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1. Introduction

Field theories with nonstandard kinetic terms have beejestshof investigation since a long
time ago [1]. In cosmology they were first introduced in thateat of k-inflation and k-essence
models [2]. Due to non-linearity of the equations of motismall perturbations propagate in a
new, effective, metric which may differ from the gravitata one’. In other words, a background
dynamically breaks Lorentz invariance and serves as a "tiesr'e In this case, depending on a
model and a background solution, the propagation speedrafrpations can be greater or less
than the speed of light.

In literature there is a number of examples of theories atigvsuperluminal propagation of
signals. Successful cosmological k-essence models seeraquire a superluminal sound speed
during a period of cosmic evolution [4, 5] In the Einstein-Aether theory some modes can propa-
gate with superluminal velocities [8].

As it was argued in [9], in spite of the superluminal propagathe causal paradoxes do not
arise in k-essence-like theories and in this respect theyar less safe than General Relativity
(GR).

In our previous work [10] we have shown that it is principgtlgssible to send information
from the interior of a black hole (BH) without modifying Habt-Einstein actior?. This may
happen provided a special type of scalar field theory withcaannical kinetic term is realized in
nature. In our approach we have considered the accretiopafti@ular noncanonical fielg onto
a black hole*. The scalar field flow forms an acoustic black hole similah@well known "dumb
hole" [14].

Here we review our results from the paper [10] with the maiasst on the issues of causality
and acoustic metric in eikonal approximation.

2. Modd

In our paper [10] we considered a scalar figldvith the generally covariant and Lorentz
invariant action

2X

S:/d“x\/—gp(x), where p(X) = a? 1+5-1|. (2.1)

The Lagrangiarp(X) depends only oiX = %D“(pD“(p, anda is a free parameter of the theory.
Throughout the papér,, denotes the covariant derivative and we use natural unithioh G =
h'=c= 1. The kinetic part of the action is the same as in [7] and faalsderivatives, that is, in
the limit 2X < a2, it describes the usual massless free scalar field. In theofawitrary p(X)
the equation of motion fop is

GHVO,0,9 =0, where the induced metriGH" = gH¥ + %D“qﬂ"(p, (2.2)
X

LAnother possibility to obtain the propagation cone diffefieom the gravitational one is to consider two kinetically
coupled to scalar fields [3].

2The models with superluminal sound speed may have otheesiteg applications in cosmology [6, 7].

3In bimetric theories this possibility can be easily achégjl].

4The accretion of other noncanonical scalar fields were stlidgi e.g. [12, 13].
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and px = dp/dX. Throughout the paper we assume the condifign> 0 to be true, which is
obviously satisfied for the concrete Lagrangian (2.1). Theadon (2.2) is hyperbolic and its
solutions are stable with respect to high frequency peatiobs provided 1+ 2Xpxx/px) > 0

[6, 16, 17, 18]. Propagation vectdd' are tangent to characteristic surface and define the inuenc

cone:
P.xx

pPx + 2X Pxx

is inverse matrix taGH#Y. The influence cone is larger than the light cong ifx < 0 [16, 17, 18].

In this case the front of small perturbationsgpropagates faster than light. If a backgroup(c)

is trivial, O, ¢ = 0, then perturbations (small discontinuities) propagaité ¥he speed of light.
Therefore only nontrivial backgroundg(x) spontaneously break the Lorentz invariance. Despite
the fact that the action (2.1) is manifestly Lorentz invatithe action for perturbationd@ around

a non-trivial background solution is only generally cogati but not Lorentz invariant anymore.
This background can be considered as a medium or "new eti@Servers moving differently
with respect to this medium may disagree in the results ofesamasurements. Moreover in
the case of superluminal propagation there is no Lorentariamt notion of causality [18, 15].
However, by virtue of the hyperbolicity of the system everthiis case there may exist some
Cauchy hypersurfaces [17] and therefore observers forhwttie causality is well defined [19].
Nevertheless, there are backgrounds [15] where closedlikmeurves (CTC) exist. However,
in the standard GR [20] it is also the case. The so-calledndiogy protection conjecture [21]
may preclude the existence of CTC. For a more detailed dismusf causality in the theories
with spontaneously broken Lorentz-invariance see pa@e9ih For the energy-momentum tensor
we haveTy,, = pxO,¢@0,@— pgyy. Thus the Null Energy Conditiof,,n*n" >0 5 is satisfied

if px > 0. This is always the case for our model (2.1) and hence thek lilale area theorem
[22] holds. It is well known that, if], @ is timelike (that is,X > O in our convention), then the
system with generap(X) is formally equivalent to a perfect fluid with the pressyre= p(X),
energy density(X) = 2X px (X) — p(X), the four-velocityu,, = D“(p/\/ﬂ and the sound speed
c2 =0dp/de = px/ex. Specializing to the case of the Lagrangian (2.1) we have

G,wNKNY =0, where Gj =gy — D0y (2.3)

2X £

?217 £

Opelye
a2 a?

= (1_CS_1)7

cZ=1+ i

=(cs—1), Guy=0uv+ (2.4)

3. The background solution and propagation of small perturbations

Here we sketch how to find a stationary spherically symmditaickground solution for the
scalar field falling onto a Schwarzschild black hole. In tiigliBgton-Finkelstein coordinatéshe
metric takes the form:

ds? = f(r)dv2— 2avdr — r2dQ?, where f(r)zl—rTg, rg=2M. (3.1)

In [10] we verified that there is a broad range of free paranmaetdor which the infalling field has
a negligible influence on the black hole, that is, we consilderaccretion of a test fluid in a given

Sn# is null vector ingyy .
5Note that these coordinates are regular at Schwarzschilzomo
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gravitational field. The stationarity and cosmological hdary conditions at spatial infinity imply
the following ansatz for the solution:

r
e(V,r)=ay/c2—1 (V +/ F(r’)dr’) , Whereg; is the speed of sound at infinity. (3.2)

For every solutior(r) the induced acoustic line element (in eikonal approxinmtie
o8 = G Jaxax’ = (- rTg) V2 - 2Vdr (1— (@~ 1)F) + (B 1)F2dr2— r2d0%  (3.3)

In this acoustic metric the coordinateis timelike. Therefore from (3.3) it follows that there exis
sonic horizomatr, = rg/ci2 <rg. Substituting (3.2) into (2.2) and (3.3) one can obtain thatonly
physical solution which satisfies all boundary conditionsl #or which the acoustic space-time
(3.3) is not singular for > r,, is given by:

_ 1 2+ f(x)—1 B
F(x) = f(X) (\/f(x)x40?+(ci2_l) —1>, where x=r/rg. (3.4)

And for the sound speed one obtaitggx) = x3c/ [1+ ¢?(x— 1)(1+x¢? + x°c')]. The acoustic
spacetime (3.3) with the function (3.4) describes an ansdgack hole with the horizon which

is insidethe Schwarzschild horizon. Therefore it is possible to w=gupbationsd@ around this
background (3.2),(3.4) as signals and to send informatiom the regiomr, <r < rq between two
horizons, see Fig. 2 from [10]. On the background solufi#p is a time like non-vanishing vector
field well defined forr > r,. Thus in accordance with [23] the acoustic space time idys(and
therefore strongly) causal far> r,. Suppose that a spacecraft moves together with the falling
background field and sends the acoustic signals with theiémzy w. After simple calculations
one can obtain that an observer at rest at the spatial infinlitgetect these signals at the frequency

Winf:
Win \ 2 1-r /I’
o= (- () a5

This expression corrects our result from [10]. Note thatrtit® wem/ it is finite for anyr > r,
and it vanishes for =r,. In particular for the moment of crossing the Schwarzschddzon we

have e/ Gn = G4 /1+ 6263+ 8/(cf — 1),
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