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Figure 1: Kinematics of B → πlν semileptonic decay. pB is the momentum of the B meson and pπ is the
momentum of the pion, q is the momentum transfer.

1. Introduction

Precise determination of the form factors f0(q2), f+(q2) in B → πlν semileptonic decays is
crucial to the determination of the CKM-matrix element |Vub|. Fig. 1 shows the kinematics of
the process. Lattice QCD provides a first principles nonperturbative approach to calculate the
from factors in semileptonic decays. Standard simulation methods, however, are problematic in
the low q2 region when the pion has large recoil momentum. Simulation results are limited to
q2 & 15GeV2 [1, 2] while experimental data spans the entire q2 range. Large recoil momenta are
difficult for lattice calculations because statistical errors, which are set by E(p)−E(p = 0), become
worse when the hadrons have large momenta. In addition, discretization errors, which are set by
a2 p2, increase as the pion momentum increases.

In order to utilize all the experimental data and thereby reduce the experimental error on |Vub|,
it is important to develop new simulation techniques to cover the low q2 region. One method is to
reduce the pion momentum by using a lattice frame in which the B meson is moving in the opposite
direction to the pion; to describe a b quark with large velocity on the lattice the “moving-NRQCD”
formalism is used [3, 4, 5, 6]. In this work we concentrate on reducing the statistical errors with the
use of a random-wall source for the light quark propagator. In particular we explore the possibility
of simulating at apπ = 2π

L (3,0,0), which corresponds to q2 ∼ 10GeV2 in the B meson rest frame.
We test this on MILC coarse lattices where discretization errors are about 8% at this momentum;
errors will be much smaller on the fine (3%) and super-fine (1.5%) lattices. We also use the Highly
Improved Staggered Quark (HISQ) action [7, 8] for the valence light quarks.

2. Pion 2-Point Function

A zero-momentum random-wall source is generated by setting the color vector on each site of
a time slice1 to a three-component random complex unit vector ~η(x) [9]. This random source is
used in matrix inversion to obtain the staggered-quark propagator g(y,x)

g̃(y) ≡ ∑
x

g(y,x)~η(x) = ∑
x

M−1
y,x ~η(x), (2.1)

1In practice we also put the source on a random time slice.
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where My,x is the kernel of the staggered-quark action. It is more convenient to work in the naïve-
quark basis. The 4-component naïve-quark propagator S(y,x) is given by [8]

S(y,x) ≡
〈

ψ l(y)ψ l(x)
〉

= g(y,x)Ω(y)Ω†(x), (2.2)

where

Ω(x) =
3

∏
µ=0

(

γµ
)xµ . (2.3)

The pion correlator in the naïve-quark basis becomes

〈

J5(y)J5(x)
〉

=
〈(

ψ l(y)γ5ψ l(y)
)(

ψ l(x)γ5ψ l(x)
)〉

= Tr
[

γ5ψ l(y)ψ l(x)γ5ψ l(x)ψ l(y)
]

= Tr
[

γ5S(y,x)γ5γ5S†(y,x)γ5
]

= Tr
[

Ω(y)Ω†(x)Ω(x)Ω†(y)
]

tr
[

|g(y,x)|2
]

= 4tr
[

|g(y,x)|2
]

(2.4)

in terms of the staggered-quark propagator. Here Tr[. . .] is a trace over spinor indices while tr[. . .] is
taken over the color indices. Therefore to construct the pion correlation function at zero momentum
we take the magnitude square of g̃(y) at the sink and sum over spatial sites, and divide by the
number of sites N

1
N ∑

y
g̃∗(y)g̃(y) =

1
N ∑

y,x,x′
g∗(y,x′)g(y,x)~η∗(x′)~η(x). (2.5)

Since the averaged correlator has contributions only from where the quark and antiquark start at
the same spatial site, i.e., x = x′, the random-wall source simulates many-point source, and thereby
increases the statistics.

For correlator at finite momentum k, an additional phase is added to the source

g̃±(y) ≡ ∑
x

g(y,x)e±i k
2 x~η(x) = ∑

x
M−1

y,x e±i k
2 x~η(x). (2.6)

In this case we multiple g̃+(y) and (g̃−(y))∗ with an explicit insertion of eikx at the sink and sum
over spatial sites.

Fig. 2 compares the pion 2-point functions obtained with a local and a random source at
apπ = (0,0,0) and apπ = 2π

L (3,0,0) on MILC coarse lattices. The advantage of using a random-
wall source is clearly demonstrated, with statistical errors about 5 times smaller compared to the
local case. To fit the 2-point functions we employ a Bayesian technique [10] and do a multiple-
exponential fit

C(2)(t) =
Nπ−1

∑
k=0

(−1)ktake−Ek
π t . (2.7)

We use 5 exponentials Nπ = 5 (i.e., 3 normal states and 2 oscillating states). We observe a factor
of 2-3 improvement in the ground state energy and the amplitude for the random-wall source.
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Figure 2: Pion 2-point functions obtained with a local source and a random source on MILC coarse lattices
[amsea = .01/.05, amval = .05465 (∼ ms) for apπ = (0,0,0); amsea = .02/.05, amval = .02675 (∼ ms/2) for
apπ = 2π

L (3,0,0)]. Fit results for ground state energy E0 and amplitude a0 are also shown.

3. Heavy-Light 2-Point Function

The heavy-light correlator is
〈

J5(y)J5(x)
〉

=
〈(

ψ l(y)γ5ψQ(y)
)(

ψQ(x)γ5ψ l(x)
)〉

= Tr
[

γ5ψ l(x)ψ l(y)γ5ψQ(y)ψQ(x)
]

= Tr
[

γ5γ5S†(y,x)γ5γ5G(y,x)
]

= Tr
[(

Ω†(y)g∗(y,x)
)

G(y,x)Ω(x)
]

. (3.1)

Here G(y,x) is the heavy-quark propagator. We use NRQCD for the b quark

G(x, t +1) =

(

1− δH
2

)(

1− H0
2n

)n

U†
t (x)

(

1− H0
2n

)n (

1− δH
2

)

G(x, t), (3.2)

and H = H0 + δH is the O(1/M) improved lattice NRQCD Hamiltonian [11, 12]. In order to
combine with the light-quark propagator, the heavy-quark propagator must be initialized with the
same random noise ~η(x)

G(x, t = 0) = ∑
x′

Ω(x′)Φ(|x′− x|)~η(x′), (3.3)

where Φ(|x′− x|) is the smearing function centered at x′. Since the smearing function depends on
the magnitude of x′ − x only, G(x, t = 0) can be computed efficiently by applying translation to
Φ(|x|), the smearing function with center located at the origin, when doing the summation. At the
sink we multiply the heavy-quark propagator with Ω†(y)g̃∗(y)×Φ(|y|) and sum over spatial sites
and divide by N. Again only the terms with matching random numbers survive after the ensemble
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Figure 3: Heavy-light 2pt-functions on MILC coarse lattices [amsea = .01/.05, amval = .05465 (∼ ms),
amb = 2.8]. Gaussian smearing with radius ar = 4 is used and results are shown for local-source, local-sink
[LL] and smeared-source, smeared-sink [SS]. A matrix fit of LL, LS, SL, SS gives [local] E0 = 0.5532(15),
a0 = 0.1402(10), and [RW] E0 = 0.5559(7), a0 = 0.1424(5).

average, and the correlation function is the average of all contributions from where the heavy quark
and light quark start at the same site.

Fig. 3 shows the results obtained with a local source and a random source, with and without
smearing. The random-wall results are again more accurate, although the improvement is not as
significant as for the light-light correlators. Gaussian smearing is used and results are shown for
local-source, local-sink [LL] (i.e., no smearing) and smeared-source, smeared-sink [SS]. The plots
show that the advantage of using random-wall propagators decreases if smearing is used. It is
therefore crucial to fit the local and smeared results together. We fit LL, LS, SL, SS simultaneously
in a matrix fit using 5 exponentials (3 normal states and 2 oscillating states) and find that a smearing
function of radius ar = 4 gives the least relative errors for the ground state energy and amplitude.

4. 3-Point Function

We are interested in the 3-point function
〈

J5(y)Vµ(z)J5(x)
〉

=
〈(

ψ l(y)γ5ψ l(y)
)(

ψ l(z)γµψQ(z)
)(

ψQ(x)γ5ψ l(x)
)〉

= Tr
[

γ5ψ l(y)ψ l(z)γµψQ(z)ψQ(x)γ5ψ l(x)ψ l(y)
]

= Tr
[

γ5γ5S†(z,y)γ5γµG(z,x)γ5S(x,y)
]

= Tr
[(

Ω†(z)g∗(z,y)
)

γ5γµG(z,x)γ5 (Ω(x)g(x,y))
]

. (4.1)

with x0 < z0 < y0. To compute the current we initialize G(z,x) with γ5 × Ω(x)g̃(x) and then
propagate the heavy quark backward2 in time to the current insertion point z, where it turns into a

2Backward means to the opposite direction of the light-quark propagator.
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Figure 4: FIG. 5. The 3-point functions (corresponding to the temporal vector currents) obtained with
local and random-wall propagators on MILC coarse lattices [the same ensembles as in Fig. 2]. The B
meson starts at t = 0 and the pion is at t = 16. The random-wall results are 3-4 more accurate compared
to the results obtained using local propagators. In particular we obtain, for no smearing, v00 = 0.0605(39)

[local], v00 = 0.0597(7) [RW] for apπ = (0,0,0), and v00 = 0.029(49) [local], v00 = 0.043(33) [RW] for
apπ = 2π

L (3,0,0).

light quark; more precisely, we take the trace of the product of G(z,x) and Ω†(z)g̃∗(z)× γ5γµ at the
insertion point z. This setup is not merely convenient and efficient, but the same computer code can
be used for local and random-wall propagators3. We only have to divide the random-wall results
by an extra factor of N since there are N times more contributions like the one in Eq. (4.1), each
from a different source point x, to the averaged correlator.

In Fig. 4 we plot the temporal vector currents calculated with local and random-wall prop-
agators for pion momenta apπ = (0,0,0) and apπ = 2π

L (3,0,0). Results again clearly show that
statistical noises can be suppressed substantially by the use of random sources. The 3-point func-
tion has the functional form

C(3)(t) =
Nπ−1

∑
k=0

NB−1

∑
l=0

(−1)kt(−1)l(T−t)akalvkle
−Ek

π te−E l
B(T−t), (4.2)

where T = y0−x0. To extract the matrix element v00 we fit the 3-point function, the 2-point function
(Fig. 2) and the heavy-light 2-point function (Fig. 3) simultaneously using Nπ = NB = 5. Fit results
are given along with the graphs. We find that random-wall results are about 5 times more accurate
compared to local case at apπ = (0,0,0), and about a factor of 2 better at apπ = 2π

L (3,0,0).

3In the local case we read in local propagators g̃(x) = ∑y′ g(x,y′)δyy′ = g(x,y) and g̃(z) = g(z,y); in the random-wall
case we read in the random-source propagators Eq. (2.1).
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5. Conclusion

The major problem in studying semileptonic decays on the lattice is the exponential growth
of statistical errors in correlation functions as the pion momentum increases. In this work we ex-
plored the possibility of reducing statistical noises using random-wall light-quark propagators. We
demonstrated that correlation functions obtained with random sources have much better signal-to-
noise ratios, with statistical errors about 3-4 times smaller than those obtained with local propa-
gators. One should therefore improve the current lattice simulations at small pion momenta using
random-wall propagators. Encouraging results were also obtained at pion momentum as large as
apπ = 2π

L (3,0,0) (corresponding to q2 ∼ 10GeV2), although statistical errors are still too large for
the results to be useful. Work is in progress, e.g. fitting correlation functions with different T
simultaneously, to further improve the calculations.
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