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1. Introduction

One of the most interesting aspects about the search forrdugqnaheory of gravity is that
the goal of the search is not clear, leading to a number oérdifft approaches to the problem.
One can distinguish these different approaches by the réaiatg plays in the fundamental theory.
In research programs such as loop quantum gravity [2], spm$ [3], and causal dynamical
triangulations [4], the aim is to quantize the gravitatiofield. Gravity is an integral part of the
formulation of the theory. In other approaches to quantuawigr the gravitational field is not part
of the initial formulation of the theory but instead emerg&a example is the low energy behavior
of Fermi liquids as investigated by Volovik [5]. In the spalccase in which Ffermi points are
present he shows that the system can be described by an emgygamic metric. This metric
degree of freedom is truly emergent in that the fundamehtbry consists only of interacting
fermions and has no gravitational degrees of freedom. ¢sthieory can also be viewed as falling
into this second category. In its initial formulation, gitgvappears as a spin-2 vibrational mode
of the string, while in more recent formulations, such asAd&/CFT correspondence, gravity is
conjectured to appear in the appropriate limits.

Here we shall follow an approach of the later kind, i.e., vehgravity is not part of the ini-
tial formulation of the theory but is emergent. We shall eliffrom the other approaches in this
category in the way the gravitational field emerges. In gtthreory and in Fermi liquids, gravity
appears as a distinct low energy excitation, in this casessless spin-2 excitation, however, ad-
ditional matter degrees of freedom also appear. In our @gprahere is no such clean distinction
between matter and gravity degrees of freedom. Instead eveaking seriously the fact that we
only know geometry through matter. Only by using matter,gtmserbial clocks and rods, can we
infer geometry; geometry alone is not accessible to us. tiermal Relativity we only look at the
available matter degrees of freedom and ask what geometoptaé if we only use these degrees
of freedom. It is important here that we do not include infation, like an absolute time, that
is only available to an observer external to the system. msstthis point we have termed our
programinternal Relativity [1].

What then is the geometry that we will find? We will show in thieper that generically the
geometry is that of a curved manifold with a Lorentzian signa That one finds a Lorentzian
signature is not so surprising, or new. It was by asking singliestions to the ones we are asking
here that Lorentz found his transformations, in a step tlzst the beginning of special relativity.
The central new contribution from Internal Relativity itves the emergence of gravity. We show
that actual objects that could function as rods and clocksnaatically have a gravitational mass.
We establish this by showing that Newtonian gravity appeatise quasi-static limit.

The logic of Internal Relativity is thus as follows. We staith a quantum mechanical system.
It has no gravitational degrees of freedom and it is not akthifrom the quantization of a classical
theory. We then find the ground state of the system togethériigilow lying excitations. We use
these excitations to construct rods and clocks. We theredl@i these clocks and rods will feel the
force of gravity by showing that Newton'’s law of gravity ajgd to them. The resulting geometry
is thus a Lorentzian curved geometry. It is currently a cotojes of Internal Relativity that if one
continues in this direction, adhering to a strictly intdrpaint of view, one will find the Einstein
equations.
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The organization of this article is as follows. In sectiorm& review the basics of Internal
Relativity from [1]. We stress that it is important to ask havgystem looks to an observer inside
the system. This point of view is essential for the emergafcelativity. In the following section
3, we give a number of examples for Internal Relativity. Wagtsivith the early history of special
relativity and discuss how Lorentz arrived at the transfions that now carry his name. Lorentz
employed his arguments in a classical setting. Using simydenples from solid state physics we
show that they can just as easily be applied in a quanturmmgetin section 4, we present our
argument why gravity is automatically present in the kingydtems we look at. The main result
of this section is the derivation of Newton’s law. In the pees we derive a new expression for
the gravitational mass of a bound object. Since the cladseoites we are looking at are quantum
mechanical, the emerging theory is automatically a quariheory of gravity. This section estab-
lishes that the geometry encountered by the internal obsery not just flat Minkowski space but
instead is a curved Lorentzian manifold. To complete therh@l Relativity program it remains
to be shown that the equivalence principle is in fact true. digeuss in section 4 how far along
we are in this. The premise of Internal Relativity is venfaiént than the usual one and it brings
a new perspective and possible new answers to long standatdems in physics, such as the
cosmological constant problem and the problem of time, adigaiss in the final section 5.

2. Internal Relativity

In the introduction we stated that we intend to derive gdmetativity without putting it into
the fundamental theory or finding it in the form of an emergaassless spin-2 excitation. We plan
to start with a theory that possesses a preferred time, isehativistic or background independent,
and find general relativity. How can this be done? The keycipla that will allow us to do this is
to not look at the system from the outside but instead to ask Wie system looks to an observer
from the inside. It was exactly this point of view that markbd beginning of special relativity.
Given that the world is governed by the Maxwell equations, dhestion that Lorentz asked was
what this meant foour ability to measure space and time intervals. As we shallrsesore detail
in the next section, what he found was length contractiontemel dilation. That is, starting from
a theory formulated in Newtonian absolute space, LorenindoMinkowski space by using the
internal point of view.

It is the basic idea of Internal Relativity to return to thism physical attitude towards rela-
tivity. The difference is that this time around we are loakifior more than special relativity. We
claim that the internal point of view has not been taken faug. If one strictly adheres to it, one
finds not only special relativity but also general relayivilThis is the central novelty of Internal
Relativity. Furthermore, we use quantum mechanical systeom the start. The theory that we
will ultimately arrive at is thus a quantum theory of gravity

The reason that we expect this to be true is the dual r6le ofemalNot only do we find
geometric notions like space and time intervals throughemaiut, also, through propagation and
interactions, matter has inertial properties. In [1], wajeotured that it is this dual role that is at
the heart of the equivalence principle and Einstein’s égnat

Conjecture When notions of distance, time, mass, energy, and momentemedined in a com-
pletely internal way the equivalence principle and Eimsse¢quations hold automatically.
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This is the main claim of Internal Relativity. Because it @& important to what follows,
we summarize how it differs from the way we currently undamst general relativity: Currently,
we think of our world as being composed of two parts, mattel geometry. Matter movesn
geometry and geometry curves due to the presence of matierTdns interaction between matter
and geometry is described by the Einstein equations. In @y, \matter and geometry have a
more dual r6le. One can not have one without the other. Bottrgarfrom the fundamental theory
simultaneously. In the next section we will look at a coupgl@xamples of how special relativity
arises in non-relativistic systems. In section 4, we ara teady to see why gravity is also naturally
present.

3. Examples

After this general introduction into Internal Relativityewshall now look at some specific
examples. In this section we focus on the appearance ofapelativity and leave gravity for the
next section. The first example is a classical one and godstbdbe birth of special relativity: it
is how Lorentz found the transformations that now carry laisa. We shall concentrate on Bell's
[6] version of Lorentz’s arguments (see also [7] for a monefta historical analysis).

Bell starts by considering the field of a charged particlehwhargeZe that is moving in the
z-direction with velocityv. It is given by

o\ —1/2
Ex = Zex(¢ + Y2 +7%) 32 (1— é) , (3.1)
o\ —1/2
Ey, = Zey(@+y?+7%)73/2 (1— é) , (3.2)
E, = ZeZ (¢ + Y2+ Z%) %2, (3.3)
\
B, = —Ey. (3.4)
B, = \_(;EX’ (3.5
where 12
Vv22\
-2 (1-F) (3.6

andzy(t) is the position of the charge (see figure 1). Nowadays we rolbtés result by simply
taking the field of a point charge and applying a Lorentz btwm#t Before the apparatus of special
relativity was available this solution had to be derivedolabusly from the field equations; as it
was first done by Heavyside.

From these expressions for the electromagnetic field, Bglles for Lorentz contraction and
time dilation by looking first at a single atom. An electronwimg in this field will follow an orbit
that is squeezed in thedirection. Furthermore, the period will be lengthenediBsgueezing of
the orbit and lengthening of the period involve the factor

_1/2
y:<1_ﬁ> , @.7)

c2
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Figure 1. A shows the field of a charged particle at rest. The field is cetepl spherically symmetric.
When the particle is moving the field is no longer sphericgi;nmetric, rather, itis squeezed in the direction
in which the particle moves, as shownBn

that makes it appearance in the formulae above. A piece dénratide up of atoms whose elec-
trons show this kind of change in their orbit will then squeby the same amount as the orbit of the
individual atom. In particular, the measurement devicesigesto measure space and time intervals
show this same change. To an observer using these devicesthklooks like it is governed by
special relativity.

This example illustrates important aspects of Internalaiaty. The fundamental setup of
the theory is not relativistic at all. The whole theory isrfalated in absolute Newtonian space.
Special relativity comes from thdynamics of the matter fields. It is the change of the form of the
electric field that gives rise to the change in the behavioneésuring devices. Internal observers
that only have access to these devices have no way of knotdtgan a fundamental level, there
is an absolute space.

This argument is completely classical and thus of ratheitdithinterest. Our next example is a
guantum mechanical one. To illustrate that the above argtiaigo works in a quntum mechanical
setting, we first look at a very simple model: the XY-model ioree-dimensional spin chain. The
Hamiltonian of the system is given by:

N
H = lei* Oii1+ 0 Oily)- (3.8)
i=

Here o™ = 0*+i0Y, and theg’s are the Pauli matrices. Again, the model is not relaiivistt

is discrete and has a preferred time. However, relativigobees immediately apparent when one
looks at the low energy effective Hamiltonian for this modgte above Hamiltonian can be written
in terms of a two-component spinor fielgg, a = 1,2:

H= /dx W (BIBW(X), (3.9)
where
B—ol— (2 é) (3.10)

(for details about how this low energy description can beioletd see [8, chapter 4]). We thus see
that the low energy world looks like two-dimensional Minkski/space to internal observers.
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level O ground state 6o

level 1 excitations fk
"elementary particles”

level 2 bound states bound objects

Table 1: Our setup is based on these three levels. Level zero is thendrstate. It is described by the
parameteify. The next level is given by excitations. These are local atemiis fromfy. Bound states of
excitations make up level two.

This example is, of course, too simple for our purposes. dtdmy one type of excitations and
these particles are free. More interesting examples witterrealistic particle content do exist. A
particularly interesting example that is also built usipis on a lattice was proposed by Levin and
Wen [9]. They argue that their model gives rise to QED-likggbs at low energies. The details
of how special relativity emerges at low energies are dssdisn [10].

4. Gravity

Having discussed examples of the emergence of specidligiéitom a non-relativistic quan-
tum systems, we now want to look at the emergence of gravitye donjecture of section 2 says
that one can not have an inertial mass without at the samedisaochaving a gravitational mass.
In this section we see how far we are towards proving thisastinje. The following is a sketch of
the argument leading to an expression for the gravitatioress.

We first need to distinguish three levels of emergent dynsuiniour theory. We will call the
ground state of our model tteeroth level. In the quantum mechanical example from the previous
section, the ground state is characterized by a certaire\@Ithe order parameter. Let us denote
the value of this order parameter By.

The next level of emergent dynamics is given by the local ateas from the ground state
6y, i.e., by the excitations. In our model these are the tragedipin waves or, equivalently, the
fermions fy. We call thislevel one. These excitations can be thought of as representing etarngen
particles in a simplified model of our world. The fact thatyttaee emergent is not visible to us.

Level two is given by bound states of these excitations. Exampleseasietiin our world are
solid objects. The important point about level two objestthat they do not leavéy unchanged.
Because they are bound objects of excitations and excitatice local deviations froiy, the order
parameter near a level two object will deviate frég This fact will become important shortly.
Table 1 gives an overview of the three levels that we havediuized.

Given this setup, we now want to argue for the natural presehgravity. We will start by
arguing for Newtonian gravity in quasi-static situations,, in the limit of low velocities. Let
us look at two bound objects. As we noted in the last paragthptorder parameted will not
be uniform; rather it will reflect the presence of the boungeotsc,; andc, (see figure 2). To
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Figure 2: Newton’s law for classical objects. We argue for Newtoniw laf gravitation by looking at
an analogous situation in electrostatics. The Laplace temudescribes both the behavior of the order
paramete@ and the electric potentid. The free energy in the case of the electric potentidl is an
integral over the square of the electric fiéld= (U, i.e., it is the energy in the electric field.

calculate the spatial distribution éfwe look at the free enerdy of the system. It will generically
include a term of the form

/d3x (06)2. 4.1)

It is this term that is responsible for the propagation oféReitations. By varying this term with
respect td@ we find the equations governirgy
oF

55=0 = LM6=0. (4.2)

The order parametdt thus satisfies a Laplace equation. We can now obtain Newis'sf grav-
itation in the approximation of low velocities. In this apgimation we calculaté for different
static situations and then deduce the force on the classiigatts by noticing howr varies. To
calculateF we solve equation (4.2) fd# in the presence of the classical objecisandc,. These
impose boundary conditions ¢h

e‘dci = ela I = 172 (43)

The boundary condition at infinity i§ = 6y, the vacuum value. We can solve these equations
explicitly. It is easier though to just compare them to theesponding equations in electrostatics.

If we replacef by the electric potentidl then equations (4.2) and (4.3) become the equations for a
static electric field in the presence of two charged bodies &gain figure 2). Expression (4.1) for
the free energy in turn becomes the energy stored in theieléietd. In the electrostatic example
the force between the charged bodies will be the Coulomlefare., a force inversely proportional

to the square of the distance. By analogy we find the Newtawsolf gravity for our situation, i.e.,

there will be a force of the form
My

(4.4)

where ‘
m:/ (06)-do, i=1.2 (4.5)
aCi
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The argument that we have given above applies to all bourettshj What is more we can
understand why gravity is only attractive. It is for the samason that two people in a hammock
always end up stuck together in the middle of the hammockatrttto grains of dust in the surface
of water will attract each other: Since all bound objecterathe free energy in the same way
the free energy is minimized when they are close togetheis i§tbecause when the two objects
are far apart the order parameter tries to assume the vacalum 6y between the objects. The
required changes ié can be omitted when the objects are close to each othembptalia smaller
contribution to the free energy.

The presence of Newtonian gravity between bound objectiémthat the geometry the in-
ternal observers will see is not flat but curved. The inteofslervers thus find a curved Lorentzian
manifold.

From the derivation above it is clear that we are dealing witheory that goes beyond New-
tonian gravity. To arrive at Newtonian gravity it was crulgiamportant that we looked only at the
guasi-static limit. Once the velocities of the bound olgene no longer small we have to take into
account that the change 6fis not instantaneous. Gravity here has a finite propagatieads

Let us close this section with a remark on the equivalenaeimie. In equation (4.5) we have
given a formula for the gravitational mass of a bound obj&hat remains to be shown is that
the formula also gives the inertial mass of this bound objébe above derivation can be seen as
a step in that direction. The excitations that bind togetrerall massless, move at the speed of
light, and the notion of an inertial mass does not exist fenth To have an inertial mass we have
to create a bound object from these excitations. But as we joav shown, a bound object implies
a gravitational mass. To have an inertial mass thus imphieekistence of a gravitational mass.
What remains to be shown is that the two masses actuallyideinc

5. Discussion

In this paper we proposed to change the relation that gegraett matter have with each
other. The usual point of view is that geometry provides thges on which matter propagates. In
classical mechanics geometry provides an absolute franhata¥er the matter does the geometry
remains unchanged. The new element in general relativityaisgeometry now reacts to the state
of matter. Geometry tells matter how to move and matter gglsmetry how to curve. The exact
relation is given by Einstein’s equations. Nonethelessngary is still a stage for matter, albeit a
dynamical one.

Our objection to this setup is that one does not have diremsscto the geometry; we use
matter toinfer lengths and times. We believe it is desirable to have a thedwre there is no
geometry without matter, instead geometry and matter aiisaltaneously. A theory where one
does not act as the stage for the other. This is the kind ofyhiat we have proposed in this
paper. Once we have matter, as emergent excitations of aforaamental quantum system, this
matter can be used to define geometrical notions. Using,tbegemergent gapless excitations as
light rays one obtains the causal structure of the emergpeairy. Geometry ceases to be a stage
for matter and instead geometry and matter have a dualoe#htip to each other. One does not
exist without the other. We call this theohgternal Relativity and have seen that it naturally leads
to a curved Lorentzian manifold.
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In section 4, we relied heavily on the presence of an orderpaterd to derive Newton’s law
of gravitation. The argument for gravity seems to be moreeg@ithough. If one has propagating
excitations, then bound states of these excitations withett each other. This can be be put more
succinctly as follows:

No propagation without gravitation.

One might ask how it is that we can formulate a theory in whiebrgetry and matter have this

dual relationship. Why don’t we need a background on whicfotmulate the theory? The key

point here is that the relevant degrees of freedom of thednahtal theory are different from the

matter degrees of freedom in the emergent theory. The satneeigor the geometry. Geometric

notions in the fundamental theory are different from thesoimethe emergent theory. It is at this

stage that emergence plays an important role. Because ggame matter are emergent and not
present in the fundamental theory they are able to influeack ether.

In section 4, we saw that a bound object has a gravitationakmiaen by

My =~ dC(DB)-da. (5.1)

In section 2, we conjectured that the bound object has atidherass given by the same expression.
This amounts to saying that the equivalence principle isrsequence of the theory and not an
input. We have not shown that this is indeed the case but amentarpret the above result as
pointing in the right direction. If one starts from masslessitations one does not have a notion of
an inertial mass. As we have discussed in the end of sectiomitain such a notion one needs to
make bound objects of these excitations which implies tlistenxce of a gravitational mass. Thus
the inertial mass and gravitational mass are closely link&tat remains to be shown is that they
are given by the same expression.

The approach outlined here provides a new perspective dhemaroblem in quantum gravity:
the problem of time. If one performs a canonical analysiswemeneral relativity one finds that
the Hamiltonian vanishes. Instead of an evolution one findsrestraint. In a quantization of
gravity one then faces the problem of having to reconstriggdametime picture from the timeless
solutions to the Hamiltonian constraint. This problem ibechthe problem of time. The approach
presented here shows this to be an unnecessary complithdéibarises because of an unphysical
idealization that does not take into account that geometdyraatter arise together. By neglecting
one part, matter, and just focusing on the other part, gagmete introduces the problem of
time. The problem of time is the price one pays for not readjzhat pure gravity is an unphysical
idealization.

Another problem that is connected with viewing geometry asage for matter is the cos-
mological constant problem. If matter is viewed as propagabn geometry then the zero mode
energy of matter fields should contribute to the curvaturgeoimetry. This view leads to one of the
worst predictions of theoretical physics. The cosmoldgicastant obtained in this way is off by
more then 120 orders of magnitude. The approach taken ip#per also sheds new light on this
problem. In Internal Relativity matter is to be viewed asimgvrise to geometry and so the above
line of argument is seen to be fallacious. It is the excitegithat make the geometry. Zero mode
energies only appear in the effective description of thaenain a given spacetime. Fundamentally
they should not be viewed as energies residing on the spaeéiee [13] for more details).
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Is the theory presented here an aether theory? The ansvs tpuestion is yes and no. Before
special relativity the aether was introduced with one psepdt was the carrier of electromagnetic
radiation. In our theory the ground state characterizedhbyvalue, plays a similar role. In
this sense it is an aether theory. The old understanding tbkaelid not include other matter
though. Matter was thought of as being different from théhaet People thought of matter as
being immersed in a sea of aether. It is here that the old stad&ting ran into serious trouble.
How could matter interact with electromagnetic radiation ot notice the presence of the aether?
Our understanding differs from this old understanding it il of matter is to be thought of as
excitations of the aether. There is no matter distinct frbedne that is carried by the aether. It is
this crucial distinction that makes an aether acceptable.

Wheelers dictum "geometry tells matter how to move and madtis geometry how to curve™
can be clearly observed in our theory. As the bound objectstsdo the gravitational force the
distribution of @ changes. This in turn implies a change in the geometry. Beaktion is not a
stumbling block in our theory as it is in analog models of gsajd1].

Another point worth mentioning is that the speed with whicavity propagates is the same
speed with which the other matter propagates. This is bechoth are the consequence of the
same term in the Hamiltonian, namely

/d3x (06)2. (5.2)

It is a satisfying feature of the model that it does not regjaimy fine tuning to achieve this equality
of propagation speeds. The finiteness of the propagatiocedsplso shows that is more then just
Newtonian theory. Only in the limit of small velocities doear theory reduce to the case of
Newtonian gravity.

In our current understanding of special relativity Loregyanmetry is an a priori symmetry.
Only fields constructed in such a way that they are Lorentaant are allowed in the theory.
In this setup elementary particles are naturally viewedhasitreducible representations of the
Poincaré group (see, e.g., [12]). In our approach the ogishiip between particles and symmetry
group is exactly reversed. It is the particles that deteensimuctures like the light cone and the
symmetry group. We are thus proposing not to use the Poigtatp and its representation theory
in the basic setup of the theory.

Recently we proposed a new way to look at the measuremenlepnob quantum mechanics
[14]. In this proposal classicality is a property of largeagtum systems. The bound objects that
we have been looking at in section 4 are of this type. Theiditigis the property that makes
them appear classical. Thus, it appears that there is a ciimméetween gravity and classicality.
Classical behavior requires bound objects which in turnlyroprvature.

It is important for our approach that geometry and mattetrafg emergent. This implies that
the fundamental theory can not be obtained through a pradfegsantization (see figure 3). This
is because quantization always results in a quantum th@owhich the classical states survive
as labels for quantum states. Applied to quantum gravityithplies that the fundamental theory
should not be viewed as a theory of superimposed spacetim&gad the fundamental theory is
free of geometric notions. They only arise later togethehwie matter degrees of freedom.

This should be viewed as an advantage of our proposal sihes ibeen extremely difficult to
construct Hilbert spaces of spacetime geometries or to ehse of superpositions of spacetimes

10
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quantization

fundamental
theory

emergent
theory

classical limit

Figure 3: When one quantizes a theory one assumes that the aboveadbirsds, i.e. that the quantization
of the classical limit of the fundamental theory again gitresfundamental theory. In the approach that we
advocate here this is not the case. The fundamental thecagisally different from the quantization of the
emergent theory.

(with the notable recent exception of CDT [4]). We also ndiztta new direction is developing
in recent work, where traditional superpositions are beihgndoned in favor of a background
structure (examples are the new approach of algebraic gmagtavity [15], the computational
universe [16] and quantum graphity [17]).

An interesting consequence of our point of view is that ibwh for a new set of observable
consequences. Recently the possibility of observing ltareilating effects as a consequence
of quantum gravity has attracted a large number of researchready available data together
with experimental data now becoming available (some of Wwinas presented in this conference)
suggests that these effects might actually be too small ttbbervable. This is why our approach
is interesting. It allows for two possible new areas of oakle effects. One is related to the early
universe the other to the size of natural constants.

Since in our approach geometry is emergent, one can ask kdaffects of emergent geom-
etry are. What are the remnants of the process of the emergéigeometry? The hope would be
that these remnants could be observed in the cosmologicabwave background.

The fundamental constants of nature, like the gravitationastantG, Planck’s constani,
the speed of light, and the fine structure constamt are emergent in our approach. They can all
be expressed in terms of the parameters of the fundameetaiythin particular there ought to be
relations between these constants that can not be undgristdbe emergent theory alone. One
might, e.g., understand why gravity is so small comparetddmther forces. Because the constants
of nature appear to be fundamental if one has only accessterttergent theory the hierarchy
problem is completely out of reach in the emergent theory.
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