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trivial backgrounds. In spite of the superluminal propagation the causal paradoxes do not arise in

these theories and in this respect they are not less safe thanGeneral Relativity. Here we consider

the accretion of non-canonical k-essence-like scalar fields onto a Schwarzschild black hole, and

we show that one can send information from inside a black hole. This information is encoded in

perturbations of the field propagating in non-trivial scalar field backgrounds, which serves as a

"new ether".

From Quantum to Emergent Gravity: Theory and Phenomenology
June 11-15 2007
Trieste, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
Q
G
-
P
h
)
0
0
6

"Superluminal" scalar fields and black holes Eugeny Babichev

1. Introduction

Field theories with nonstandard kinetic terms have been subjects of investigation since a long
time ago [1]. In cosmology they were first introduced in the context of k-inflation and k-essence
models [2]. Due to non-linearity of the equations of motion,small perturbations propagate in a
new, effective, metric which may differ from the gravitational one1. In other words, a background
dynamically breaks Lorentz invariance and serves as a "new ether". In this case, depending on a
model and a background solution, the propagation speed of perturbations can be greater or less
than the speed of light.

In literature there is a number of examples of theories allowing superluminal propagation of
signals. Successful cosmological k-essence models seems to require a superluminal sound speed
during a period of cosmic evolution [4, 5]2. In the Einstein-Aether theory some modes can propa-
gate with superluminal velocities [8].

As it was argued in [9], in spite of the superluminal propagation the causal paradoxes do not
arise in k-essence-like theories and in this respect they are not less safe than General Relativity
(GR).

In our previous work [10] we have shown that it is principallypossible to send information
from the interior of a black hole (BH) without modifying Hilbert-Einstein action3. This may
happen provided a special type of scalar field theory with noncanonical kinetic term is realized in
nature. In our approach we have considered the accretion of aparticular noncanonical fieldφ onto
a black hole4. The scalar field flow forms an acoustic black hole similar to the well known "dumb
hole" [14].

Here we review our results from the paper [10] with the main stress on the issues of causality
and acoustic metric in eikonal approximation.

2. Model

In our paper [10] we considered a scalar fieldφ with the generally covariant and Lorentz
invariant action

S=
∫

d4x
√
−gp(X), where p(X) = α2

[

√

1+
2X
α2 −1

]

. (2.1)

The Lagrangianp(X) depends only onX ≡ 1
2∇µφ∇µφ , andα is a free parameter of the theory.

Throughout the paper∇µ denotes the covariant derivative and we use natural units inwhich G =

h̄ = c = 1. The kinetic part of the action is the same as in [7] and for small derivatives, that is, in
the limit 2X ≪ α2, it describes the usual massless free scalar field. In the caseof arbitrary p(X)

the equation of motion forφ is

Gµν∇µ∇νφ = 0, where the induced metricGµν ≡ gµν +
p,XX

p,X
∇µφ∇ν φ , (2.2)

1Another possibility to obtain the propagation cone different from the gravitational one is to consider two kinetically
coupled to scalar fields [3].

2The models with superluminal sound speed may have other interesting applications in cosmology [6, 7].
3In bimetric theories this possibility can be easily achieved [11].
4The accretion of other noncanonical scalar fields were studied in e.g. [12, 13].
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and p,X ≡ ∂ p/∂X. Throughout the paper we assume the conditionp,X > 0 to be true, which is
obviously satisfied for the concrete Lagrangian (2.1). The equation (2.2) is hyperbolic and its
solutions are stable with respect to high frequency perturbations provided(1+ 2X p,XX/p,X) > 0
[6, 16, 17, 18]. Propagation vectorsNµ are tangent to characteristic surface and define the influence
cone:

G−1
µνNµNν = 0, where G−1

µν = gµν −
p,XX

p,X +2X p,XX
∇µφ∇ν φ (2.3)

is inverse matrix toGµν . The influence cone is larger than the light cone ifp,XX < 0 [16, 17, 18].
In this case the front of small perturbations ofφ propagates faster than light. If a backgroundφ(x)
is trivial, ∇µφ = 0, then perturbations (small discontinuities) propagate with the speed of light.
Therefore only nontrivial backgroundsφ(x) spontaneously break the Lorentz invariance. Despite
the fact that the action (2.1) is manifestly Lorentz invariant the action for perturbationsδφ around
a non-trivial background solution is only generally covariant but not Lorentz invariant anymore.
This background can be considered as a medium or "new ether".Observers moving differently
with respect to this medium may disagree in the results of some measurements. Moreover in
the case of superluminal propagation there is no Lorentz invariant notion of causality [18, 15].
However, by virtue of the hyperbolicity of the system even inthis case there may exist some
Cauchy hypersurfaces [17] and therefore observers for which the causality is well defined [19].
Nevertheless, there are backgrounds [15] where closed timelike curves (CTC) exist. However,
in the standard GR [20] it is also the case. The so-called chronology protection conjecture [21]
may preclude the existence of CTC. For a more detailed discussion of causality in the theories
with spontaneously broken Lorentz-invariance see paper the [9]. For the energy-momentum tensor
we haveTµν = p,X∇µφ∇νφ − pgµν . Thus the Null Energy ConditionTµνnµnν ≥ 0 5 is satisfied
if p,X ≥ 0 . This is always the case for our model (2.1) and hence the black hole area theorem
[22] holds. It is well known that, if∇νφ is timelike (that is,X > 0 in our convention), then the
system with generalp(X) is formally equivalent to a perfect fluid with the pressurep = p(X),
energy densityε(X) = 2X p,X(X)− p(X), the four-velocityuµ = ∇µφ/

√
2X and the sound speed

c2
s ≡ ∂ p/∂ε = p,X/ε,X . Specializing to the case of the Lagrangian (2.1) we have

c2
s = 1+

2X
α2 ≥ 1,

ε
α2 = (1−c−1

s ),
p

α2 = (cs−1), G−1
µν = gµν +

∇µφ∇νφ
α2 . (2.4)

3. The background solution and propagation of small perturbations

Here we sketch how to find a stationary spherically symmetricbackground solution for the
scalar field falling onto a Schwarzschild black hole. In the Eddington-Finkelstein coordinates6 the
metric takes the form:

ds2 = f (r)dV2−2dVdr − r2dΩ2, where f (r) ≡ 1−
rg

r
, rg ≡ 2M. (3.1)

In [10] we verified that there is a broad range of free parameter α2 for which the infalling field has
a negligible influence on the black hole, that is, we considerthe accretion of a test fluid in a given

5nµ is null vector ingµν .
6Note that these coordinates are regular at Schwarzschild horizon.
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gravitational field. The stationarity and cosmological boundary conditions at spatial infinity imply
the following ansatz for the solution:

φ(V, r) = α
√

c2
i −1

(

V +
∫ r

F(r ′)dr′
)

, whereci is the speed of sound at infinity. (3.2)

For every solutionF(r) the induced acoustic line element (in eikonal approximation) is

dS2 ≡ G−1
µνdxµ dxν =

(

c2
i −

rg

r

)

dV2−2dVdr
(

1− (c2
i −1)F

)

+(c2
i −1)F2dr2− r2dΩ2. (3.3)

In this acoustic metric the coordinateV is timelike. Therefore from (3.3) it follows that there exists
sonic horizonat r⋆ = rg/c2

i ≤ rg. Substituting (3.2) into (2.2) and (3.3) one can obtain thatthe only
physical solution which satisfies all boundary conditions and for which the acoustic space-time
(3.3) is not singular forr ≥ r⋆, is given by:

F(x) =
1

f (x)

(
√

c2
i + f (x)−1

f (x)x4c8
i +
(

c2
i −1

) −1

)

, where x≡ r/rg. (3.4)

And for the sound speed one obtainsc2
s(x) = x3c8

i /
[

1+c2
i (x−1)(1+xc2

i +x2c4
i )
]

. The acoustic
spacetime (3.3) with the function (3.4) describes an analogue black hole with the horizon which
is inside the Schwarzschild horizon. Therefore it is possible to use perturbationsδφ around this
background (3.2),(3.4) as signals and to send information from the regionr⋆ < r < rg between two
horizons, see Fig. 2 from [10]. On the background solution∇µφ is a time like non-vanishing vector
field well defined forr ≥ r⋆. Thus in accordance with [23] the acoustic space time is stably (and
therefore strongly) causal forr ≥ r⋆. Suppose that a spacecraft moves together with the falling
background field and sends the acoustic signals with the frequencyωem. After simple calculations
one can obtain that an observer at rest at the spatial infinitywill detect these signals at the frequency
ωin f :

ωin f

ωem
=

(

1−
( r⋆

r

)2
)

√

1− rg/r

1−c2
s(r)(r⋆/r)4 (3.5)

This expression corrects our result from [10]. Note that theratio ωem/ωin f is finite for anyr > r⋆

and it vanishes forr = r⋆. In particular for the moment of crossing the Schwarzschildhorizon we

haveωem/ωin f = c4
i

√

1+c2
i +c4

i +c6
i /(c

4
i −1).
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