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Matrix element Form factor Relevant decay(s)

〈P|q̄γµb|B〉 f+, f0

{

B → πℓν
B → Kℓ+ℓ−

〈P|q̄σ µν qνb|B〉 fT B → Kℓ+ℓ−

〈V |q̄γµb|B〉
〈V |q̄γµγ5b|B〉

V
A0,A1,A2

{

B → (ρ/ω)ℓν
B → K∗ℓ+ℓ−

〈V |q̄σ µν qνb|B〉
〈V |q̄σ µν γ5qνb|B〉

T1

T2,T3

{

B → K∗γ
B → K∗ℓ+ℓ−

Table 1: Full list of B semileptonic form factors.

1. Motivation

We at this conference know very well the importance lattice QCD calculations have in the
global flavor physics program. Calculations of theB meson decay constant,B → π form factors,
andB−B mixing matrix elements have been pursued and refined for overa decade, and they are
important ingredients in constraining parameters governing quark flavor-changing interactions.

It is now clear that the CKM mechanism of the Standard Model accurately describes flavor
physics up to present precision. In order to probe the couplings to the non-Standard Model physics
we expect, we must further refine experimental measurementsand theoretical calculations.

In the latter pursuit, lattice QCD must extend its focus. RareB decays offer a promising avenue
for improvement from the status quo. One difference betweenthe rareB decays and the processes
on which lattice QCD usually focuses is that the former require more assumptions,e.g. neglect of
long distance contributions and hard spectator effects. Nevertheless, lattice calculations can still
play an important role in the phenomenology of exclusiveb → s decays by reducing uncertainties
in hadronic matrix elements.

2. Plan for calculation

In this section we outline our strategy for computingB → K∗γ form factors. Ultimately we
would like to calculate all of the semileptonicB decay form factors (Table 1). Presently we con-
centrate on the radiative decay because it stands to be the most greatly improved.

The main new component to be used is moving NRQCD (mNRQCD). Aswith conventional
NRQCD, this is an effective field theory which permits lattice calculations with the physical bottom
quark mass. The formulation in a frame where the lattice is boosted relative to theB rest frame
will permit calculations over a larger range of momentum transferq2 than non-moving NRQCD.
We discuss mNRQCD in Section 3.

We will use an improved staggered quark action for the light valence and sea quarks. The first
calculations will make use of the ensemble of MILC configurations generated with the AsqTad
action; later we will use configurations generated with the HISQ action. The virtues and risks of
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using rooted, improved staggered quarks have been discussed extensively [1, 2]. A few remarks
regarding theK∗ are made in Section 4.

The matching between the continuum and lattice current and penguin operators will be carried
out to 1-loop order in perturbation theory. The matching of the vector and axial vector currents for
mNRQCD is being finalized presently [3], and the matching forthe penguin operator is underway.

A recent lattice calculation used a very different lattice strategy to calculate theB → K∗ form
factors [4] (see within for earlier lattice calculations).The use of many approaches, sum rules in
addition to lattice QCD, is especially desirable given the theoretical uncertainties.

3. Moving NRQCD

Moving HQET/NRQCD has been a recurring topic for over a decade [5, 6, 7, 8, 9, 10]. Ini-
tially it was envisioned for use calculating Isgur-Wise functions at nonzero recoil. Since theB → D
form factor shapes are constrained by dispersion relationsaccurately, only the zero recoil normal-
ization is now necessary from lattice QCD (LQCD). Later, mNRQCD was explored with the idea
of extending the reach of LQCD calculations ofB → π form factors toward large recoil. This is
still desirable, but the shape is now being measured competitively by experiment. In the previous
2 cases the LQCD determination of the shape is not imperative, but the LQCD determination of
the normalization is still needed. On the contrary, in orderto reach the physical point forB → K∗γ
(q2 = 0) where LQCD can provide the normalization, a lattice calculation of the shape is a neces-
sary step. Moving NRQCD is an important tool to develop and apply.

As with NRQCD, we work with an effective field theory which requires mb > 1/a. This
condition is satisfied on all present and near-future unquenched lattices. Although one cannot take
a continuum limit in the formal sense, we can study and removediscretization errors at least as
well as with other heavy quark formulations. There is notheoretical problem with working with
a finite lattice spacing either. There are no discretizationerrors on the renormalized trajectory. Of
course one can question how close to the renormalized trajectory we can get using the Symanzik
improvement program. However, this is apractical question, the type of which can be asked of any
lattice formulation and can only be answered empirically. Experience has shown NRQCD to be a
successful approach.

The lattice (m)NRQCD action can be used for bothϒ andB physics. In the latter case, we
use standard HQET power counting to order and match operators. The leading uncertainty in some
cases is the matching, done with 1-loop perturbation theoryso far. The convergence of HQET
worsens as the recoil momentum becomes much larger thanΛQCD; however, we expect the change
to be mild over the range ofq2 > 0 we plan to study directly.

Working with a lattice boosted with respect to theB meson has the potential to blur the sep-
aration between physical and lattice length scales. At rest, hadronic momenta are of orderΛQCD.
In a frame where theB is boosted with velocityv, the boosted momentum distribution is of order
ΛQCD

√

(1+ v)/(1− v) in the direction parallel tov. That is, discretization errors will be twice as
large atv = 0.6 than for non-moving NRQCD. We anticipate that other sources of error will still
dominate.

We have independently derived, coded, and tested the movingNRQCD action accurate through
O(Λ2

QCD/m2) for B physics (HQET counting) andO(v4
NR) (NRQCD counting) forϒ physics. The
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Figure 1: Preliminary dispersion relationE(k) as a function of residual momentumk, both in lattice units.
The bare boost velocity isv = 0.1 (left) andv = 0.4 (right).

primary goal of ourϒ calculations with mNRQCD is to test the code, checking that we obtain
sensible results with reasonable statistical errors as theboost velocityv increases. As far as we
are aware, these are the first mNRQCD calculations with a Lagrangian of this accuracy. These
tests were performed on a subset of 2+ 1 flavor AsqTad-fermion lattices provided by the MILC
Collaboration, withβ = 6.76, bare quark masses 0.007 and 0.05,V = 203 × 64 [11]. We used
the bare heavy quark mass,am = 2.8, which gave the correctBs andϒ kinetic masses using non-
moving NRQCD [12, 13].

First we studied how spectral quantities behaved as the boost velocity v varied. On Coulomb
gauge-fixed lattices, we used smeared interpolating operators of the form

Ov(x,τ) = ∑
r

Ψ v(x,τ) f (r)Γ Ψv(x+ r ,τ), (3.1)

where f (r) is a radial smearing function andΓ is a Diracγ matrix. As in non-moving NRQCD,
we decouple the quark and antiquark fieldsΨv = (ψv,χv)

T and evolve the propagators from the
source timeslice to the sink timeslice. At the sink we project onto residual meson momentumk.
The energies can then be fit to

E(k) =
√

(2γmvZp +k)2 +M2
kin +∆v (3.2)

whereMkin is the kinetic meson mass, and∆v is an additive energy shift which is a function ofv and
is the same for all mesons. Note the physical meson momentum is split into a residual momentumk,
present explicitly in the calculation of the correlation function, and an external momentum 2γ mvZp,
with γ = (1− v2)−1/2. Zp accounts for renormalization of the external momentum; we always find
it to be consistent with 1 within fitting uncertainties. Dispersion relations forηb(1S) andϒ (1S) for
different boost velocities are plotted in Figure 1.

In Figure 2 we show several energy splittings as a function ofv, computed using correlation
functions which project onto residual momentumk = 0. We note the statistical errors grow asv
increases from 0 to 0.4, an effect more pronounced for the hyperfine and 2S−1S splittings than the
1P−1S splitting. Splittings with non-moving NRQCD were computed in [13].
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Figure 2: Preliminary bottomonium energy splittings∆E as a function of boost velocityv, plotted relative
to ∆E computed withv = 0. (Points are offset horizontally for legibility.) The 1P−1S and 2S−1S splittings
show a 1− cv2 decrease as expected from the dispersion relation.

Finally, to go beyond energies to matrix elements, we computed theηb to vacuum matrix
element of a fictitious axial vector currentAµ(x) = Ψ(x)γ5γµΨ(x), which we parametrize with a
decay constantf as

〈0|Aµ(0)|ηb(1S),p〉 = i f pµ (3.3)

(in Minkowski spacetime). The appropriate correlation function is constructed by writing this op-
erator in terms of the mNRQCD fields (in the lattice rest frame) using the following transformation:

Ψ(x) = SΛ TFWT e−im u·x γ0
TTD

1√γ
Ψv(x) (3.4)

where

TFWT = exp

(

i
2m

γ jΛ µ
jDµ

)

... (3.5)

is the Foldy-Wouthuysen-Tani transformation in the boosted frame,

TTD = exp

(

i
4γm

γ0[

(γ2−1)D0 +(γ2 +1)v ·D
]

)

... (3.6)

removes unwanted time derivatives, andSΛ is the Dirac spinor representation of the Lorentz boost.
Figure 3 shows this decay constant computed for several boost velocities. We might expect

some dependence onv due tov-dependent operator renormalization and the fact that constant bare
heavy quark mass might not correspond to constantMηb . Nevertheless,f appears independent ofv
within the statistical errors.

We note the statistical error increases by a factor of 3. Increasing the signal-to-noise ratio for
correlators computed withv > 0 will be an important challenge for our planned matrix element
calculations. Progress has already been achieved forB → π form factors (in thev = 0 frame) by
using random wall sources [14].
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Figure 3: Preliminary results for theηb decay constantf , in lattice units, as a function of bare boost velocity.
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Figure 4: UnquenchedK∗ mass as a function of light quark mass on MILC lattices (3 spacings), after simple
interpolation to physical strange quark mass [11]. (Raw data communicated by D. Toussaint.) Although
statistically significant, scaling violations are small compared to other errors anticipated forB → K∗ form
factors.

4. Vector meson final state

Figure 4 shows theK∗ mass computed by the MILC Collaboration [11]. Discretization errors
are visible within the small statistical errors, but are only a few percent, much smaller than the other
systematic errors we anticipate for the form factors. Tastesplitting effects are negligible between
the vector meson masses computed with local and 1-link operators.

There are interesting issues to study regarding threshold effects as the quark mass decreases.
Our initial calculations will be done with parameters for which theK∗ is a stable state. (Note that
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experimentalists quote branching ratios which treat the vector resonance as a final state.) Given that
we do not have a low energy effective theory for the vector mesons, as we do for the pseudoscalar
mesons and baryons, the best we can do is empirically extrapolate from our input quark masses
to the physical point. TheB → π form factors have a very mild quark mass dependence, so it is
reasonable to expect the same of theB → K∗ form factors, up to threshold effects.

5. Conclusions

Although more complicated than the standardB meson matrix elements calculated on the
lattice, matrix elements relevant for rareB meson decays are increasingly important to the flavor
physics program. The difficulties involved call for investigation with new tools such as moving
NRQCD. We have implemented and tested the mNRQCD action through O(Λ2

QCD/m2,v4
NR). We

present here preliminary results with this action, concentrating on the bottomonium dispersion
relation, level splittings, and theηb decay constant. We are now working on calculations forB
mesons.
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