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1. Large Extra Dimensions

Located between particle physics and general relativity, interactions at the Planck scale rep-
resent a future challenge and a key to our understanding of the fundamental laws of nature. Un-
fortunately, the gravitational interaction is far weaker than the other interactions of the Standard
Model (SM). Though it grows more important with increasing energy, extrapolating the gravi-
tational strength to highest energies shows that quantum gravitational effects will become non-
negligible only at energies far outside the reach of future collider experiments, at the so-called
Planck scalemp ∼ 1016 TeV.

However, this extrapolation over 16 orders of magnitude implicitly assumes that in this range
no unexpected modifications occur. Since it is an open question why gravity is so much weaker
than the other interactions, one can speculate that it mightinstead be our extrapolation to higher
energies is inappropriate, and quantum gravitational effects will become important much earlier,
somewhere around the electroweak scale. A concrete scenario to realize this are models with extra
dimensions.

During the last decade, several such models using compactified Large Extra Dimensions
(LXDs) as an additional assumption to the quantum field theories of the SM have been proposed.
The setup of these effective models is motivated by String Theory though the question whether our
spacetime has additional dimensions is well-founded on itsown and worth the effort of examina-
tion.

The models with LXDs provide us with an useful description topredict first effects beyond
the SM. They do by no means claim to be a theory of first principles or a candidate for a grand
unification. Instead, their simplified framework allows thederivation of testable results which can
in turn help us to gain insights about the underlying theory.

There are different ways to build a model of an extra dimensional space-time. To mention only
the most common ones:

1. The ADD-model proposed by Arkani-Hamed, Dimopoulos and Dvali [1] addsd extra space-
like dimensions without curvature, in general each of them compactified to the same radius
R. All SM particles are confined to our brane, while gravitons are allowed to propagate freely
in the bulk.

2. The setting of the model from Randall and Sundrum [2, 3] is a5-dimensional spacetime with
an non-factorizable geometry. The solution for the metric is found by analyzing the solution
of EinsteinŠs field equations with an energy density on our brane, where the SM particles
live. In the type I model [2] the extra dimension is compactified, in the type II model [3] it is
infinite.

3. Within the model of universal extra dimensions [4] all particles (or in some extensions, only
bosons) can propagate in the whole multi-dimensional spacetime. The extra dimensions are
compactified on an orbifold to reproduce SM gauge degrees of freedom.

In the following we will focus on the model (1) which yields a beautiful and simple explanation
of the hierarchy problem. Consider a particle of massm located in a spacetime ofd +3 dimensions.
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The general solution of Poisson’s equation yields its potential as a function of the radial distancer
to the source

V (r) ∝
1

Md+2
f

m
rd+1 , (1.1)

where we have introduced a new fundamental mass-scaleMf. The hierarchy problem then is the
question why, ford = 0, this mass-scale is the Planck mass,mp, and by a factor 1016 smaller than
the mass-scales in the SM, e.g. the weak scale.

The additionald spacetime dimensions are compactified on radiiR, which are small enough
to have been unobserved so far. Then, at distancesr ≫ R, the extra dimensions will ’freeze out’
and the potential Eq. (1.1) will turn into the common 1/r potential, but with a prefactor given by
the volume of the extra dimensions

V (r) →
1

Md+2
f

1
Rd

m
r

. (1.2)

In this limit, we will rediscover the usual gravitational law which yields the relation

m2
p = Md+2

f Rd . (1.3)

Given thatMf has the right order of magnitude to be compatible with the other observed scales, it
can be seen from this argument that the volume of the extra dimensions suppresses the fundamental
scale and thus, explains the huge value of the Planck mass.

The radiusR of these extra dimensions, forMf ∼ TeV, can be estimated with Eq.(1.3) and
typically lies in the range from mm to 103 fm for d from 2 to 7, or the inverse radius 1/R lies in
energy range eV to MeV, respectively. The cased = 1 is excluded. It would result in an extra
dimension about the size of the solar system.

Due to the compactification, momenta in the direction of the LXDs can only occur in quantized
steps∝ 1/R for every particle which is allowed to enter the bulk. The fields can be expanded in
Fourier-series

ψ(x,y) =
+∞

∑
n=−∞

ψ(n)(x)exp(iny/R) , (1.4)

wherex are the coordinates on our brane andy the coordinates of the LXDs. This yields an infinite
number of equally spaced excitations, the so called Kaluza-Klein-Tower. On our brane, these
massless KK-excitations act like massive particles, sincethe momentum in the extra dimensions
generates an apparent mass term

[

∂x∂ x −
( n

R

)2
]

ψ(n)(x) = 0 . (1.5)

2. Phenomenology

The most obvious experimental test for the existence of extra dimensions is a measurement
of the Newtonian potential at sub-mm distances. Cavendish-like experiments which search for
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deviations from the 1/r potential have been performed during the last years with high precision
[5]. No deviations have been found, which constrains the case with d=2.

Also the consequences for high energy experiments are intriguing. Since the masses of the
KK-modes are so low, they get excited easily but it is not until energies of orderMf that their
phase-space makes them give an important contribution in scattering processes. The number of
excitationsN(

√
s) below an energy

√
s 1 can, for an almost continuous spectrum, be estimated

with the volume of thed- dimensional sphere of radiusR
√

s. We can then estimate the total cross-
section for a point interaction, e.g.e+e− → Gγ (G denotes the graviton) by

σ(e+e− → Gγ) ≈
α
m2

p
N(

√
s) =

α
s

(√
s

Mf

)d+2

, (2.1)

where we have used Eq.(1.3). As can be seen, at energy scales close to the new fundamental scale
the estimated cross-section becomes comparable to cross-sections of electroweak processes.

The necessary Feynman rules for exact calculations of the graviton tree-level interactions have
be derived [6] and the cross-sections have been examined closely. Since the gravitons are not
detected, their emission would lead to an energy loss in the collision and to a higher number of
monojets. Modifications of SM predictions do also arise by virtual graviton exchange, which gives
additional contributions in the calculation of cross-sections.

Another exciting signature of LXDs is the possibility of black hole production. In the standard
3+ 1 dimensional space-time, the production of black holes requires a concentration of energy-
density which can not be reached in the laboratory. As we haveseen, in the higher dimensional
space-time, gravity becomes stronger at small distances and therefore the event horizon is located
at a larger radius. We can estimate the horizon radius,RH , of a massm by using the Newtonian
potential Eq. (1.1), where we will assume that the black holeis small enough to completely fit
into the extra dimensionsRH ≪ R. In the Newtonian limit, the radial entry of the metric tensor is
approximately given bygrr = 1−2V (r), and the horizon appears at the zero ofgrr which leads to

RH ∼
1

Mf

(

m
Mf

)
1

d+1

. (2.2)

The exact formula which can be derived from the higher dimensional Schwarzschild-metric [7]
differs from the given one by some numerical coefficients. Itis not surprising to see that a black hole
with a mass about the new fundamental massm ≈ Mf, has a radius of about the new fundamental
length scaleLf = 1/Mf (which justifies the use of the limitRH ≪ R). For Mf ∼ 1TeV this radius
is ∼ 10−4 fm. Thus, at the LHC it would be possible to bring particles closer together than their
Schwarzschild-radius, and a black hole could be created. Black holes with masses in the range
of the lowered Planck scale should be a subject of quantum gravity. Since there is yet no theory
available to perform this analysis, the black holes are treated as semi classical objects which form
intermediate metastable states.

To compute the production details, the cross-section of theblack holes can be approximated
by the classical geometric cross-section

σ(M) ≈ πR2
H , (2.3)

1The estimated center of mass energy for the LHC is
√

s ≈14 TeV.
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an expression which contains only the fundamental Planck scale as coupling constant. This cross
section has been under debate [8], but further investigations justify the use of the classical limit at
least up to energies of≈ 10Mf [9]. It has further been shown that the naively expected classical
result remains valid also in String Theory [17]. However, the topic is still under discussion, see
also the very recent contributions [10].

A common approach to improve the naive picture of colliding point particles, is to treat the
creation of the horizon as a collision of two shock fronts in an Aichelburg-Sexl geometry describing
the fast moving particles [15]. Due to the high velocity of the moving particles, space time before
and after the shocks is almost flat and the geometry can be examined for the occurrence of trapped
surfaces.

These semi classical considerations do also give rise to form factors which take into account
that not the whole initial energy is captured behind the horizon. These factors have been calculated
in [16], depend on the number of extra dimensions, and are of order one. SettingMf ∼ 1TeV and
d = 2 one findsσ ≈ 1 TeV−2 ≈ 400 pb. With this it is further found that these black holes will be
produced at LHC in number of≈ 109 per year [11]. Once produced, the black holes will undergo
an evaporation process whose thermal properties carry information aboutMf andd. Furthermore,
crossing the threshold for black hole production causes a sharp cut-off for high energetic jets as
those jets now end up as black holes instead, and are re-distributed into thermal particles of lower
energies. Thus, black holes will give a clear signal. For reviews on TeV-scale black holes see [12].

When working on the phenomenology at the Planck scale, one furthermore has to take into
account that the Planck length is expected to act as a fundamentally finite resolution of structures;
it represents a minimal length scale. A lowering of the fundamental scale then implies a raising
of the minimal length. Thus, within the model of LXDs not onlythe above discussed production
of gravitons and black holes occurs at the lowered Planck scale Mf, but so do the effects of the
minimal length scale.

To incorporate the notion of a minimal length into ordinary quantum field theory one can use
a simple model which has been worked out in detail in [18, 19].This presence of a minimal length
results in a generalized form of the uncertainty principle,and a modified measure on momentum
space, which influences cross-sections at Planckian energies. This model is closely related [20]
to Deformations of Special Relativity, though differencesbetween both exist. Most notably, the
minimal length model does not imply an energy dependent speed of light, and the propagator is
modified only off-shell.

As we have seen, the LXD-model predicts a rich phenomenology. Presently available data
from collider physics as well as from astrophysics set constraints on the parameters of the model
[13]. The most recent constraints can be found in the Particle Data Booklet [14].
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