatbese long been essential input
guantities for Flavour Physics. Reliable estimates of abemof HMESs are crucial in the study
of CP violation via CKM unitarity triangle analyses, or ofcsustriking experimental findings as
the enhancement of hadronic decay amplitudes by longrdisteffects (as e.g. in thlel =1/2
rule). The only known technique to compute HMEs from firshpiples is lattice QCD. However,
lattice QCD results have long been hampered by the diffi¢olgliminate a number of systematic
uncertainties. Most notably, the high cost of including ayrcal quark effects in lattice QCD sim-
ulations has enforced for many years either the quenchewx@pyation, or the use of dynamical
quark masses far too heavy to allow for a well-controlledapalation to the physical regime. In
some cases, e.g. the computation of the kaon bag paraBjetguenching effects are indeed the
last remaining uncontrolled systematic uncertainty [1].

As technigues for the simulation of light dynamical quarksdnwitnessed dramatic progress
in the last few years (see e.g. [2]), it becomes increasimgportant to bring to this environment
the techniques to control other sources of uncertaintyrileroto aim at precision computations
of physical quantities. In the context of HMEs, one of the mm®minent examples is non-
perturbative renormalisation (NPR) (see e.g. [3]). The afsénite-size scaling techniques has
allowed to control fully both the renormalisation group (R@nning and the matching of lattice
to renormalised observables in the quenched approximatianbroad class of four-fermion oper-
ators [4, 5, 6]. The aim of the present work is to extend thesalts toN; = 2 QCD. In particular,
we will discuss 1. the RG running of left current-left currealativistic four-fermion operators, 2.
the RG running of alAB = 2 operators with static heavy quarks, and 3. the matchingeobove
operators to renormalised continuum operators for somicpkar choices of the regularisation.
Immediate applications, as we will point out later, aris¢hiea computation of the bag parameters
Bk andBg. Preliminary results had been presented at last yearsoemée [7].

2. Definitions and setup

2.1 Renormalisation of four-fermion operators

We will consider two different classes of operators:

O, 1, = 3 (LT 102(0) (BT 2(x) = (2. 4] @)
07, %) = 3 [(THOOT 10200 (BT o)) & (2. 4)] 22)

In the above expression is a relativistic quark field with flavour indek ¢y, j; are static (anti)quark
fields, ') are spin matrices, and the parentheses indicate spinfctlees. All the fields are
interpreted to be in the valence sector of the theory. Thim&tism of distinct quark flavours
will allow us to isolate scale-dependent logarithmic djerces from eventual mixing with lower-
dimensional operators that may appear for specific choicgsark masses and/or flavour content.
The above operators mix under renormalisation as detedipeéhe symmetries of the regu-
larised theory. If we restrict ourselves to the parity-oddtsr, complete bases of operators in the



NPR of four-fermion operators ini\N=- 2 QCD Carlos Pena

relativistic and static cases are given by
+ + + + + + . + + + + +
Qk € {OVA+AV’ OVA—AV’ OSP—PS7 ()SFLFF’S7 OT'T” } 4 o@k € {ﬁVA+AV’ ﬁVA—AV7 ﬁSP—PS7 ﬁSHPS } ? (23)

respectively, in standard self-explanatory notation fier¢hoice of spin matricdsg. A full analysis
of the renormalisation of these operator bases with retgatwVilson fermions has been performed
in [8, 9]. One patrticular conclusion is that, contrary to freity-even case, discrete symmetries
protect all the above operators from extra mixings undeonmalisation due to the breaking of
chiral symmetry. Recall that the RG of these operators aritiedf parity-even partners is identi-
cal, as in the continuum limit (CL) chiral symmetry holds. @e other hand, the connection to
observables involving matrix elements of parity-even afms is hon-trivial.

From now on, we will consider the subset of operators

Qf, 2f c{9],2f +425,2] +29;, 2 29} . (2.4)

All these operators renormalise multiplicatively — i.eyemn an operato© € {Qf,o@'lj} the cor-
responding operator insertion in any on-shell renormdlis@relation function is given by

Or(x; ) = lim Z(go, aut) O(x; go) , (2.5)

wheregg,a are the bare lattice coupling and the lattice spacing, misedy. The RG running of
the operator is controlled by the anomalous dimengiatefined by the Callan-Symanzik equation

H%Oa(x;u) — y(G(1)) OR(X; ). (2.6)

which is supplemented by the corresponding Callan-Syrkagpiation for the renormalised cou-
pling
2 () = Ba(w)) @7
“du H) =PB(@H)). .

In mass-independent renormalisation schemes, the betdaurand all anomalous dimensions do
indeed depend only on the renormalised couplingThey admit perturbative expansions of the
form

g—0 g—0
B ~ —¢® (bo+big®+bg+...); v ~ - (w+nd+yd'+...), (2.8

in which the coefficient$g, by, o are renormalisation scheme-independent. Upon formajrate
tion of Eq. (2.6), one is left with the renormalisation grdopariant (RGI) operator insertion

0
A gz(u)]%ﬂ { /9“‘> (v(g) ¥ >}

O(x) = Or(X; =7 exps — dg | —=—— , 2.9
(X) R(U)[4n Pl 99\ Ble g (2.9)

while the RG evolution between two scales L is given by the operator

9te)  y(9) } - Z(go, apl2)
U (o, L) = ex / dg ===} = lim === 2.10
(b, 1) p{ 9(k) gﬁ(g) a—0 Z(Qgo,ap1) (2.10)
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2.2 Schrddinger Functional renormalisation schemes

Eq. (2.10) is the starting point to compute non-perturledyithe RG evolution of compaosite
operators. To that purpose we introduce a family of SchigalifFunctional (SF) renormalisation
schemes. The latter are defined by regularising the theoaysgmmetric lattice of physical siz¢
with SF boundary conditions (see e.g. [10] for an introdutto the SF setup). The renormalisation
scale is set to be the infrared cutoff, i.e¢ = 1/L. Renormalisation conditions for relativistic
operators have the form

F(o) _ F(x)

Z(go,al) —x— = —=— , (2.11)
S S tree level

and are imposed in the chiral limit. In the above expresdiois, a four-point correlation function
of the form

1
o
where &[I'] are bilinear interpolating fields living on the time bouridar and® is a suitable
boundary-to-boundary correlation function that dividestbe ultraviolet divergences associated to
these bilinears. Similar renormalisation conditions to@dL1) are set up for static-light operators,
with flavours 1 and 3 substituted !bvyandﬁ. Full details are provided in [4, 5, 9]. For now it is just
important to mention that the renormalisation scheme Ig fidtermined by fixing the parameters
involved in the SF boundary conditions; the poigtat which Eq. (2.11) is imposed; the Dirac
matricesl agc entering boundary bilinears and the normalisation fact®. Specific schemes
have been introduced in [4, 5, 9]. Here we will concentratéhin cases which have been found
to be best behaved in the quenched study, namely schemeQ fand scheme 8 fo; in the
notation of [4, 5], and the reference schemes for statlu-ligperators defined in [6].

A crucial observation is that all the above renormalisasohemes are mass-independent by
construction, and the resulting renormalisation factoesflavour-blind. It then follows that they
can be used to remove the logarithmic divergences from amyfémion operator with the consid-
ered structure, irrespective of its specific flavour contente eventual subtractions due to mixing
with equal- or lower-dimension operators have been prgpgesiformed.

F (%) = —5 (02l Al Os[[ 6] Qi (X) O%s[l ) , (2.12)

2.3 Step-scaling functions

The basic objects to study the RG evolution of compositeaipes non-perturbatively are the
step-scaling functions (SSFs)

Z(90,8/(2L))
Z(QOaa/L) g2(1/L)=u 7

which can be computed at several values of the lattice spdoinfixed physical size (inverse
renormalisation scald). The corresponding values @f are indeed fixed by requiring that the
renormalised SF coupling?, and hencé., are kept constant. It is then possible CL extrapolation

>(u,a/L) = (2.13)

o(u) = lim Z(u,a/L) = U((2L) 5L Y|

lim ) 92(1/L)=u - (2.14)

LAt vanishing external momenta, there are 5 possible naatighoices that preserve cubic symmetry.
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Onceo (u) is known for several different values of the squared gaugelowg u, it is possible
to reconstruct the RG evolution factor( Linag, Hpt) between two extreme scal@tsag, in the range
of a few hundred MeV, ang in the high-energy regime. This in turn allows to computeRit&l
operator of Eg. (2.9) in a way free from large uncontrollegtsgnatic uncertainties. It is enough to
consider the exponential on the rhs of Eq. (2.9) evaluated-atun,q, and split it as

The second factor on the rhs is known non-perturbativelylesthe first factor can be safely com-
puted at NLO in perturbation theory, provided the sqaleis high enough so as to render NNLO
effects negligible.

3. Non-perturbative computation of the RG running

SSFs have been computed using the non-perturbativedy ihproved Wilson action, and
a HYP2 action for static quarks, at six different values @& 8F coupling, corresponding to six
different physical lattice lengthlks. For each volume we have simulated at three different values
of the lattice spacing, corresponding to lattices vifta = 6,8,12 (respectivel\. /a = 12 16,24)
for the computation oZ(L) (resp. Z(2L)). We used thé\; = 2 configurations generated by the
ALPHA Collaboration for the determination of the RG runniafjthe quark mass [11]. All the
technical details concerning the dynamical simulatiomstéscussed in the mentioned work.

As we do not implement full Ga) improvement for four-fermion operators, the only linear
cutoff effects that are removed frol{gp,a/L) are those cancelled by the SW term in the fermion
action. Therefore, we expect SSFs to approach the CL linéard/L. In practice, it is often
observed that the data correspondingLj@ = 8,12 are compatible within errors, whereas the
L/a=6 datum, that is expected to bear the largest cutoff effectfi This suggests that a weighted
average of the results for the two finest lattices, as corsidm [11], may yield a good estimate
of the CL value. However, the lack of at least one extra valua/t closer to the continuum,
that would allow a more precise control of the systematies led us to conservatively adopt
linear CL extrapolations involving all the data. It is worégmarking, though, that linear fits and
weighted averages lead to compatible results within onadata deviation in most cases, as can
be seen in Fig. 1. The latter illustrates the extrapolatianall values of the coupling for two
selected operators. Finally, let us mention that autotairom times, which are included in the
error estimate, increase towards the CL, leading to amgbldieors in the finest lattices.

The resulting SSFe(u) have been fitted to a polynomial form. For definiteness, wé wil
provide results for a fit tar(u) = 1+ siu+ Ul + s3ul, wheres, is fixed at the value predicted
by LO perturbation theory and,,s; are left as free parameters. Once this continuous form of
the SSF has been obtained, it is possible to compute théorelagtween the RGI operators and
the renormalised operators at the low-energy spalg = L1, defined byg?(Lmax) = 4.61, as
explained e.g. in [4, 6]. This scale is chosen such that thernealisation constar®(go, alhad)
can be computed on accessible lattices in ranges of valugsadmmonly used in large volume
simulations. The results for the operators under invetstigaare reported in Table 1. Note that
typical relative errors reach the 5% ballpark, which maybes a sizeable error in HMEs coming
from renormalisation alone.
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Figure 1: CL extrapolation of the SSFs fdp; (left) and Q/f (right) for one particular choice of the
renormalisation scheme (all boundary matrices sgf tspatial boundary conditions set By= 0.5, a0 =0
in the renormalisation condition fo@/j (see[4, 5, 9] for details). The renormalised coupling iases from
top to bottom and from left to right. Blue discontinued lireesd the blue point a/L = 0 correspond to
weighted averages of the'a= 8,12 data, red lines and the radL = 0 cross to linear extrapolationsarL
of the three data.
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Figure 2: SSFs forQ; (left) ando@,l+ (right) in the CL in the same schemes as considered in Figurell
red points aré\; = 2 results, open blue points are quenched results. The réed#slue dotted) line is the
NLO Nt = 2 (Nf = 0) perturbative result.

4. Connection to hadronic observables

RGI operator insertions can be related to bare operatortioss via a total renormalisation
factorZ(go), defined as

Z(90) = Z(9o, ahad) eXp{/og(uhad) dg <% — b%) } .

This is enough to remove all ultraviolet divergences, onvemtial renormalisation scale-independent
mixing with operators of dimensiod < 6 peculiar to the specific flavour structure under consid-
eration has been taken into account via suitable subtrectibhe details of the mixing depend on
the regularisation in which bare correlation functions @wmputed, as does the relation between
the latter and physical observables. For instance, in [3Rithas been explained how to extract
the bag parameteBix andBg (the latter in the static limit for thb quark) directly from three-point
functions involving the operato@; and-2;,, by using Wilson actions with suitable twisted mass

(4.1)
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operator ratio operator ratio

27 0.724(34)
Qf  1.20166) 2,7 0.647(32)
Q 0.554(21) 257 053918
2,7 0.796(20)

Table 1: Ratios of RGI to renormalised @taq Operator insertions for the various operators in the refeze
renormalisation schemes mentioned in the text.

terms. The computation of the RGI renormalisation facitjigy) at a number of values of the bare
coupling with an @a) improved Wilson action is under way and close to completion.

5. Conclusions

We have presented a fully non-perturbative computatiorhefRG running of a wide class
of four-fermion operators iMNy = 2 QCD. These results, together with the matching to specific
hadronic schemes, is a basic building block of &hy= 2 computation of such quantities Bg
andBg that aims at eliminating systematic uncertainties reléeenormalisation. On the other
hand, the precision of the results sets a potentially usfaatory lower bound for the final error
on weak matrix elements. Future refinement, e.g. by addinggatflattice to our continuum limit
extrapolations, can be hence desirable. These issuesendisbussed in detail in our forthcoming
publication of the definitive results.

References

[1] C. Dawson, Po$AT2005, 007 (2006); C. Pena, PA\T2006 (2006) 019.
[2] L. Giusti, POSLAT2006 (2006) 009.

[3] R. Sommer, Nucl. Phys. Proc. Suppll9(2003) 185.

[4] M. Guagnelli et al. [ALPHA Collaboration], JHE®603(2006) 088.

[5] F. Palombi, C. Pena and S. Sint, JHE603(2006) 089.

[6] F. Palombi, M. Papinutto, C. Pena and H. Wittig, arXiv0&/4153 [hep-lat].

[7]1 P. Dimopoulos, G. Herdoiza, A. Vladikas, F. Palombi, @& and S. Sint [ALPHA Collaboration],
PoSLAT2006 (2006) 158 [arXiv:hep-lat/0610077].

[8] A. Donini et al. Eur. Phys. J. @0, 121 (1999).

[9] F. Palombi, M. Papinutto, C. Pena and H. Wittig, JHEGD8(2006) 017.
[10] R. Sommer, arXiv:hep-lat/0611020.
[11] M. Della Morte et al. [ALPHA Collaboration], Nucl. Phy8 729(2005) 117.

[12] R. Frezzotti, P.A. Grassi, S. Sint and P. Weisz [ALPHAl&looration], JHER0108 058 (2001);
P. Dimopoulos et al. [ALPHA Collaboration], Nucl. Phys.789(2006) 69.

[13] M. Della Morte, Nucl. Phys. Proc. Supfl40(2005) 458; F. Palombi, M. Papinutto, C. Pena and
H. Wittig, POS(LATTICE 2007)366.



