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Motivated by ideas from quantum gravity, Lorentz invariance has undergone many stringent tests

over the past decade and passed every one. Since there is no conclusive reason from quantum

gravity that the symmetrymustbe violated at some point we should ask the questions: a) are

the existing tests sufficient that the symmetry is already likely exact at the Planck scale? b) Are

further tests simply blind searches for new physics without reasonable expectation of a positive

signal? Here we argue that the existing tests are not quite sufficient and describe some theoreti-

cally interesting areas of existing parameterizations for Lorentz violation in the infrared that are

not yet ruled out but are accessible (or almost accessible) by current experiments. We illustrate

this point using a vector field model for Lorentz violation containing operators up to mass dimen-

sion six and analyzing how terrestrial experiments, neutrino observatories, and Auger results on

ultra-high energy cosmic rays limit this model.
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1. Introduction

Over the last century one of the most important problems in theoretical physics has been quan-
tum gravity and, despite efforts by many luminary physicists, no complete model yet exists. A pri-
mary reason why quantum gravity has remained elusive is the lack of observational input. Relevant
observations are difficult to obtain because of the enormous difference between terrestrial energies
and the natural quantum gravity scale - the Planck energy. The Planck energy ofEPl = 1.22·1019

GeV is 16 orders of magnitude larger than current accelerator energies, precluding direct probes
of Planck scale physics. However, recently it has been recognized that some knowledge about
quantum gravity can be indirectly gleaned from low energy processes. Various models/ideas about
quantum gravity suggest that the fundamental symmetry of special relativity, Lorentz invariance,
may not be an exact symmetry but instead violated at the Planck scale. At low energies physics
would then presumably show tiny deviations from Lorentz invariance as well. The exact size of
these deviations is dependent on the underlying quantum gravity model. Apart from any quantum
gravity motivations, tests of Lorentz invariance have historically been important because of the
fundamental role Lorentz invariance plays in quantum field theory and general relativity.

Incredibly precise and sensitive tests of Lorentz symmetry have been performed by numerous
researchers over the past two decades. An issue arises when considering the relevance of these
tests for models of quantum gravity, however. While quantum gravity models might suggest that
Lorentz symmetry is not exact, there is no firm calculated prediction from any model for thesize
of the violation. The predominant approach up to this point has been to simply search for/constrain
Lorentz violation in some low energy framework that we hope is the right infrared limit for quantum
gravity. The difficulty is that all of the infrared frameworks mathematically allow for infinitesimally
small Lorentz violation and hence we can never rule out any framework a priori. We therefore have
the unpleasant combination of incredibly precise tests of frameworks that can never be falsified,
which begs the question: are there any reasonable spots where we might still see a signal of a
violation of Lorentz invariance, or at this point are experimental searches simply expanding the
range of validity where we know Lorentz invariant physics works without any real expectation that
we might see a symmetry violation?1

The answer is that there are still reasonable spots. While the infrared frameworks mathemati-
cally allow for infinitesimal amounts of Lorentz violation, there are regions of each framework that
are preferred on physical grounds. Even better, experimentally we are able to investigate some of
these regions of theoretical interest. Our goal in this paper is to discuss these specific experimental
possibilities.

2. Lorentz violation in field theory

2.1 Lorentz violation by itself

The most common systematic approach to studying Lorentz symmetry violation (LV) is to

1It is not the intent of this work to argue that tests of Lorentz symmetry are ever unimportant. Even if the regions
of theoretical interest discussed here (and perhaps others) are eventually excluded, tests of Lorentz symmetry are still
interesting as we should always strive to extend the limits of our physical theories. However, it is much more important
to explore areas where there are credible theoretical ideas to be tested.
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construct a Lagrangian that contains the Lorentz violating operators of interest. The complete set
of renormalizable operators that can be added to the standard model, the standard model extension
(SME) [1], contains dozens of various operators made up of standard model fields and derivative
operators coupled to tensor fields with non-zero vacuum expectation values. It is the presence of
these non-zero tensors that beaks Lorentz invariance.2

Rather than deal with the entire SME, we can work with a simpler model that yields the same
essential physics: matter and gauge fields couple not only to the metric, but also to a preferred
frame (c.f. [2, 3, 4]). We can specify this frame by a unit timelike vector fielduα , the integral
curves of which define the world lines of observers at rest in the frame.uα must be a field with
its own kinetic terms that induce couplings between the metric anduα [3]. Here we will only
concern ourselves with the possible couplings betweenuα and matter fields, specifically fermions
and photons. The stable, non-trivial, and renormalizable operators that coupleuα to fermions and
photons for this construction are

L f = ψ(i/D−m)ψ−EPlbuµψγ5γ
µ

ψ +
1
2

icuµuνψγ
µ
↔
Dν

ψ +
1
2

iduµuνψγ5γ
µ
↔
Dν

ψ (2.1)

and

Lγ =−1
4

FµνFµν −
1
4
(kF)uκηλ µuνFκλ Fµν (2.2)

respectively [1]. b,c,d and kF are the coefficients that determine the size of any LV and each
fermion species can in principle have different coefficients. We have “de-dimensionalized” the
dimension threeb operator by the Planck energy so that all coefficients are dimensionless. We
neglect LV terms for other gauge bosons as they will not be relevant for the observations we will
discuss, essentially because they a) have high masses and b) do not propagate freely over long
distances.

A natural question is, why do we choose the dimensionful coefficient to be the Planck energy
and not, say, the particle mass? On one hand, this is just a matter of convention. However, since we
are looking for LV sourced by quantum gravity, we would expect the quantum gravity scale to be
the energy scale that controls the size of various operators. We will see later that this assumption
is natural but leads us into serious difficulties for an experimentally viable model for LV.

There are other terms, of course, but they are of higher mass dimension. If we stick with our
prescription of determining the size of the operator byEPl all the higher dimensional operators
are small and irrelevant. We still list them, however, as part of our task is to describe how these
operators can become relevant again. The complete dimension five operators have been catalogued
in [5], while the dimension six operators are not yet completely known. Of interest to us are only
those operators that modify free particle behavior, i.e. kinetic terms. Interaction terms of higher
dimension are suppressed by the Planck mass and lead only to very small modifications to particle
reaction rates.3 The known fermion operators are

2We concentrate here on coupling of Lorentz violating tensors to matter fields. The gravitational sector of Lorentz
violating theories is much less constrained and can generate interesting and useful phenomenology. For a discussion see
the talks by Robert Bluhm and Ted Jacobson in this volume.

3It might still be possible to see these terms if they introduced new particle decays that do not exist in the standard
model. However, the number of events would be extremely small and we know of no current experiment that looks for
LV in this manner.

3



P
o
S
(
Q
G
-
P
h
)
0
2
6

Have we tested enough? David Mattingly

1
EPl

ψ̄(ηLPL +ηRPR)/u(u·D)2
ψ +ψ

[
− 1

EPl
(u·D)2(α(5)

L PL +α
(5)
R PR) (2.3)

− i

E2
Pl

(u·D)3(u· γ)(α(6)
L PL +α

(6)
R PR)− i

E2
Pl

(u·D)�(u· γ)(α̃(6)
L PL + α̃

(6)
R PR)

]
ψ

wherePR andPL are the usual right and left projection operators,PR,L = (1± γ5)/2, andD is again
the gauge covariant derivative. Again, we have used the Planck energy to make all remaining
coefficients dimensionless. The currently known photon operators are

Lb =
ξ

EPl
uµFµν(u·∂ )uα F̃αν − 1

2E2
Pl

β
(6)
γ Fµνuµuσ (u·∂ )2Fσν .

It is useful to classify the set of fourteen operators above by both mass dimension and behavior
under CPT. The classification of operators is shown below in Table2.1. An × means that no
operator exists with the specified properties while a ? implies that the operators are unknown.

Table 1: Stable, nontrivial kinetic fermion and photon LV operators

Dim CPT Odd CPT Even

Fermions

3 −EPlbuµψγ5γµψ ×

4 ×
1
2 icuµuνψγµ

↔
Dν ψ

1
2 iduµuνψγ5γµ

↔
Dν ψ

5 1
EPl

ψ̄(ηLPL +ηRPR)/u(u·D)2ψ − 1
EPl

ψ(u·D)2(α(5)
L PL +α

(5)
R PR)ψ

6 ?
− i

E2
Pl

ψ(u·D)3(u· γ)(α(6)
L PL +α

(6)
R PR)ψ

− i
E2

Pl
ψ(u·D)�(u· γ)(α̃(6)

L PL + α̃
(6)
R PR)ψ

Photon

3 × ×
4 × −1

4(kF)uκηλ µuνFκλ Fµν

5 ξ

EPl
uµFµν(u·∂ )uα F̃αν ×

6 ? − 1
2E2

Pl
β

(6)
γ Fµνuµuσ (u·∂ )2Fσν

For the rest of this discussion we will ignore any unknown CPT odd dimension six operators
and concentrate on the phenomenology and constraints on the known operators.

2.2 Constraints and the fine tuning problem

The constraints on the operators above come from a number of sources, from tabletop labora-
tory experiments to high energy astrophysics. Below we list the best constraints on each operator,
noting for fermions which fermion species it applies to.

The bounds on the renormalizable and CPT odd dimension five operators are all very tight.
To assess what these bounds mean for theory, we first need to know what the expected size of any
Lorentz violation coming from quantum gravity might be. As mentioned before, there is no firm
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Table 2: Direct bounds on LV operators.

Dim CPT Odd CPT Even

Fermions

3 Neutron:|b|< 10−46 [6] ×
4 × Neutron:|c,d|< 10−27 [6]

5 Electron:|ηR,L|< 10−5 [7] Proton:O(10−1) [8]

6 × Proton (+extra assumptions):O(10−2,10−4) [8, 10]

Photon

3 × ×
4 × |kF |< 10−15 [11]

5 |ξ |< 10−7 [12] ×
6 None None

prediction from any theory of quantum gravity that Lorentz invariance must be violated and hence
no estimate from the fundamental theory of the size of the violation. We can, however, argue from
a bottom up perspective, using the rules of effective field theory, what the expected size should be.

The essential point is the following: If Lorentz invariance is violated by quantum gravity, then
why should our low energy world exhibit the symmetry toanydegree, much less the experimental
situation where Lorentz invariance is at the very least an excellent approximate symmetry? In the
physical theories we know about, the dimensionless numbers that appear are usually of order one.
Since we have explicitly factored out the Planck scale in our Lagrangian, which controls the scale
at which quantum gravity comes into play, the LV terms (including the renormalizable ones!) are
also therefore most naturally expected to have coefficients of order one.

They don’t of course, and therefore there must be some reason why they are small or zero. In
light of this fact many studies turned to the non-renormalizable operators, as these are already sup-
pressed by the Planck energy and hence naturally small. Concentrating solely on these operators
isn’t correct though, as they will, via loop corrections integrated up to the cutoff ofEPl, gener-
ate the dangerous renormalizable operators with large coefficients. The generated coefficients are
O(1) because while the non-renormalizable operators are suppressed byEPl, they are involved in
divergent loop corrections. These divergences are regulated by the cutoff of our EFT, which is also
EPl, and the factors ofEPl cancel. This is generically known to happen in non-commutative field
theories [13] or in field theories with a LV regulator [14]. In light of these arguments all the CPT
odd coefficients are bounded at the level of 10−46 and all the CPT even coefficients are bounded at
the level of 10−27. Hence further improvements on existing constraints of LV are likely irrelevant
unless we can get around this extreme fine tuning problem.

2.3 Supersymmetry and CPT to the rescue?

The arguments in the previous section don’t rely on any particular quantum gravity model,
so they are generic as long as the quantum gravity corrections contain LV and are describable by
EFT. There is a hole in the argument, however - it assumes there is no new physics between ex-
perimentally accessible energies and the Planck scale as we integrate loop integrals with known
physics. This is a large and dangerous assumption as over the history of physics we have encoun-
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tered new physics every few orders of magnitude in energy. How would new physics affect the
above argument? Assume for the moment, that there exists a combination of symmetries other
than Lorentz invariance that is incompatible with all the LV renormalizable operators and CPT
odd nonrenormalizable ones. Loop corrections involving the higher dimension operators, instead
of generating dangerous terms, would instead cancel or be zero. In such a case, our field theory
would be more experimentally feasible, as we would have only the CPT even higher dimensional
operators to consider which are much less tightly constrained.

If we found such a symmetry, where is it? We don’t see such an extra symmetry at low
energies, which means it should be broken at some scaleΛb above 1 TeV. BelowΛb this sym-
metry is nonexistent, so the same EFT terms as before will exist. However, now if we have a
non-renormalizable term suppressed byEPl with an O(1) coefficient it doesnot generate large
renormalizable terms. The loop integrals will only contribute up to the new symmetry breaking
scaleΛb, which leads to dimension three renormalizable terms of sizeΛ2

b/EPl and dimension four
terms of sizeΛ2

b/E2
Pl. In terms of our original parameterization in Table2.1, theb,c,d coefficients

are now naturally of sizeΛ2
b/E2

Pl! The price to pay is the introduction of an entirely new symmetry
and a symmetry breaking mechanism.

Roughly,Λb can be as low as 1 TeV and still not be seen in direct accelerator tests on the
standard model. This would get us to a size forb,c,d of 10−32. Current limits onb are well
beyond this, however, we can setb identically zero if we assume CPT. Lorentz invariance is usually
assumed in proofs of the CPT theorem [15] and so if we wish to create a viable LV model, CPT
must be an assumption instead. This assumption is, of course, experimentally compatible with
known physics.

While the above construction logically works, is there any symmetry that can actually do
the magic above? Wonderfully enough, supersymmetry, which has been considered for a number
of other reasons, has (almost) exactly the necessary behavior [17]. The underlying reason is that
SUSY can be thought of as a field transformation symmetry, which means that different fields can’t,
for example, propagate at different limiting speeds. The same effect occurs in two-component con-
densed matter analog models for spacetime, where the limit in which the low energy quasiparticles
have the same speed is the same as the limit where there exists a field transformation symmetry be-
tween the quasiparticles [16]. Supersymmetry forbids renormalizable LV operators while allowing
dimension five and six operators [17]. Note, however, that in order to be compatible with current
limits, naively the SUSY breaking scale must be (roughly) below 1 PeV. This leads to an interesting
method to test for the presence of SUSY in a LV theory and a nice interplay between low energy
LV searches and high energy collider experiments. If low energy searches for LV see a signal,
that implies not only that Lorentz invariance is violated, but also that there exists another symme-
try, which we assume is SUSY for the sake of argument, that must exist at much lower energies.
Furthermore, if we assume that the energy scale of LV isEPl the size ofc,d give a prediction of
the SUSY breaking scale. Finally, note that if we can improve the bounds onc,d by six orders of
magnitude, to 10−33 or so, there will be no room for the construction above to work. Admittedly
this may be a tall order, but if experiments reach this sensitivity we can begin to rule out these split
scenarios where LV occurs at high energies but a low energy custodial symmetry protects against
experimental signatures. Improvement by even three to four orders of magnitude will drop the
required SUSY scale to under 10 TeV, putting it close to searches for SUSY at the LHC.
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There is a significant downside for astrophysical searches for LV in the supersymmetric case.
Supersymmetric LV theories do not significantly modify the free field equations for high energy
particles [17], i.e. O(1) α

(5)
R,L and α

(6)
R,L terms in Table2.1 are not present in known supersym-

metric Lagrangians. Therefore experiments searching for LV with high energy neutrinos or the
Griesen-Zatsupin-Kuzmin (GZK) cutoff for ultra-high energy cosmic rays are not able to probe
this scenario.

3. Interesting regions in LV EFT

The first area of interest is that mentioned above, improving the constraints on the dimension
four operators by at least a few orders of magnitude. The second hot spot is establishing better
direct constraints on the CPT even dimension five and six operators to limit them well below O(1).
This is important to do, because as the above discussion shows, new low energy physics can change
the hierarchy of LV operators. While SUSY won’t allow for the above dimension six operators,
there may be some other physics which has a similar effect. Since we are able to simply constrain
directly the CPT even dimension five and six operators to be less than O(1), it makes sense to
spend the relatively minimal effort to do so even if we don’t know what the “new physics” might
be. What does not make sense is to continue much further after that as the next order operators are
well beyond our experimental reach for the foreseeable future.

3.1 Dimension six operators

We first need the field equations for the CPT even dimension five and six operators. For
fermions, the Hamiltonian corresponding to (2.3) commutes with the helicity operator, hence the
eigenspinors of the modified Dirac equation will also be helicity eigenspinors. We now solve the
free field equations for the positive frequency eigenspinorψ. Assume the eigenspinor is of the
form ψse−ip·x whereψs is a constant four spinor ands=±1 denotes positive and negative helicity.
Then the Dirac equation becomes the matrix equation −m−α

(5)
L

E2

EPl
E−sp−α

(6)
R

E3

E2
Pl

E +sp−α
(6)
L

E3

E2
Pl

−m−α
(5)
R

E2

EPl

ψs = 0. (3.1)

We have dropped thẽα(6)
R,L terms as the� operator present in these terms makes the correction to

the equations of motion proportional tom2 and hence tiny. The dispersion relation, given by the
determinant of (3.1), is

E2− m
EPl

(α(5)
L +α

(5)
R )E2−α

(5)
L α

(5)
R

E4

E2
Pl

− (α(6)
R E3)(E +sp)

−(α(6)
L E3)(E−sp) = p2 +m2 (3.2)

where we have dropped terms quadratic inα
(6)
R,L as they are small relative to the first order correc-

tions for those terms. Terms quadratic inα
(5)
R,L must be kept, as the particle mass suppresses the

linear term.
At E >> m the helicity states are almost chiral, with mixing due to the particle mass and the

dimension five operators. Since we will be interested in high energy states, for notational ease
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we re-label LV coefficients by helicity, i.e.α(d)
+ = α

(d)
R ,α

(d)
− = α

(d)
L . The resulting high energy

dispersion relation for positive and negative helicity particles can easily be seen from (3.2) to
involve only the appropriateα(d)

+ or α
(d)
− terms. For compactness, we denote the helicity based

dispersion terms byα(d)
± . The difference between positive and negative helicity particle dispersion

may seem counterintuitive since the original Lagrangian is CPT invariant. However, the helicity
dependent terms are odd inE andp and therefore break both parity and time reversal, leaving the
combination CPT invariant. Note also that at energiesE >> m, we can replaceE by p at lowest
order, which yields the approximate dispersion relation

E2 = p2 +m2 + f (4)
± p2 + f (6)

±
p4

E2
Pl

(3.3)

where f (4)
± = m

EPl
(α(5)

− + α
(5)
+ ) and f (6)

± = 2α
(6)
± + α

(5)
− α

(5)
+ . Note that positive coefficients corre-

spond to superluminal propagation, i.e.∂E/∂ p > 1, while negative coefficients give subluminal
propagation.

We now turn to photon dispersion. In Lorentz gauge,∂ µAµ = 0, the free field equation of
motion forAµ in the preferred frame with the dimension six LV operator is

(1− β (6)

E2
Pl

∂
2
0 )�A0 = 0 (3.4)

(�+
β (6)

E2
Pl

∂
4
0 )Ai = 0 (3.5)

wherei = 1,2,3. With (3.4) and the assumption that LV is small, we can use the residual gauge
freedom of the Lorentz gauge to setA0 = 0 as long asAµ is assumed to not contain any Planckian
frequencies. For a plane waveAµ = εµe−ik·x, there are hence the usual two transverse physical
polarizations with dispersion

ω
2 = k2 +β

(6) k4

E2
Pl

. (3.6)

where we have substituted the lowest order dispersionω = k.

3.2 Constraints

There are a number of direct constraints that can be placed on these dispersion relations. The
best constraints to date are those in [8], which place limits aroundO(10−2) on the various fermion
and gauge boson parameters from the existence of ultra high energy cosmic ray (UHECR) pro-
tons. In short, the existence of UHECR protons implies that 1010 GeV protons are long-lived on
astrophysical scales. If, however, protons travel faster than the low energy speed of light, they
can emit photons via the vacuum Cerenkov effect, the rate for which is exceedingly fast (see the
appendix of [9] for a discussion). Similarly, depending on the LV coefficients of various fermion
species, protons can be come unstable to electron/positron pair emission, conversion to neutrons
via positron/neutrino emission, etc. All of these processes must be forbidden if we see UHECR
protons. With some mild assumptions on the behavior of the LV coefficients (for example that all
gauge bosons have the same LV coefficients), two sided bounds can be derived via these decay
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processes and the parton distribution functions (PDF’s) of the UHECR protons and constituent de-
cay products. The PDF’s are required to calculate the net LV behavior of the composite particles
in the reactions.

With a single source species, i.e. protons, this is about the best we can do, as all we know is that
the source species must be stable. The problem is, we already know that there is likely some other
symmetry present, so therefore there will other particles (for example superpartners) involved in the
PDF’s evolved up to 1010 GeV. The constraints depend on the PDF’s and so will change depending
on the symmetry, although perhaps only slightly. Furthermore, the two sided constraints are only
available with some assumptions about how the LV coefficients behave. As a complementary
approach, we would like to be able to construct strong limits treating each particle as fundamental
without needing assumptions about the parton makeup or structure of the LV coefficients.

3.2.1 Ultra high energy cosmic ray limits

We can construct such limits if we have two source species or if we have a more stringent
constraint than just “this one particle species is stable”. The Pierre Auger Observatory is able to
provide us with both possibilities. First, Auger will be able to confirm the location of the Greisen-
Zatsepin-Kuzmin (GZK) cutoff [18, 19] and the detailed UHECR spectrum around it. The GZK
cutoff is an expected cutoff in the UHECR spectrum at 5×1019 eV due to pion production from
UHECR proton scattering off the cosmic microwave background,p+ γ → p+ π0. Recent results
from Auger have already confirmed the existence of the cutoff [20] near the expected value, which
has a number of consequences for the LV coefficients of the CPT even dimension five and six
operators.

As an example of the sensitivity of GZK physics to these operators, we can perform a basic
threshold analysis with a simplified model, similar to what was done in [11]. We first assume that
parity is a good approximate symmetry and that left and right handed protons/pions have the same
LV coefficients. Without LV, a UHECR proton can scatter of a CMB photon with energyω0 and
produce a pion whenEth > mπ(2mp + mπ)/4ω0, where the threshold energyEth is the necessary
proton energy. LV operators change the effective mass of the proton and pion and so will change
Eth. In Lorentz invariant physics, a 5×1019 eV proton is at threshold with a 1.3 meV CMB photon.
If LV is such that a lower energy proton is able to produce pions off the same region of frequency
space in the CMB, one would expect to photopion production process to be enhanced and the GZK
cutoff be lowered. Similarly, if the necessary proton energy was raised, it would it turn raise the
location of the cutoff. Hence we can get an estimate of the size and structure of GZK constraints
by asking how the proton threshold energies for photopion production with a 1.3 meV photon vary
in LV parameter space. Expressed in terms of thef (6)

p , f (6)
π parameters in (3.3) this yields Figure 1

for how the cutoff location deviates from the Lorentz invariant value.
We see from Figure 1 that this simple requirement removes most of parameter space. However,

we warn the reader that while the sensitivity of the cutoff to LV parameters is evident, the situation
is more complicated than in our simple model. The independent coefficients for different chirali-
ties can mask any effect, in that opposite sign coefficients for fermions will have canceling effects.
In addition, with different fermion coefficients new effects must be considered during propagation
such as proton helicity decay [9] or electron-positron pair production in the photon component [21].
An additional, and more important, problem is disentangling any LV source effects from the reac-
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f(6)

f(6)
p

10-3

10-3
-10-3

-10-3

Reaction does not occur

Eth outside 60%

Eth within 60%

Eth within 40%

Eth within 20%

Figure 1: Deviation of GZK cutoffEth from 5×1019eV as a function of Lorentz violating parameters. To
the right of the green regionEth is below 5× 1019eV. To the leftEth is either greater or the reaction is
forbidden.

tion kinematics. The GZK cutoff is a deviation away from an initial power law source spectrum.
Various source models predict different spectral indices and different composition by species [22],
many of which match the Auger data. Unfortunately, there is no analysis for any source model on
how LV effects modify the spectrum. Since LV contains an energy scale near the GZK energy at
which it becomes important, it is conceivable that the source spectrum could be a power law below
GZK energies (matching existing cosmic ray data) and change drastically above it. It is therefore
difficult to establish concrete constraints just from the existence of the cutoff, independent of any
knowledge of LV at the source. Due to these issues, it is therefore unknown at this time what the
actual constraints on the parameter space will look like.

We can get around many of these problems if we consider a different way of using Auger
data. Auger can discriminate between different cosmic ray primaries and, depending on the source
dynamics, Auger may see both proton and photon primaries [23]. This allows us to drastically
simplify our LV physics, as we no longer need to consider source dynamics or multiple new re-
actions. All we need to require is that the photon and one chirality of proton is stable. With LV

10
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physics, either of these particles can become energetically unstable, in that above the threshold
energyEth (determined again by the LV coefficients and the mass), a proton can emit photons via
vacuum Cerenkov or a photon can decay into a proton/antiproton pair. Stable protons and photons
forbids both these reactions. For an idea of the strength of the constraints, let us assume again
that each chirality of proton has the same LV coefficient. The threshold energy for these reactions
to begin to occur for O(1)β (6), f (6)

R,L is approximatelyEth ≈ (E2
Plm

2
p)

1/4, which putsEth ≈ 5 ·1018

eV, well below the GZK cutoff. The timescale for either a GZK proton to lose most of its energy
or a GZK photon to decay rapidly approachesE2

Pl/E3 [9] once the energy is aboveEth which is
approximately 10−16 seconds for a 1019 eV particle. Hence the LV coefficients must be such that
neither reaction is kinematically allowed. The parameter space with different threshold energies
is shown in Figure 2. As we can see, positive identification of different species at GZK (or even

β(6)

f(6)
p

10-1

10-1
-10-1

-10-1

Eth < 1019

1 · 1019   < Eth < 4 · 1019

4 · 1019   < Eth < 7 · 1019

Eth > 7· 1019

Figure 2: Threshold energiesEth for vacuum Cerenkov and photon decay as a function of Lorentz violating
parameters. Shaded regions are whereEth for at least one of the reactions is in the marked energy range.
The green area, which includes the usual Lorentz invariant origin, contains the region where both particles
are stable.

lower) energies, can significantly restrict the allowed LV parameter space to be very small.
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3.3 Neutrino constraints

Due to their small mass, neutrinos provide another sensitive probe of dimension six operators.
Remember from above that the threshold energy for photon decay or vacuum Cerenkov involving
protons was given byEth ≈ (E2

Plm
2
p)

1/4. If we consider a neutrino of characteristic mass 0.1 eV
the LV terms become equivalent to the mass term atEth≈ (E2

Plm
2
ν)1/4≈ 32TeV! This is within the

observed range of existing neutrino telescopes such as AMANDA [24], and high statistics for this
energy range will come with next generation detectors such as ICECUBE [25]

Existing precision data for neutrinos is currently unable to strongly constrain the dimension
five and six CPT even operators. For example, some of the best constraints on renormalizable
operators are provided by a combination of Super-Kamiokande atmospheric and K2K data [26].
To translate these constraints into (rough) constraints on the higher dimension operators we first
need the formalism for LV neutrino oscillations [27]. Let us consider Dirac neutrinos, so we can use
(3.1). In this case, the energy eigenstates are also the mass eigenstates. Now consider a neutrino
produced via a particle reaction in a definite flavor eigenstateI with momentump. We denote
the amplitude for this neutrino to be in a particular energy eigenstatei by the matrixUIi where

∑i U
†
JiUIi = δIJ. The amplitude for the neutrino to be observed in another flavor eigenstateJ at

some distanceL,T from the source is then

AIJ = ∑
i

U†
Jie

−i(ET−pL)UIi ≈∑
i

U†
Jie

−i(2E)−1(m2
i + f (4)

−,νi
p2+ f (6)

−,νi
p4

E2
Pl

)L
UIi (3.7)

for relativistic neutrinos. If we define an “effective mass”Ni as

N2
i = m2

i + f (4)
−,νi

p2 + f (6)
−,νi

p4

E2
Pl

(3.8)

then the probabilityPIJ = |AIJ|2 can be written as,

PIJ = δIJ− ∑
i, j>i

4FIJi j sin2
(

δN2
i j L

4E

)
+2GIJi j sin

(
δN2

i j L

2E

)
(3.9)

whereδNi j = N2
i −N2

j andFIJi j , GIJi j are functions of theU matrices. For maximal mixing between
flavor and energy eigenstatesGIJi j vanishes and theFIJi j term in (3.9) reduces to

PIJ = δIJ−sin2
(

δN2
i j L

4E

)
(3.10)

Note that above we have dropped the positive helicity terms. We are dealing with Dirac
neutrinos so there are right-handed (positive helicity) particles. However we can ignore these as
any signal will be dominated by the left-handed neutrinos produced and interacting via the usual
standard model interactions. Therefore we are only concerned withf (4)

− = m
EPl

(α(5)
− + α

(5)
+ ) and

f (6)
− = 2α

(6)
− +α

(5)
− α

(5)
+ in (3.8).

The absolute value of the difference betweenf (4)
− terms for muon andτ neutrinos, which acts

as a change in the terminal velocity away fromc, is limited from the atmospheric oscillation data
collected by Super-K and K2K [28] to be less than 10−24 in general and 10−27 for the maximal
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mixing case here [26]. This translates into the constraint|(α(5)
νµ−+ α

(5)
νµ+)− (α(5)

ντ−+ α
(5)
ντ+)| < 102

(or larger if the neutrino mass in question is less than 0.1 eV), which is not particularly strong.
As for the f (6)

− dispersion correction, the K2K beam has an average energy of 1.3 GeV, while the
atmospheric neutrino spectrum of Super-K has an average energy of roughly 100 GeV [28]. The
results in [26] use neutrinos in this energy band, so while the direct limits on these terms have not
been calculated, we can easily overestimate the constraints onf (6)

− by using an energy of 100 GeV
for the neutrinos (i.e. maximizing the size of the LV corrections). The deviation at this energy is
equivalent to anf (4)

− term of sizef (6)
− E2/E2

Pl = f (6)
− ·10−34. Hence the constraints from Super-K

and K2K on f (6)
− are worse than 107 and not very meaningful.

Fortunately, new detectors such as ICECUBE will dramatically raise the neutrino energies
for which there are a large observed population of atmospheric neutrinos. ICECUBE will see a
population of upgoing events from atmospheric neutrinos traveling through the earth up to energies
of roughly a PeV, where the earth becomes opaque to neutrinos. In [25] Gonzalez-Garcia et. al.
consider muon andτ neutrinos and construct an observable of the number of muon events vs. zenith
angle with different values off (4)

νµ
− f (4)

ντ
= 2δc/c, which is the notation used in [25]). Atmospheric

neutrinos propagating through the earth have different path lengths as a function of zenith angle
and the variation is on the order of the diameter of the earth,≈ 107 m. There will be a variation in
the number of muon events with zenith angle as long as the oscillation length betweenνµ andντ

is also of this order, i.e. when
δN2

i j 107m

4E
≈ 1 (3.11)

which we rearrange to

δN2
i j ≈ 4·10−23 E

1GeV
GeV2. (3.12)

The actual variation, taking into account attenuation and regeneration can be found in [25].
For energies around 100 TeV, the limit isδN2

i j ≈ 10−18GeV2, which puts a limit| f (4)
νµ
− f (4)

ντ
| <

10−28. The corresponding constraints on theα
(5)
νµ,τ ,− coefficients are therefore still at best only of

O(10). For the f (6)
− term, the constraint becomes| f (6)

µ,−− f (6)
τ,−| ≈ 1 and we finally achieve order

unity constraints. Since thef (6) terms scale strongly with energy, pushing the neutrino energy
higher will rapidly increase the size of the constraint. Unfortunately, we can only push the energy
up to near a PeV, where the earth becomes opaque to neutrinos. At this energies, the constraints
would be ofO(10−2) . Due to the earth’s opacity above a PeV it does not appear that we will be
able to go beyond this limit with a detector such as ICECUBE.

4. Time of flight

4.1 Time of flight in EFT

Unfortunately, the cosmic ray and neutrino constraints above, while tight, don’t actually limit
the absolute value of any coefficient but instead generically limit differences of coefficients (or
functions thereof). This is obvious in the neutrino constraints and manifests itself in Figures 1 and
2 via the qualitative form of the constraints - open wedges in parameter space. With bounds on only
differences, Lorentz violation doesn’t need to be small but only similar for different particle species.
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When considering simple changes in the terminal velocity of particles, as would be generated by
dimension four operators, this isn’t an issue since the Lorentz group doesn’t specify the magnitude
of the speed of light, only the fact that some speed is invariant. Therefore constraining differences
between the terminal speeds for different species means one is completely constraining all forms
of LV at this order. The situation is different for the higher dimension operators. Here, even though
the dimension five and six coefficients can be constrained to be almost equal, LV can still be very
large at high energies. Therefore one would very much like to constrain the absolute value of the
operators, not just their differences.

It is of course possible to establish tight two sided bounds on higher dimension operators.
CPT odd dimension five operators have been tightly constrained on both sides from studies of the
Crab Nebula [29, 7] and a combination of synchrotron radiation, TeVγ-ray annihilation off the
IR background, and existence of TeV photons [30]. Both these constraints rely on experimental
confirmation that at least three different reactions involving electrons and photons are unaffected by
LV to construct their constraints, however. At the very high energies needed to probe the dimension
five and six CPT even operators we no longer have this luxury and so it is difficult to derive two-
sided bounds with the threshold type reactions considered previously.

The other method for deriving two sided bounds is to pick an observation that only involves
one LV parameter. The simplest way to do this is by comparing the arrival times of high energy
particles or gamma rays versus low energy gamma rays, where all particles are emitted from the
same event. Since LV with higher dimension operators scales with energy, the LV terms for the
low energyγ-rays are irrelevant and the arrival time delay is effectively a function of only one
parameter. The delay∆T between a low energy photon and a fermionψ with (high) energyE
traveling over a time T is

∆T =−
3 f (6)

ψ E2

2E2
Pl

T (4.1)

where we have neglected thef (4)
ψ term as it is irrelevant.

If we maximizeT and consider cosmogenic neutrinos at distances of 1 Gpc, we immediately
see that for O(1)f (6) to even reach a delay∆T of one second requires energies at 1020 eV. While
such energies will likely be observed in the future by neutrino observatories such as ANITA [31],
time of flight observations are not likely to be possible. First, one needs to identify the sources for
the flux. For high energy neutrinos produced as secondaries from interactions of cosmic rays with
the CMB [32], Z-burst [33] or other decay scenarios [34, 35], this is impossible. GRB’s where the
source can be established and the secondary low energy signal seen have neutrino energies far too
low to constrain the LV we are considering. Hence clear two-sided bounds on the higher dimension
operators seem out of reach without imposing additional assumptions.

4.2 Time of flight outside of EFT

While time of flight isn’t particularly useful in constraining higher dimension operators in EFT
they are useful for proposals for LV that do not fit within EFT and constitute our last hot spot. There
are two proposals in particular, one based on non-critical string theory [36], and one coming from
“doubly special relativity” (see [37] for a discussion of DSR phenomenology). Both have as one
of the primary testable phenomenological features a modified dispersion for photons of the form
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ω2 = k2 +ξ |w|3/EPl, whereξ is a coefficient universal for all photons. There is hence a deviation
from the low energy speed of light that scales linearly with energy. Even though this dispersion
is rotationally invariant, it isnot a dispersion law that can be constructed with a vector field in an
operator expansion. Rotationally invariant dispersion relations where the dispersion correction is
suppressed by a single power ofEPl have been constructed in an EFT context, they require the CPT
violating dimension five operator [38] in (2.4)

ξ

EPl
uµFµα(u·∂ )(uν F̃να). (4.2)

This operator yields a dispersion of the formω2 = k2± ξk3/EPl, where the±ξ corresponds to
right and left circularly polarized photons. Hence there is birefringence in vacuum for photons in
addition to time of flight delays. From the absence of birefringence for polarized photons from
afterglow of GRB’s [12], we know that|ξ |< 10−7.

Recently, the MAGIC collaboration has reported a four minute delay in the arrival times for
photons from a flare of Markarian 501 that is compatible with aξ ≈ −3 [39]. In an EFT context
this is meaningless, as we already have bounds 107 times stronger and therefore the delay must be
caused by source effects. Conversely, if source effects are ruled out and/or a time of flight delay
of this size is confirmed for other flares, then the conclusions will be startling. Not only would a
positive result mean that LV exists, but more drastically it would imply that standard EFT is unable
to describe at least one low energy correction from quantum gravity! Since there are proposals for
LV that don’t fit within our usual EFT framework, confirming or conclusively ruling out this type of
dispersion is an important question. Fortunately current experiments have the necessary sensitivity
and so this question should be answered soon.

5. Conclusions

LV, as illustrated by our simplified model of a LV vector field, is very tightly constrained by
current experiments. Without custodial symmetries LV is so tightly constrained at all orders that
it seems very likely that Lorentz invariance is an exact symmetry. However, a combination of
CPT and supersymmetry can protect Lorentz invariance enough that one can still have LV at the
quantum gravity scale and be compatible with experiment as long as supersymmetry is broken at
scales less than around 1 PeV. Therefore it is still of interest to study LV, although the models we
should primarily be interested in now must consist of both LV at the Planck and new low energy
physics. We have illuminated here three regions that are still of theoretical interest in studies of
LV. The first is that of tests of the CPT even dimension four operators by low energy experiments.
As these experiments improve, they will force the SUSY breaking scale in a LV theory to decrease
until finally it reaches the TeV scale. At this point SUSY will be reachable by accelerators and we
can rule out this type of split scenario.

The second region of interest is the CPT even dimension six operators. While supersymmetry
predicts these operators to be small, the lesson of supersymmetry is that we should not naively trust
the simple hierarchy for sizes of operators at each mass dimension. Since we are able to directly
constrain these operators below O(1) by cosmic ray experiments such as Auger and upcoming
neutrino observatories such as ICECUBE it makes sense to do so. The final region of theoretical
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interest is in time of flight delays for high energy particles. In EFT, time of flight observations
cannot provide us with better constraints than other experiments. However, there are proposals that
sit outside the framework of EFT for which time of flight delays are the only currently experimen-
tally testable signature. While we personally find it implausible that the corrections to physics at
TeV energies from quantum gravity do not fit within EFT, nature has surprised us in the past with
radically new physics.4 Time of flight observations of high energy photons from GRB’s recorded
by MAGIC and other GRB observatories are able to probe these proposals and hence this is one
final region of theoretical interest.

If we test all of these regions of parameter space and find no signal of LV, does this mean we
should consider LV an exact symmetry? No, there are of course other forms of LV besides vector
fields and they may have different behavior. However, LV from quantum gravity must be either
more exotic (i.e. outside the realm of effective field theory?) or carefully, and possibly unnaturally,
hidden if we do not find a signal in these regions.
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