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1. Introduction

Observations have established the nearly Gaussian and scale invariant character of the spec-
trum of curvature perturbations on super-Hubble scales [1]. This unique type of spectrum is a
fairly generic prediction of inflation. However this universality prevents us from learning about
the microphysics at the scale of inflation from the sole measurement of the primordial power spec-
trum. Fortunately, future experiments will soon enlarge the number of accessible observables.
For the primordial spectra alone they include measurements of the bi- and tri-spectrum (i.e. non-
Gaussianities), of the B-polarization spectrum and of gravitational waves, as well as an increased
precision of the temperature power spectrum at the level of less than a percent (at the scales not lim-
ited by the cosmic variance). The prospect of this increased precision requires a keen knowledge
of the subleading effects predicted by the host of scenarios currently on the market.

The object of this paper is to discuss the class of corrections known as the trans-Planckian
effects. This appellation is somewhat misleading since true trans-Planckian effects cannot be cal-
culated. It refers to any unkown high energy effect characterized by a mass scale M ≤ MPl and
which can be modeled by a Quantum Field Theory (QFT). Previously considered phenomena in-
clude a breaking of Lorentz invariance through modified dispersion relations [2, 3, 4] or irrelevant
operators [5, 6], non commutative structure of space time [7, 8], effects of heavy particles [9, 10]
and modified initial states [11, 12] (see also [13, 14]).

Since proper momenta are redshifted by the expansion of the background, the assumption of
a cutoff breaking Lorentz Invariance (LI) raises the question of the ”initial” state of the modes.
Several studies [5, 6, 10, 11, 12] assumed a pure state on an initial boundary and predict that
the leading corrections to the primordial power spectra have a distinctive oscillatory pattern that
passes on to the CMB power spectrum. The frequency and amplitude of these oscillations is of
course model dependent, but their existence is generic given these two assumptions [see note added
in proof]. We will show that these oscillations are an interference effect which reflects both the
existence of the boundary and the coherence of the initial state.

In [15] we argued that making both assumptions is physically questionable, and we showed
how the superimposed oscillations are suppressed if one of these hypothesis is abandonned. For that
purpose we considered a model where the modes are prepared in an initial pure state at a ”fuzzy”
boundary, i.e. with a cutoff M that belongs to a statistical ensemble. The leading corrections to the
primordial power spectra in each realization of the ensemble are oscillatory with a frequency linear
in M. The oscillatory corrections are therefore damped in the ensemble averaged power spectrum.

We take the opportunity of these proceedings to develop the physical motivation for this pic-
ture. We argue that in a consistent Effective Field Theory (EFT) with a cutoff on an expanding
background, one must encode the past dynamics into an interacting vacuum. The Bunch-Davis
vacuum is then recovered in the limiting case of weak interactions and exact adiabaticity. We also
complete the analysis of [15] in two ways. The physical interpretation of the phase of the afor-
mentionned corrections is explained in an Appendix. The presentation is generalized to include a
discussion of the boudary EFT formulation of [5]. Sec. 2 is a reminder of the standard settings.
In Sec. 3, the conditions for a consistent EFT on an expanding background with a background are
presented. These conditions are put together in a coherent picture in Sec. 4 and the phenomenology
of primordial spectra is derived.
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2. The standard inflationary spectra

2.1 Settings

In inflationary models with one inflaton, the power spectra of both linear curvature perturba-
tions ζ and gravitational waves hi j during inflation can be related to that of a scalar test field ϕ by
[16]

ζ = ϕ
√

4πG
a
√

ε1
, hi j = ϕ

πs
i j

a
, (2.1)

where πs
i j is the polarization tensor of the gravitational waves and ε1 is the first slow-roll parameter

ε1 =−d lnH
d lna

=−∂tH
H2 . (2.2)

Given this correspondence, it is sufficient to understand the statistical properties of ϕ .
The scalar field is massless, minimally coupled to gravity, and freely propagating. We intro-

duce the Fourier decomposition

ϕ̂(τ ,x) =

∫
d3q

(2π)3 eiqx
(

aqϕq(τ)+a†
−qϕ∗q (τ)

)
(2.3)

The wave functions ϕq are solutions of
(
∂ 2

τ +ω2
q (τ)

)
ϕq = 0 . (2.4)

with a conformal frequency of the form

ω2
q (τ) = q2− f

τ2 (2.5)

where τ is the conformal time defined by dτ = dt/a(t) and f is a function of the slow-roll param-
eters of order unity. Its explicit expression is not needed here.

Knowledge of the ’intial’ state of ϕ̂

ρ =⊗ 1
2 q ρq,−q (2.6)

and of the solution of (2.4) allows to calculate the power spectrum Pρ which is related to the
Fourier transform of the equal time two-point correlation function of ϕ̂ by

Tr [ρϕ̂(t,x)ϕ̂(t,y)] =
∫ +∞

0

dq
q

sin(qr)
qr

Pρ(q, t) , (2.7)

where r = |x−y|.
Because of the time dependence of ωq in (2.4), the decomposition (2.3) of the field into positive

and negative solutions is ambiguous. Different prescriptions for ϕq and ρ give different expressions
of Pρ . If ρ is chosen to be the ground state associated with a particular choice of positive frequency
modes, the power spectrum depends only on the boundary conditions in the definition of the modes,
to wit

P(q, t) =
q3

2π2 |ϕq(t)|2 . (2.8)
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2.2 The Bunch-Davis approximation

The standard choice for ρ is the so-called Bunch-Davis (BD) vacuum [17]. This state can be
defined from the solutions of Eq. (2.4) with positive frequency in the asymptotic past. Using the
fact that ωq→ q for τ→−∞ (see Eq. 2.5), the asymptotic positive frequency modes obey

(i∂τ −q)ϕ−∞
q |τ→−∞ = 0 . (2.9)

The corresponding power spectrum is thus

P∞(q, t) =
q3

2π2 |ϕ
−∞
q (t)|2→

(
Hq

2π

)2

. (2.10)

The second expression holds in the long wavelength limit q/aH� 1 where terms of order (q/aH)2

are neglected. The stricking feature of this expression is that it depends only on the scale Hq, the
scale of inflation at the time of horizon crossing

q = H(tq)a(tq) = Hq aq (2.11)

The second equality fixes the notation. The reason for this is the scale independence of the defini-
tion (2.9) and the stationarity of de Sitter space. The soft breaking of the de Sitter symmetry which
constitutes the slow-roll regime produces a logarthmic correction to the otherwise scale-invariant
power spectrum.

3. Consistency requirements for a field theoretic treatment

3.1 Adiabaticity

As natural as it may be from the point of view of the geometry, the BD vacuum does not make
any sense from the point of view of EFT because in (2.9) the modes have a physical momentum
larger than the Planck mass, where both the notions of field theory and smooth manifold are ex-
pected to break down. A consistent field theoretic treatment requires to consider physical momenta
below a certain cutoff scale M,

q
a
≤M ≤MPl . (3.1)

The modified power spectra now depend on Hq and M. To be consistent with observations, they
must assume a perturbative form

PM(q) = P∞(q) × [1+ corrections ] (3.2)

where corrections are suppressed by powers of H/M.

To understand under which conditions both requirements can be fulfilled, consider a scattering
experiment between ”light” particles of a field ϕ at a typical energy E in Minkowski space. Massive
degrees of freedom (d.o.f.) ψ of mass M� E are exponentially rarely created and therefore appear
in transition amplitudes only as intermediate states. This is the decoupling theorem of Appelquist
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and Carazzone [18, 19], see also the review of C.P. Burgess in these proceedings. The heavy d.o.f.
can therefore be integrated in

〈T exp

(
i
∫

L (ϕ ,ψ)

)
〉 ≡ T exp

(
i
∫

Leff(ϕ)

)
(3.3)

where 〈...〉 is the expectation value in the ground state of ψ . The effective Lagrangian Leff(ϕ)

summarizes the dynamical influence of ψ . It is in general non local and can be expanded a series
of irrelevant operators suppressed by power of 1/M2.

Applied to the cosmological perturbations, the corrections in (3.2) are generically predicted to
be O(H2/M2) [9], and are therefore unobservable unless M is close to H . This conclusion rests
on the assumption that the heavy field ψ is not excited, a condition which might be violated in
inflationary cosmology. For instance, time dependent background fields may bring the effective
mass of ψ close to H , therefore modifying the propagation of the light modes ϕ . When this altered
dynamics can be modeled by a modifed dispersion relation for ϕ , it means that the condition of
adiabaticity

|∂τ ωq|
ω2

q
� 1 , (3.4)

is violated in this regime. We refer to the neat analysis of [4] and [10] for more details.
We can now return to the question of the ”initial” state of the modes used in replacement to

the BD vacuum. This state is thaught to result from the past evolution of the modes of ϕ above
the cutoff. If this evolution is adiabatic, this state is well approximated by the adiabatic vacuum
at the time q = aM, and corrections are found to be O(H 3/M3) [14]. If non adiabatic transitions
occur, corrections could be much larger 1. It has been proposed to encode this possible non-trivial
dynamics of ψ into less adiabatic vacua for ϕ which diagonalize quadratic Hamiltonians at a time
q/aH� 1 but finite 2 (while the dispersion relation is kept linear) [11, 12]. The rest of this section
is concerned with the atypical phenomenology of this class of models. We then argue that this
choice is unphysical.

1Notice that the amplitude of the corrections cannot be infered from the dimension of the operators in the effective
Lagrangian because the latter only reflects the structure of the interacting vacuum. For instance, corrections of order
10−5 ∼H/M do not necessarily come from Lorentz-breaking operators such as M−1 ϕ(∆/a2)3/2ϕ . When ψ participate
actively to the dynamics, inducing for instance resonances, the amplitude of the corrections of dimension 6 bulk operators
can be enhanced by large factors, see [10] for instructive examples.

2We remind that the addition of total derivatives to the action of the linear perturbations corresponds to differ-
ent choices of canonical variables and yields to different functional forms of the Hamiltonian. They have a common
limiting form H = 1

2

∫
d3q

(
|∂τϕq|2 +q2|ϕq|2

)
when q/aH → ∞. However diagonalization at a finite time or a finite

proper momentum yields different ground states. The latters are related by unitary transformations (two-mode squeez-
ing operators). The positive frequency modes associated with the states minimizing these quadaratic Hamiltonians are
equivalently defined by [15]

(i∂τ −Ωq)

(
ϕM

q

an

)
(τ∗) = 0 ,

where τ∗ is either τM or τ0. n is a real number, and Ωq is a function of the form

Ωq = q
(

1+Aσm
q +O

(
σm+1

q

))
.
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3.2 Two types of boundary surfaces

There are two obvious but inequivalent ways to modify the boundary condition (2.9). The first
assumes that each mode ϕq is in a given vacuum state |ΨM〉 at the time tM(q) when the physical
momentum q/a crosses the proper scale M [11]

q = Ma(tM) . (3.5)

We assume that H and M are well separated and introduce the parameter

σq ≡
Hq

M
� 1 . (3.6)

In the second type of boundary conditions the state is defined at a fixed space-like hypersurface [5]

∀q , τ = τ0 (3.7)

It is worth pointing that these boundary conditions explicitely break LI by the introduction
of a prefered frame. LI violation is however not mandatory, and a minimal length can be defined
in a covariant way. For instance, causal set theory is a discrete approach to Quantum Gravity,
therefore with a build in minimal length (the scale of discreteness), which does not violate LI [20].
Instrumental to this is the Poissonian nature of the causet elements which are, roughly speaking,
a random sprinckling of a Lorentzian manifold with a well defined causal structure. A covariant
cutoff can also be defined as the cutoff on the spectrum of the d’Alambertian operator [21], since
this spectrum is an invariant of the manifold. The subject of this note is not whether the local
invariance under boosts is broken, but how to consistently choose the ”initial” state of the low
energy d.o.f. (i.e. the modes of an EFT) given the assumption of a such UV cutoff.

The first stricking difference between these boundaries is that (3.5) preserves the stationarity
of both (2.9) and de Sitter space, while (3.7) violates them strongly (since the state of the modes
is defined at a different physical wavelength for each value of q). Although it is argued in [5] that
(3.7) is the natural choice to encode initial states in an EFT, it is far from obvious (at least to the
author) that this is physically sensible since it violates the condition of adiabaticity. This is perhaps
better seen from the expression of the modified power spectrum (2.8) (we remind that we consider
only ground states) where ϕq is decomposed into the superposition of a positive frequency BD
mode and a backscattered wave

ϕq(τ) = αq ϕ−∞
q (τ)+βq ϕ−∞∗

q (τ) (3.8)

The time-independent Bogoliubov coefficients are definied by the overlaps of the two sets of modes

αq =
(
ϕ−∞

q

)∗←→
i∂ τ ϕq , βq =−ϕ−∞

q
←→
i∂ τ ϕq , (3.9)

calculated at the boundary. The coefficient βq measures the degree of non-adiabaticity of |ΨM〉
with respect to the BD vacuum. Hence the EFT treatment is valid only if

|βq| � 1 (3.10)
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For both boundary conditions (3.5) and (3.7), the power spectrum (2.8) in terms of the Bogoliubov
coefficients (3.8) is given by

PM(q) = P∞(q) ×|αq|2
{

1+2Re

(
β ∗q
α∗q

(
ϕ−∞

q

)2

|ϕ−∞
q |2

)
+
|βq|2
|αq|2

}
. (3.11)

The leading correction to (2.10) is the interference of the positive and negative frequency waves and
is therefore an oscillatory term. These oscillations pass on to the CMB power spectra. Alternately,
the superposition of positive and negative frequency BD-modes in (3.8) means that the state |ΨM〉
contains pairs of BD quanta, created at the time τM or τ0, and which propagate freely thereafter.
These space-time correlations survive in the expectation values (2.7) because of the coherence of
the state |ΨM〉. This picture, developped in the Appendix, gives the physical interpretation of the
phase of this oscillatory term.

With a boundary condition in momentum space (3.5), the amplitude of leading correction is
equal to a certain power of the parameter σq (3.6)

|αM
q |2 = 1+ |β M

q |2 , |β M
q |= O

(
σ p

q

)
, p≥ 1 . (3.12)

where p is a model dependent parameter, see footnote 2. The corrections δP/P∞ have a nearly
constant amplitude with logarithmic deviations induced by the slow rolling of the inflaton, i.e.

Hq ' Hq0

[
1+ ε1 ln

(
q
q0

)]
(3.13)

The condition of adiabaticity (3.10) therefore holds over an exponentially large range of comoving
momenta q/q0 ∼ exp(ε1M/Hq0).

When the boundary condition is imposed on a spacelike hypersurface τ = τ0, the leading
correction in (3.11) is proportional to the ratio of the physical momentum at τ0 with the scale of
new physics M

|ατ0
q β τ0

q |= O

(
q

Ma(t0)

)
. (3.14)

The corrections scale linearly in the comoving momentum q, in sharp contrast with (3.12), and
the condition of adiabaticity is therefore violated for q ≥ q0 = Ma(t0). Notice that it implies that
the condition (3.7) is equivalent to imposing a comoving cutoff q0, i.e. a cutoff on the spectrum
of the Laplacian. This implies that the proper cutoff scales like 1/a(t), which apparently induces
a flow of the Renormalization Group (RG). Adiabaticity can therefore be restored at the price
of renormalizing the bare parameters of the irrelevant operator encoding the initial state on the
boundary term of the action so as to compensate this RG-flow [5].

3.3 Mode creation

It is apparent from (3.14) that the boundary condition (3.7) amounts to impose a cutoff on
the comoving momentum q, while (3.5) is a cutoff on proper momentum. The consequences of
favouring one or the other run very deep and are relevant for the choice of the initial state of the
modes. We therefore explain them with some details.

7
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In Minkowski space, a UV cutoff has little impact on the description of low energy phenomena.
For instance, condensed materials at a critical point are well described by a QFT. On an expanding
background, and more generally in the presence of a horizon, the behaviour of quantum fields
differs in two respects. First, horizons act as magnifying glasses since the late time/long distance
low energy spectra emerge from configurations with frequencies larger than the Planck mass, thus
challenging the validity of the predictions of QFT. This is the trans-Planckian question and as
we saw, the robustness of the spectra is guaranteed by the adiabatic evolution of the state before
crossing of the geometric scale (the mass of the black hole or H in cosmology). The second
difference is that on an expanding background a minimal length can be chosen a priori to be on
comoving (i.e. coordinate) distances, or alternatively on proper (i.e. physical) distances. These two
alternatives lead to two radically different situations.

A comoving cutoff means that the number of degrees of freedom in a fixed comoving volume
is fixed, and therefore the density of degrees of freedom

ρ =
N

Vproper
=

N
a3(t)Vcom

(3.15)

is diluted with the expansion like 1/a3(t). [Think of a regular and expanding comoving lattice
characterized by the distance l between two sites. The shortest proper wavelength propagating
on this lattice is λmin = a(t)l, and the density is n(t) = λ−3

min.] Assuming that the cutoff is the
Planck mass 60 efolds before the end of inflation, we arrive at the absurde conclusion that today
it is 10−52MPl ∼ 10−33GeV. As a consequence, no QFT could be formulated inside our Hubble
horizon. Moreover, it is hard to conceive a scenario where the initial state of the modes is not fixed
by hand. We no longer consider comoving cutoffs.

A proper minimal length L implies that the density of degrees of freedom is constant, ρ ∼
L−3, and as a result their number in a fixed comoving volume scales like the proper volume. In
other words, new degrees of freedom are created as the universe expands. Let us not dismiss this
conclusion on the basis that field theories do not describe the creation of degrees of freedom (i.e.
new modes, not to be confused with the creation of quanta which is the raison d’être of QFT). Our
task is to describe the process of mode creation, and in particular to identify mechanisms which fix
the state of the newly born modes 3.

Two strategies are possible. The first is to assume that the cutoff is a ”true” cutoff, with nothing
above it [22, 23]. In that case, we must face the challenge to formulate Quantum Mechanics with
a changing structure, i.e. where a there is no unique Hilbert space and where the operators acting
on it are not fixed once and for all (for instance, at two different times, the Hamiltonians differ
by the number of modes on which they act non trivialy), see [24] are references therein. It is
moreover possible that the theory has nothing to say about the initial state of the dynamical degrees
of freedom, unless it selects a unique solution by some consistency requirement.

3Note that the approach to Quantum Gravity which models a grainy structure by an expanding lattice is likely to
be hopeless. It misses a fundamental ingredient of Quantum Mechanics, namely randomness. At a ”mesoscopic” scale,
manifolds are more likely to be replaced by an equivalence class of sets of finite structures (which could be causal
sets, holonomies...), presumably with a Poissonian distribution (since we know from [20] that it preserves local LI). It
is remarkable that mathematical tools exist to deal with this kind of structures, namely sampling theory (although not
developped to describe arbitrary Lorentzian manifolds). Fields with a finite density have a sampling property, i.e. they
admit a description on both a manifold and on any random sampling of this manifold [21].

8
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The second strategy is to assume the existence of an infinite ”reservoir” of trans-Planckian de-
grees of freedom in equilibrium with the cis-Planckian modes. The infinite density means that cis-
Planckian modes can be solicited as much as need be, while the condition of stationarity guarantees
that their (mean) density is constant, see for instance [25]. The degrees of freedom constituting this
reservoir could be for instance virtual black-holes as elements of the space-time foam of Wheeler
and Hawking, or the massive exited states of the string spectrum. We do not however need to know
their precise nature to describe the phenomenology of low energy observables, and in particular for
the choice of the initial state of the QFT modes. In that case Green’s functions generically display
a dissipative behaviour (due for instance to the absorption of quanta by virtual black holes). Let
us mention here one phenomenological approach described in the contribution of R. Parentani to
these proceedings [26].

Mode creation can be realized in a unitary QFT as the conversion of confined degrees of
freedom ϕq (overdamped modes) into propagating degrees of freedom (underdamped regime). In
Minkowski space, dissipation occurs on-mass shell above the scale M if Lorentz invariance is
explicitely broken at that scale through derivative interaction with a field ψ (unitarity is encoded
in the form of fluctuation-dissipation relations). On an expanding background, the gravitational
redshift of the proper momentum is responsible for the effective decrease of the coupling. Notice
that the Equivalence Principal plays a central role in this mechanism. The state of the newly born
modes is then a straightforward consequence of the dynamics: it is the interacting vacuum (we
assume that the trans-Planckian d.o.f. decouple).

4. Dynamical selection of the initial state and consistent EFT treatment

If need was, the previous discussion made it clear that the oscillatory corrections found in
(3.11) are not generic but contrived. They are an artefact of choosing |ΨM〉 to be the ground state
of a quadratic Hamiltonian on a sharp boundary. This is inconsistent with the assumption that |ΨM〉
encodes the past dynamics of the cis-Planckian modes with the trans-Planckian degrees of freedom
(or heavy cis-Planckian d.o.f. [10]). The state of the modes at the time of creation should be the
interacting vacuum. In that case, there are no oscillations in the power spectrum. We insist that this
conclusion is reached on general grounds.

The abscence of oscillations in the power spectrum can be seen in the following way. If the
two-point function is the only measured observable of ϕ , the true state of the modes is operationaly
indistinguishable from a Gaussian state ρeff with the same anticommutator function. This state
has necessarily a non vanishing entropy because, by definition, it is a state for which we have no
knowledge of the higher correlation functions (the Gaussian state is the state of maximal entropy
among the set of density matrices which have the same two-point correlation function and differ
only by the higher vertices). One easely shows [27] that ρeff has the form (2.6) and is charaterized
by the two expectation values

nq = Tr
(
ρeffa

−∞†
q a−∞

q

)
, cq = Tr

(
ρeffa

−∞
q a−∞

q

)
(4.1)

where all the other expectation values of one and two creation and annihilation operators vanish by
statistical homogeneity. The state is pure if, and only if |cq|2 = nq(nq +1), which is the requirement

9
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that it minimizes the Heisenberg uncertainty relations. In that case, we have nq = |βq|2 and cq =

αqβq. The power spectrum (2.7) now reads

Pρ(q, t) =
q3

2π2

{
(2nq +1) |ϕ−∞

q (t)|2 +2Re
[
cq
(
ϕ−∞

q (t)
)2
]}

(4.2)

which generalizes (3.11). For mixed states, it cannot be factorized in the form (2.8), and compared
to the pure state |ΨM〉 with the same mean occupation number, the interference term is damped by
the factor

|cq|
nq(nq +1)

< 1 . (4.3)

In particular, for cq = 0, the oscillations are completely washed out. In the limiting case nq → 0,
the BD vacuum is recovered. From that point of view, it is the state at zero temperature with the
least correlations, as in any equilibrium state. Indeed, in the dynamical settings outlined at the end
of the previous section, the two-point function in the interacting vacuum is indistinguishable in the
weak interacting limit from the ones in the BD vacuum.

The absence of an oscillatory term can also be understood as the result of the averaging caused
by the influence of several incoherent effects. It is likely that the high energy physics has a very rich
phenomenology that we may not be able (or even need) to describe exactely, but only on a statistical
basis. The statistical average is performed after the quantum expectation value. Averaging over the
phase of the parameter cq damps the oscillations in the power spectrum. That is, if we call f the
distribution of the physical phase θq centered around a mean value θ̄q,

c̄q ≡
∫ 2π

0

dθq

2π
f (θq− θ̄q)cq = eiθ̄q |αqβq| 〈〈eiθ 〉〉 (4.4)

where

〈〈eiθ 〉〉< 1 (4.5)

A third possible source also emerges from the picture of a reservoir, the elements of which
exchange energy with the cis-Planckian modes. This exchange being governed by Quantum Me-
chanics, it is a random process. In other words the density of cis-Planckian degress of freedom is a
field ρ(t,x). Hence the cutoff, defined as ρ = M3, fluctuates locally around a mean value M̄ [25].
Since the phase 2qτM of the oscillatory corrections depends linearly M, a fluctuating cutoff leads
to damped oscillatory corrections. For instance, in the simplest model of a stochastic cutoff with
Gaussian statistics

〈〈M 〉〉= M̄ , 〈〈(M− M̄)2 〉〉1/2 = Σ . (4.6)

one finds (see [15] for details)

〈〈σ p
q ei2/σq 〉〉 = σ̄ p

q ei2/σ̄q × exp

(
−4

Σ2

H2
q

)
. (4.7)

This leaves the question of the amplitude of Σ open.

10
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In all these cases, the damping may be strong enough so as to render the oscillatory term
subleading. In that case, the leading corrections to the power spectra are the last term in (3.11),
or more generally the term in (4.2) proportional to nq, which depend only logarithmically on the
momentum. They are therefore undistinguishable from a running of the slow roll parameters or
loop corrections, thus closing the door to the hoped opportunity to use primodial power spectra as
a probe in Quantum Gravity’s phenomenology.

5. Summary

The notion of decoupling is challenged in the presence of a horizon. Predictions made by
effective field theories are valid provided the ground state evolves adiabaticaly below a UV cutoff
M. Rare nonadiabatic transitions appear as corrections in the power spectra of the cosmological
perturbations and of the CMB. If large enough, these corrections can thus be used as a probe in the
phenomenological approach to Quantum Gravity. Moreover, a proper cutoff means that modes are
continuously created as the universe expands, leading to the question of the initial state of the modes
at the creation time. We argued that assuming the existence of a trans-Planckian reservoir in order
to maintain constant the density of degrees of freedom (and therefore the cutoff), the dynamics
selects the initial state of the cis-Planckian modes to be the interacting vacuum. [The mechanisms
listed in Sec. 4 can be considered as decoherence effects.] As a result, the leading corrections
to the power spectra are likely to be featureless (unless so fined tuned dynamics occurs). This
conclusion extends also to any phenomenological model of high-energy physics (not necessarily
trans-Planckian).

Note added in proof: We briefly recall why the corrections to the power spectra in Eq. (3.2) in
the models of Sec. 3.2 are in general polynomial in σ rather than exponentionally suppressed. The
reader may find more details in [29] and [30]. Let ϕWKB be the WKB modes of the equation (2.4).
The general solution of (2.4) can be decomposed as ϕ = c(τ)ϕW KB(τ)+d(τ)ϕ∗WKB(τ). The degree
of non adiabaticity is controlled by the ratio (3.4) Q = |∂τω |/ω2 which is assumed to be slowly
varying in the time interval [τi,τ f ]. We take as initial conditions c(τi) = 1 and d(τi) = 0. τ f is the
time at which the non-adiabatic corrections, i.e. d(τ f ), are calculated. If Q→ 0 at both τ → τi

and τ f , then d(τ f ) is exponentially small. On the other hand, when Q→ 0 at the initial time τ i but
Q 6= 0 at a later time τ f , the corrections are polynomial in Q. This can be seen from the integral

representation of d(τ) =
∫ τ

τi
dτ ′ ∂τ′ω(τ ′)

2ω exp
(

i2
∫ τ ′ω

)
c(τ ′). The leading contribution is then given

by the boundary term ∝ Q(τ f ).

Acknowledgments

This is to thank R. Brout, J. Niemeyer, and R. Parentani for many enjoyable discussions over
the years about these questions.

This work is supported by the Alfried Krupp Prize for Young University Teachers of the Al-
fried Krupp von Bohlen und Halbach Foundation and by the European Science Foundation network
programme "Quantum Geometry and Quantum Gravity".

11



P
o
S
(
Q
G
-
P
h
)
0
1
4

Mode creation and phenomenology of inflationary spectra David Campo

A. Physical interpretation of the oscillatory corrections to the power spectrum

The equal time correlation function in the pure state |Ψ〉 is given by

PΨ(q, t) =
q3

2π2 〈Ψ|ϕ̂q(t)ϕ̂q(t)|Ψ〉

=
q3

2π2

{
〈Ψ|{â−∞†

q , â−∞
−q }|Ψ〉|ϕ−∞

q (t)|2 +2Re
[
〈Ψ|â−∞

q â−∞
−q |Ψ〉

(
ϕ−∞

q (t)
)2
]}

(A.1)

To calculate this expectation value, we need the expansion of |Ψ〉 in the basis of Fock states build
from the Bunch-Davis vacuum. If |Ψ〉 is the ground state annihilated by aq defined by

aq = α∗q a−∞
q −β ∗q a−∞†

q (A.2)

(obtained by inversion of (3.9)), one finds that |Ψ〉 is related to the Bunch-Davis vacuum through a
unitary transformation (a squeezing operator)

|Ψ〉= Nq

+∞

∑
n=0

(
β ∗q
α∗q

)n

|n,q,BD〉⊗ |n,−q,BD〉 (A.3)

where {|n,q,BD〉} is the Fock basis of the mode q constructed from the Bunch-Davis vacuum. Nq

is the normalization factor. Written in the Fock basis build upon the BD vacuum, the state |ΨM〉 is
entangled. It describes pairs of BD-quanta created at the time τM(q) in the case (3.5), or at τ0 in
the case (3.7). The expectation values in (A.1) are respectively the mean occupation number of the
BD quanta and their correlations. They are related to the Bogolibov coefficients by

〈Ψ|â−∞†
q â−∞

−q |Ψ〉 = |βq|2 (A.4)

〈Ψ|â−∞
q â−∞

−q |Ψ〉 = αqβq (A.5)

This rewriting of the power spectrum simplifies the interpretation of the phase of inteference term.
The latter was shown in [15] to be generically of the form

θq ≡ arg
{

αqβ ∗q
[
ϕ−∞

q (qτ � 1)
]2}

= 2qτM +O(1) . (A.6)

This result was derived in the case (3.5) but is trivially generalized to boundary conditions (3.7),
in which case one has 2qτ0. It is important to note that this phase is independent of the choices
of the phases of the mode functions and has therefore a physical meaning. To wit, θq is twice the
phase accumulated from the creation time τM (or τ0) until some time long after horizon exit when
the power spectrum is evaluated and the phase of the BD modes freeze. This conclusion is reached
by forming wave packets and following their semi-classical trajectories [28].

Consider a right moving wave-packet build from the Bunch-Davis modes

ϕ̄R(τ ,x) =

∫
d̃3q

(2π3)

(
eiqx f (q)ϕ−∞

q (τ)+ c.c.
)

(A.7)

where for definiteness we choose

f (q) = N exp

(
−(q− q̄)2

4σ 2

)
e−iqxd eiqτd (A.8)
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Assuming that (A.7) with (A.8) can be evaluated by the stationary phase condition, one obtains the
semi-classical trajectory

xR(τ , q̄)≡ xd +(τ− τd)
q̄
|q̄| (A.9)

The superposition (A.7) therefore describes a localized field configuration propagating with mean
momentum q̄ and detected at (τd ,xd).

We now consider the two-point function of ϕ in the state |Ψ〉 filtered by (A.7),

Θ(τ ,x; ϕ̄R) ≡
∫

d3y ϕ̄(τ ,y)〈Ψ|ϕ̂(τ ,x)ϕ̂(τ0,y)|Ψ〉 (A.10)

The function Θ(τ ,x) is a sum of four wave packets. Two of them are the miror symmetric of the
others. This doubling of the information is only due to the filtering (A.10) which does not distin-
guish between right and left moving wave-packets. This technical problem can be resolved using
the Klein-Gordon product in place of (A.10). To keep the presentation straightforward, we pass
over this technicality and other details, and give only the relevant information for the interpretation
of the phase, refering the interested reader to [28] for details. One obtains two semiclassical field
configurations

Θ(τ ,x; ϕ̄R) = Φ(x−xR(τ , q̄))+Φ(x−xL(τ , q̄)) (A.11)

The first term is similar to (A.7) while the second is centered on the trajectory

xL(τ , q̄)≡ xd− (τ + τd−4τM)
q̄
|q̄| (A.12)

It is the trajectory of a left moving field configuration, i.e. with a mean momentum −q̄. The
separation between the centers of the two wave-packets is

xR(τ , q̄)−xL(τ , q̄) = 2(τ− τM)
q̄
|q̄| , (A.13)

which completes the proof.

References

[1] WMAP Collaboration (D.N. Spergel & al.), Wilkinson Microwave Anisotropy Probe (WMAP) three
year results: implications for cosmology, Astrophys. J. Suppl. 170 (2007) 288,
[astro-ph/0603449].

[2] J. Martin and R. Brandenberger, The TransPlanckian problem of inflationary cosmology, Phys. Rev.
D63 (2001) 123501, [hep-th/0005209]

[3] Jens C. Niemeyer Inflation with a Planck scale frequency cutoff, Phys. Rev. D63 (2001) 123502,
[astro-ph/0005533].

[4] J.C. Niemeyer and R. Parentani, Trans-Planckian dispersion and scale invariance of inflationary
perturbations, Phys. Rev. D64 (2001) 101301(R), [astro-ph/0101451].

[5] K. Schalm, G. Shiu, J.P. van der Schaar, The Cosmological vacuum ambiguity, effective actions, and
transplanckian effects in inflation, AIP Conf. Proc. 743 (2005) 362, [hep-th/0412288].

13



P
o
S
(
Q
G
-
P
h
)
0
1
4

Mode creation and phenomenology of inflationary spectra David Campo

[6] H. Collins and R. Holman, Trans-Planckian signals from the breaking of local Lorentz invariance,
[0705.4666 [hep-ph].

[7] A. Kempf, Mode generating mechanism in inflation with cutoff Phys. Rev. D63 (2001) 083514,
[astro-ph/0009209]; A. Kempf and J. Niemeyer, Phys. Rev. D64 (2001) 103501,
[astro-ph/0103225].

[8] R. Easther, B. R. Greene, W. H. Kinney, G. Shiu, Inflation as a probe of short distance physics, Phys.
Rev. D64 (2001) 103502, [hep-th/0104102].

[9] N. Kaloper, M. Kleban, A.E. Lawrence, S. Shenker, Signatures of short distance physics in the cosmic
microwave background, Phys. Rev. D66 (2002) 123510, [hep-th/0201158]; N. Kaloper,
M. Kleban, A.E. Lawrence, S. Shenker, L. Susskind, Initial conditions for inflation, JHEP 0211 (2002)
037, [hep-th/0209231].

[10] C.P. Burgess, J. Cline, F. Lemieux, R. Holman, Are inflationary predictions sensitive to very
high-energy physics? JHEP 0302, (2003) 048 [hep-th/0210233]; C.P. Burgess, J. Cline, R.
Holman, Effective field theories and inflation JCAP 0310 (2003) 004 [hep-th/0306079]; C.P.
Burgess, J. Cline, F. Lemieux, R. Holman, Decoupling, trans-planckia and inflation,
[astro-ph/0306236].

[11] U. Danielsson, A Note on inflation and transPlanckian physics, Phys. Rev. D66 (2002) 023511,
[hep-th/0203198].

[12] R. Easther, B. R. Greene, W. H. Kinney, G. Shiu, A Generic estimate of transPlanckian modifications
to the primordial power spectrum in inflation, Phys. Rev. D66 (2002) 023518, [hep-th/0204129].

[13] J. Martin and R. Brandenberger, On the dependence of the spectra of fluctuations in inflationary
cosmology on transPlanckian physics Phys. Rev. D68 (2003) 063513, [hep-th/0305161].

[14] D. Campo, J.C. Niemeyer, R. Parentani, Minimal modifications of the primordial power spectrum
from an adiabatic short distance cutoff, Phys. Rev. D66 (2002) 083510, [hep-th/0206149].

[15] D. Campo, J.C. Niemeyer, R. Parentani, Damped corrections to inflationary spectra from a fluctuating
cutoff, Phys. Rev. D76 (2007) 023513, [arXiv:0705.0747 [hep-th]].

[16] V.F. Mukhanov, H.A. Feldman, R.H. Brandenberger, Theory of cosmological perturbations, Phys.
Rep. 215, (1992) 203.

[17] T. S. Bunch and P. C. W. Davies, Quantum field theory in de Sitter Space: renormalization by point
splitting, Proc. R. Soc. London A360, (1978) 117.

[18] T. Appelquist and J. Carazzone Infrared singularities and massive fields, Phys. Rev. D11 (1975) 2856.

[19] A. Pich, Effective field theory: Course, [hep-ph/9806303].

[20] F. Dowker, J. Henson, R.D. Sorkin, Quantum gravity phenomenology, Lorentz invariance and
discreteness, Mod. Phys. Lett. A19 (2004) 1824, [gr-qc/0311055]; L. Bombelli, J. Henson,
R.D. Sorkin, Discreteness without symmetry breaking: A Theorem, [gr-qc/0605006].

[21] A. Kempf, A covariant information-density cutoff in curved space-time, Phys. Rev. Lett. 92 (2004)
221301 [gr-qc/0310035]; A. Kempf and R. Martin, On information theory, spectral geometry and
quantum gravity, [arXiv:0708.0062 [gr-qc]].

[22] B. Z. Foster and T. Jacobson, Quantum field theory on a growing lattice, JHEP 0408 (2004) 024
[hep-th/0407019].

14



P
o
S
(
Q
G
-
P
h
)
0
1
4

Mode creation and phenomenology of inflationary spectra David Campo

[23] A. Kempf, Mode generating mechanism in inflation with a cutoff, Phys. Rev. D. 63 (2001) 083514
[astro-ph/0009209]; A. Kempf and L. Lorenz, Exact solution of inflationary model with
minimum cutoff, Phys. Rev. D. 74 (2006) 103517 [gr-qc/0609123].

[24] T. Jacobson, Trans-Planckian redshits and the substance of the space-time river, Prog. Theor. Phys.
Suppl. 136 (1999) 1, [hep-th 0001085].

[25] R. Brout, Condensation of Planckian modes and the inflaton, [gr-qc/0305054].

[26] R. Parentani, Constructing QFT’s wherein Lorentz invariance is broken by dissipative effects in the
UV, [hep-th/0709.3943].

[27] D. Campo and R. Parentani, Inflationary spectra and partially decohered distributions Phys. Rev. D72
(2005) 045015, [astro-ph/0505379].

[28] D. Campo and R. Parentani, Space-time correlations within pairs produced during inflation, a wave
packet analysis, Phys. Rev. D67 (2003) 103522, [gr-qc/0301044]; D. Campo and R. Parentani,
Space-time correlations in inflationary spectra: A Wave-packet analysis, Phys. Rev. D70 (2004)
105020, [gr-qc/0312055].

[29] S. Massar and R. Parentani, Particle creation and nonadiabatic transitions in quantum cosmology,
Nucl. Phys. B513 (1998) 375, [gr-qc/9706008].

[30] J. P. Davis and P. Pechukas, Nonadiabatic transitions induced by a time-dependent Hamiltonian in the
semiclassical/adiabatic limit: the two-state case, J. Chem. Phys. 64 (1976) 3129; J. Hwang and P.
Pechukas, The adiabatic theorem in the complex plane and the semiclassical calculation of
nonadiabatic transition amplitudes, J. Chem. Phys. 67 (1977) 4640.

15


