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1. Introduction

The purpose of this contribution to the debate on “Quantum and emergent gssfatyrfold.

First of all, we would like to introduce the group field theory (GFT) formalism [1, 2, 3],hlat
recently attracted interest in the general area of non-perturbative quantum gragtity,crrently
mainly used in the context of Loop Quantum Gravity [4]. We will describe the genertlries of
the formalism, at both kinematical and dynamical level, and provide an interprefatithem.

Second, we would like to portrait a picture of group field theories as a common fienkend
a unifying language for several approaches to quantum gravity, in particulagl@gum gravity
and simplicial quantum gravity (i.e. quantum Regge calculus and dynamicalulaiogs), by
sketching how the basic ingredients of these various approaches can be idavitifiedhe GFT
setting. We will argue that the pictures of quantum spacetime, developed irrtbesvapproaches,
are compatible and can help completing each other, while acquiring a new ita¢igrevithin the
GFT framework. GFTs can then represent a suitable context in which all theserdifipproaches
can inform, cross-fertilize and improve each other with the achieved results and insightseinto
nature of quantum geometry, and with the tools they have developed to study winin sb, of
course, we will discuss why we think is useful to move from the contexts provideddmodéshese
guantum gravity approaches to the GFT one.

Third, we want to stress the need to devote our research efforts to tackle the issueasf-the c
tinuum approximation of the quantum discrete structures that these various appriokcigy as
the fundamental building blocks of spacetime. Only if we are able to show caonglpdhat a
good continuum description of spacetime, with its dynamics governed by (som@adagrsion
of) General Relativity, emerges naturally from the formulation of quantum gravitjawa, we
will have a truly convincing argument for believing this formulation. This is ofrsewwell-known
by researchers working in non-perturbative quantum gravity, and in particular ipphescches we
have just mentioned: loop quantum gravity (and spin foam models), quantum Balggkis and
(causal) dynamical triangulations. Indeed, many techniques and strategicselesvdeveloped,
within these various approaches, to solve the continuum (and semi-classical) riddleaiayndem
sults already obtained. We will briefly discuss, and try to re-phrase, them in the GFT lanJies
will allow us to both understand them as providing insights about different regintefeatures of
the same type of models, and clarify in which sense they do not represent the mastienhor
natural way to approach the continuum problem from a GFT point of view.

Last, we will argue that group field theories offer new and powerful tools to tac&lprttblem
of the continuum in quantum gravity, together with a new perspective on the vigsale, that
could prove decisive for settling it, at the same time developing further and goirandeiie
insights obtained from the other approaches mentioned above. The suggestibasiddlly be
that we could try to view spacetime as a (peculiar indeed) condensed matter sydtierthe
GFT representing the microscopic description of its “atoms”, and providing the startingfpioin
studying both the statistical mechanics and the effective dynamics of largeenafrthem, which
we will tentatively identify with continuum physics. In particular, group field theories affer
the context and the tools to realize explicitly the intriguing idea of spacetime as arsatd of
fundamental building blocks and of continuum geometry as an emergecggb We will then put
forward a proposal for this GFT condensate, suggest some concrete research di(sotioa of



Group field theory as the microscopic description of the quantum spacetime fluid Daniele Oriti

which currently pursued), and offer some speculation on how a continuum spaeetint&eneral
Relativity can emerge in this scheme, again making use (also) of the condeatedanalogy.

Given its aims, this article will contain a limited amount of technicalities, only thoseaueted
introduce the main GFT idea and general formalism, and only references to andiscigfsions
of the many results obtained both in the GFT context and in the context of theapipeaches to
guantum gravity we will mention. At the same time, it may contain a more than avaragent
of speculations, especially in its last part, when we will try to forecast where the new gigrepe
we are advocating may lead to. We will hopefully compensate for this by trying ts ppecgise
as possible in presenting the main ideas, motivations and arguments behind thee{perspnd to
convince the reader that this may be an intriguing and reasonable picture afesbat results in
guantum gravity research are pointing to.

2. The group field theory formalism

We now proceed to introduce the main features of the GFT formalism. We refer to the liter-
ature, in particular the reviews [1, 2, 3], for a more complete and detailed treatmeiat @ore
extensive list of references.

2.1 Kinematics: the fundamental building blocks of quantum space

We start from a field taken to be(&valued function of D group elements, for a generic group
G, one for each of the D boundary (D-2)-faces of the (D-1)-simplex that thegiedgbresents:

(p(91792> '"agD) : GXD — C.

In models (aiming at) describing D-dimensional quantum gravity, this field is interpreted a
a second quantized (D-1)-simplex, with (D-2)-faces of the same labelled by grouptiheate,
interpreted as (pre-)geometric elementary quantities, or discrete quantum gravity vaEajiies.
alently, the same data can be associated to the links of a topologically dual gndghedield is
then seen as the second quantization of a spin network functional [4]. This maa@d-ifs can be
seen equivalently as a second quantized formulation of spin network dynansisadield theory
of simplicial geometry. We can identify the ordering of the arguments of the field witlo@e of
orientation for the (D-1)-simplex it represents, and we require invariance of the field eweler
permutationss of its arguments and trade odd permutations with complex conjugation of the field
Other symmetry properties can also be considered. An additional symmetry that is impakgd
on the field is the invariance under diagonal action of the géwm the D arguments of the field:
(91, -..,0p) = @(010,...,0pQ); but this is again model-dependent, of course, and in the models
of [9, 10], for example, only invariance under a certain proper subgroup iss@thorThis is the
simplicial counterpart of the Lorentz gauge invariance of continuum and discreterfiestgravity
actions, and it has also the geometric interpretation, at the simplicial level, of requigilpftdtes
of a (D-1)-simplex to close.

A momentum representation for the field and its dynamics is obtained by harmatysian
on the group manifolé. The field can be expanded in modes as:

#9)= 3 &" (H D‘éh<gi)> Gilip”™

Ji A JKi
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Figure 1: For theD = 3 case, the association of a field with a 2-simplex, or equivalently its dual verx, an
of its arguments with the 1-faces of it, or equivalently with the links incident tovéineex, together with the
labelling by group-theoretic variables.

Figure 2: A ‘2-particle state’(again, in the D=3 example)

with the J's labelling representations @, thek’s vector indices in the representation spaces, and
theC’s being intertwiners of the grou@. We have labelled an orthonormal basis of intertwiners
by an extra parametex (depending on the group chosen and on the dimension D, this may actu-
ally be a shorthand notation far setof parameters). That this decomposition is possible is not
guaranteed in general, but it is in fact true for all the known quantum gravity i@&dels, which
are based on the Lorentz group or on extensions of it. The proper geometric intépretahe
field variables can be identified by looking at the Feynman amplitudes for tiieaGRand, that
either have the form of discrete path integrals for some gravity action [9, 10] or aderived from
one [1, 2, 3]. This interpretation depends of course on the specific model catsiddowever,
generally speaking, the group variables are seen to represent parallel transponaeftg) (gon-
nection along elementary paths dual to the (D-2)-faces, and the represeniarenssually put in
correspondence with the volumes of the same (D-2)-faces.

Just as one identifies a single field with a single (D-1)-simplex, a simplicial space built out of
N such (D-1)-simplices is described by a suitable polynomial in the field variables, with cotsstrain
among the group or representation data, implementing the fact that some of #&ifdEes are
identified. For example, a state describing two (D-1)-simplices glued along one ao(¥)-
face would be represented by 20" 22", where the gluing is along the face labelled by the
representatiod,, and effected by the contraction of the corresponding vector indices (of course,

states corresponding to disjoint (D-1)-simplices are also allowed).

We see that states of the theory are then labelled, in momentum spagen ingtworkdased
on the groupG [4].

GFT observables are given [3] by gauge invariant functionals of the GFT #aldl,can be
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constructed in momentum space using again spin networks according to the formula:

Ow—(y,jeiv) (@) = (”/dgjdgji> Wiyiein (@i 950 [] @(Gii);
i i

whereW, ;. i, (9) identifies a spin network functional [4] for the spin network labelled by a graph
y with representationge associated to its edges and intertwingrassociated to its vertices, and
gij are group elements associated to the edgef y that meet at the vertax

Thus,group field theories describe a quantum space in terms of fundamental buildicigsblo
the quanta of the GFT field, that acquire then the status of “atoms of space”in ttiisggeand
that can be represented both as spin network vertices or as elementary (D-1)-sgnpligeneric
quantum state will be a “many-particle”’configuration for these quanta, represergomge ex-
tended discrete structure (a larger spin network or a larger (D-1)-triangulatichgracterized by
both the “particle number"and by additional symmetries or constraints imposedfyspgbow
the fundamental building blocks are glued together. This picture can be nmadepnecise and a
Fock space characterization of the GFT state space (and thus of quantum sgiasdtamework)
can be obtained after Hamiltonian analysis of specific GFT models [11].

2.2 Dynamics: the interaction and evolution of the atoms of space

On the basis of the above kinematical structure, one aims at defining a field thedegcrib-
ing the interaction of fundamental atoms of space, and in wdigpical interaction process will be
characterized by a D-dimensional simplicial complex. In the dual picture, the saliiee repre-
sented as a spin foam (labelled 2-compl@¥)is is the straightforward generalization of the way in
which 2d discretized surfaces emerge from the interaction of matrices (graphicatherssy[17],
or ordinary Feynman graphs emerge from the interaction of point particleiscéetespacetime
emerge then from the theory as a virtual construct, a possible interaction processtam@gr
guanta.

In order for this to be realized, the classical field action in group field theories has to be
chosen appropriately. In this choice lies the main peculiarity of GFTs with respectit@ordield
theories. This action, in configuration space, has the general structure:

1(2 y 1\
(@A) =3 (]‘l/dgdgi) @(9) (a6 ) e(Gi) +

A D+1 |
T oo <'7!j_|1/dgj> @(91))---@(Io+1j) ¥ (95 7) (2.1)

and it is of course the choice of kinetic and interaction functiefiand ¥ that define the specific
model considered. Obviously, the same action can be written in momentum spadeafienic
decomposition on the group manifold. The interaction term describes the interactiorildDbD
1)-simplices to form a D-simplex (‘a fundamental virtual spacetime event’) by gluing alaig th
(D-2)-faces (arguments of the fields), that padrwiselinked by the interaction vertex. The nature
of this interaction is specified by the choice of functivh The kinetic term involves two fields
each representing a given (D-1)-simplex seen from one of the two D-simplices (interactioesje
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sharing it, so that the choice of kinetic functiogs specifies how the information and therefore the
geometric degrees of freedom corresponding to their D (D-2)-faces are propagatethfwertex
of interaction to another. One can consider generalizations of the abovenetarntal structure,
corresponding to the gluing of (D-1)-simplices to form different sorts of D-dimensional lexa
(e.g. hypercubes etc).

Some examples of GFT actions are: 1) those corresponding to the kinetic andwect@ns:

D+1
H(9,G) |_l5 g Y. (9.9 = [] 0(gig;"), (2.2)
i<j=1
which produce a perturbative quantum dynamics that can be related to topbBgitheories
in any dimension, for internal gauge groGp 2) models in which suitably defined additional con-
straints on the same BF-type kinetic and/or vertex terms are imposed, and which ginesénting
the GFT equivalent of the constraint reducing BF theory to gravity in a Plebanski-likeifation
of the same [14, 15, 16]; 3) extended models based on more than Lorentz grialpes and char-
acterized by a proper differential operator playing the role of kinetic term, omamgaof which
is the class of models in [10], using a complex field(@x X)P, with G being the Lorentz group
andX a metric space isomorphic to the Lie algebr&pand based on the kinetic and vertex terms:

(0, %, Gi, X |_| (Ai+0j) glgiﬁl)é(xi_iiil) glj Xu rlé gljg“ le) (2.3)
[ i#]

whereg; € G, x; € X, A is the Laplace-Beltrami oX and is the Laplace-Beltrami ofs; these
last models produce Feynman amplitudes with the interpretation of simplicial patheilstégy 1st
order gravity actions [10].

Let us now turn to the quantum dynamics. Most of the research in this area has eohitern
perturbative aspects of this dynamics around the no-particle state, the complatenyand the
main guide for model building have been, up to now, only the properties of siudtirey Feynman
amplitudes:

. AN
_ Slo] _
Z- /9cpé =3 Gmr 20

whereNy is the number of interaction verticesn the Feynman diagram, sym['] is the number of
automorphisms off andZ(I") the corresponding Feynman amplitude. Each edge of the Feynman
graph is made db strands, one for each argument of the field and each one is then re-routed at the
interaction vertex, with the combinatorial structure oflusimplex, following the pairing of field
arguments in the vertex operator.

Each strand in an edge of the Feynman diagram goes through several vertioesy back
where it started, for closed Feynman diagrams, and therefore identifies a 2-celléfog@phs,
it may end up on the boundary, but still identifies a 2-cell). Each Feynman didgria then a
collection of 2-cells, edges and vertices, i.e. a 2-complex, that, because obtmnatombinatorics
for the arguments of the field in the action, is topologically dual to a D-dimensgimgilicial
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Figure 3: The basic building blocks of the GFT Feynman diagrams[fet 3).

complex. Notice that the resulting 2-cells can be glued (i.e. can share edges) in alf scajsp
forming for example “bubbles”, i.e. closed 3-cells.

No restriction on the topology of the diagram/complex is imposed, a priori, in the construc-
tion, so the resulting complexes/triangulations can have arbitrary topology. Eachhottree-
sponds to a particulacattering processf the fundamental building blocks of space, i.e. (D-1)-
simplices/spin network vertices. Each line of propagation, made as we said out of Bsstican
labelled, on top of the group/representation data, by a permutatidn.afD), representing the la-
belling of the field variables, and all these data are summed over in the construdtierFaflynman
expansion. The sum over permutations affects directly the combinatorics of tve@lguings of
vertices with propagators[8].

i

Figure 4: The gluing of vertices of interaction through propagators, again in the D=3 exaffitaectan-
gles represent the additional integrations imposing gauge invariance undetioheo&G, while the ellipses
represent the implicit sum over permutations of the (labels of the) strands to be glued.

As said, each strand in a propagation line carries a field variable, e.g. a group element
configuration space or a representation label in momentum space. After the clotestoénd to
form a 2-cell in a closed diagram, the same representation label ends up being ad$od¢hase2-
cell. Therefore in momentum space each Feynman graph is given by a spin f@asar(glex with
faces labelled by representation variables), and each Feynman amplitude (exc@mption of
the representation labels, obtained by contracting vertex amplitudes with propagatastia) by
a so-called spin foam model [12] (in the models [9, 10] the labelling of the spin foanmples
is slightly more involved). The inverse is also true: any local spin foam model cantamet)
from a GFT perturbative expansion [13, 3]. The sum over Feynman graplsstham a sum over
spin foams, and equivalently a sum over triangulations, augmented by a sunigelaai data
(group elements or representations) with a geometric interpretation, assigned to eacihati@ng
This perturbative expansion of the partition function also allows for a perturbativeatieen of
expectation values of GFT observables, as in ordinary QFT. In particular, the trarssitjgitude
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(probability amplitude for a certain scattering process) between certain boundary detered
by two spin networks, of arbitrary combinatorial complexity, can be expressed aspbetation
value of the field operators having the same combinatorial structure of the two sporkef@; 1].

/\N

<L|J1 ’ LP2> = /.@q)OqJ Oq,l eiS(q’) = —_—
' ’ F/dr:wluwz Symr]

Z(T)
where the sum involves only 2-complexes (spin foams) with boundary given by thepiw net-
works chosen.

The above perturbative expansion involves thus two types of sums: one is theveugeo-
metric data (group elements or representation§)oéntering the definition of the Feynman am-
plitudes as the GFT analogue of the integral over momenta or positions of@Bliathe other is
the overall sum over Feynman diagrams. We stress again that, in absence of atdisbictions
being imposed on the GFT, the last sum includes a sum over all triangulations f@nagpology
and a sum over all topologies.

2.3 A peculiar guantum field theory (still, a proper field theory!)

In the end GFTs are a peculiar type of quantum field theoridsfined on specifically chosen
group manifolds. The main reasons why they are rather peculiar, from a purely Beic:tic
perspective, are:

e the way in which field arguments are paired in the interaction term, which makesatherh
of combinatorially non-local field theories

e the resulting combinatorial structure of Feynman diagrams, given, as we discusésd by
graphs dual to simplicial complexes, but also presenting no true vertex of interawcttbe,
usual QFT sense of simultaneous identification of more than two configurationleariabd
constituted only by ‘loops ’(closed lines of propagation of the individual field zugnts) and
‘bubbles’(3-cells bounded by several such loops);

¢ the fact that all the arguments of the field are naturally treated on equal fobtngpecific
time parameter can be identified among the group coordinates, still there would baan
parameter for each argument of the field, thus D in total, leading to a sort of ‘mutticym
namics’; in the Hamiltonian analysis of GFTs [11], this implies the need for a polysytiple
canonical formulation and has several interesting consequences;

e the fact that, for GFTs characterized by kinetic functions formed by differentiedabgrs,
there is then naturally one such operator for each argument of the field, aodwcpstruc-
ture of the full kinetic term, reproducing again this independent propagationldfafigu-
ments, but also producing technical complications.

However, as for the rest, we have an almost ordinary field theory, in that we aorre
a fixed background metric structure, given by the invariant Killing-Cartan metric omgrihep
manifold (or extensions of it), a fixed topology, given again by the topologye§tbup manifold,
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the usual splitting between kinetic (quadratic) and interaction (higher order) term inttbe,ac
and the usual conjugate pictures of configuration and momentum space.lloWs @s to use all
usual QFT techniques and language in the analysis of GFTs, and thus ¢@imuaravity, even
though we remain in a background independent (in the physical sense of ‘spatetependent’)
context. The importance of this, in a non-perturbative quantum gravity framewarldshot be
underestimated, we think, and it is at the roots of the strategy we will propose latetamkl®the
issue of the continuum and semi-classical approximation.

3. Group field theory as a common framework for discrete quantum gravity

GFTs can potentially represent a common framework for different curgguroaches to quan-
tum gravity in particular canonical loop quantum gravity[4] and simplicial quantum gravity for
malisms, namely quantum Regge calculus [5] and (causal) dynamical triangsiig8jpbecause
the same mathematical structures that characterize these approaches also essarilyeand in
very similar fashion in the GFT frameworRMNe believe in the need to learn from all of them in
order to solve the remaining challenges towards a complete theory of quayranity, and the
GFT formalism may be the most suitable framework in which the many lessons we wainaina
all of them can be brought together and to fruition.

3.1 Convergence of formalisms, structures and languages

Historically, GFTs can be understood as being born as a generalisation of matrilsifiade
for 2-dimensional quantum gravity. This generalisation is obtained in two steps: Bdsing to
generic tensors, instead of matrices, as fundamental variables, thus obtainingatiggrienc-
tional for the sum over D-dimensional simplicial complexes that was the essetimdfnamical
triangulations approach to quantum gravity[18, 19]; 2) adding group structuréngedieometric
degrees of freedom. The last step is what turns a tensor model into a properdiatd thn fact,
the first example of a GFT was the group-theoretic generalisation of 3d tensor rpooietsed
by Boulatov [20], corresponding to thi2= 3 andG = SU(2) case of (2.2). Already at this initial
stage, group field theories allowed a direct contact between simplicial quantuity grad what
we now call spin foam models [12], as the Boulatov model produces Feynmglitides given
by the so-called Ponzano-Regge spin foam model. As we have discussed abooe, kmow that
this is just one example of a very general result [13]: the equivalence betweal) @pin foam
models and GFT Feynman amplitudes. In turn, spin foam models [12] have beenactive area
of quantum gravity research in the past ten years, for two main reasons. First, one atspins
foam model when considering a path integral quantization of discrete gravity forchasgegauge
theory. Second, spin foams arise naturally when considering the dynamics of theakiced quan-
tum states of geometry as identified by canonical loop quantum gravity [4]. Infleedthe LQG
perspective, spin foams represents the histories of spin networks and are thus tHengreda
ent of any path integral or covariant formulation of the quantum gravity dyremitQG. From
both the simplicial and canonical perspective, a sum over spin foams/triangulatieighted by
appropriate amplitudes, is a crucial ingredient in defining the dynamics of thaagi@val field:
in simplicial quantum gravity because such sum can compensate the truncatiomutgeale-
grees of freedom that the restriction to a given lattice imposes; in LQG, because ateopgpte
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integral formulation of the dynamics needs, in general, a sum over all the histotresemegiven
spin network states. At present, group field theories are the only known tool to defijnelyrand

completely such sum over spin foams. Now let us give a closer look at how the vargredients
of these various approaches, that all have historically contributed, with hindsighg twelop-
ment of the group field theory formalism, can be identified and re-interpreted withinrthalfem

itself.

3.2 Loop quantum gravity and group field theory

We have mentioned already the first and most basic link between the group figlgfibrecal-
ism and loop quantum gravitypoundary states of generic GFTs are spin netwprles what has
been identified by the canonical loop quantization programme as the kinelhgaticaum states of
geometry [4].The GFT field itself, as we have se@ninterpreted as the result of a 2nd quantiza-
tion of a spin network wave functiofhis correspondence can be made more precise, and one can
in fact show [21] that a generic spin network wave function can be re-expressddastanalogue
of a multi-particle wave function, with the particle degrees of freedom being associdtexidpin
network vertices; a standard second quantization procedure applied to these multi-patiele
functions, then, leads to a field defined on the same group manifold from which $piorkelata
are taken, and that can be straightforwardly identified with the GFT fi@FTs therefore define
possible dynamics for these quantum states of geometry, in a 2nd quantized formaladiom a
way that identifies the basic dynamical degrees of freedom as those associaedddites of
the spin networks themselves, that in turn have been shown in LQG to correspond tatatgme
chunks of space volume. From these kinematical considerations, it immediatelySdhat any
guantum operator that can be defined in the 1st quantized LQG setting has aanided GFT
counterpart, that can be, at least in principle, identified. More importantly, this stsgipat the
LQG dynamicscan be embedded and studied within the GFT setting. There are two equivalent
ways in which this can be done. First of all, as in any QFT, the GFT classical attoarid encode
the full 1st quantized dynamics, and the classical equations of motion should codsyihe full
dynamical equations of the 1st quantized wave function. Solving the GFT clesgidions, then,
means identifying non-trivial quantum gravity wave functions satishaglighe quantum gravity
constraints, an important and still unachieved goal of canonical loop quamauitygexcept in
some simplified situations. The same classical equations of motion can be solved, implisitly
at the level of the perturbative Feynman expansion: one could considesthietien of the GFT
perturbative expansion given abovettee leve] for given boundary spin network observables [3].
This is the GFT definition of the canonical inner product between two spin mietstates. The
definition is well posed, because at tree level every single ampl#if¢ is finite whatever the
model considered due to the absence of infinite summation (unless it preserggnides at spe-
cific values of the configuration/momentum variables). Moreover, it possessesmatbesties one
expects from a canonical inner product [3]. This means that the physicalt$ifsce for canonical
spin network states can be constructed starting from the above definition of the innectpidus
shows a concrete example of how the dynamics of spin network states candoe@covariantly
in a sum over spin foams, in the same sense in which the dynamics of canonical graMiiv
variables can be formulated, in principle, as a covariant path integral overegiges(see [22] for
more details on this perspective on spin foam models).

10
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There are of course many open issues regarding the exact connection betne@thnd the
GFT frameworks. One concerns, for example, the role of spatial topology chid#mgtatus within
LQG is not obvious at present: on the one hand, LQG being the result of a calqumatization on
a globally hyperbolic manifold, one would expect spatial topology change taled out almost
by definition; on the other hand, the resulting quantum states of geometry uablodescribe
also quantum spatial geometries with degeneracy points, and thus seem to admwdsibéity of
branchings of space at those points). In GFT, as we have seen, non-trivialgiesadgppear in
perturbative expansion as soon as one goes beyond tree level, and theraasvnarkechanism to
either suppress or avoid them. Another open issue is the interpretation, from the qgaatityn
point of view in general, and within LQG in particular, of the GFT coupling constimtsome
proposals on this, we refer to the literature [1]. One more unsettled point is whether ané sho
expect a direct link between the GFT and the LQG dynamics, i.e. between the&ieh and
the LQG Hamiltonian constraint already at the level of the, supposedly, microscefipdidn of
the GFT itself, or at the level of some macroscopic, effective QFT action deftaetihg from the
microscopic GFT dynamics. After all, the Hamiltonian constraint operator of LQG is @utéip a
direct quantization of continuum (and possibly effective) General Relativistiardigs, and while
one can be lucky enough to capture some kinematical properties of the midmodesgription of
a system, in general one should not expect to capture the exact microdgnpinicof the same
starting from some effective macroscopic description [23], although it is certainly a possibility.
More specific open issues concern the exact choice of the gauge group, whgthaily the full
Lorentz group in GFTs and theU(2) subgroup in LQG, the need for the GFT restriction on the
valence of spin network vertices, etc However, while it is clear that much morke iwmeeded
to explore and settle these issues, their presence does not spoil or modify drasticallykye th
the above general picture of the GFT-LQG relation, and most importantly, all these =mubde
tackledwithin the GFT formalism itself.

3.3 Simplicial guantum gravity and group field theory

The GFT Feynman diagrams, as we have seen, identify simplicial complexeddio tlub
GFT assigns geometric data, weighted by quantum amplitudes that can be relptgt tote-
grals for simplicial gravity on the given complex, and indeed share the same intégureihese
Feynman diagrams/simplicial complexes are summed over to define the GFT péutitadion in
perturbative expansion, and thus the full dynamics.

The relation between GFTs and traditional approaches to discrete quantum grthatefere
clear, at least in its general featurésr given Feynman diagram, and thus fixing a single triangu-
lation as a discrete model of spacetime, the GFT provides a quantization dafygrathe spirit and
language of quantum Regge calcylby an assignment of geometric data that are (more or less
direct) analogues of the edge lengths used there, and summing over all ssidfigpassignments.
The full amplitude weighting such assignments, i.e. the specific function of the geonhaito
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be used, is specified uniquely b the specific GFT model one is considering. &idadiy:

Z= /@(péSkp] ~ ZQRC = Z AF(JI) ~ /ggé%R(g)”
{3} '

If, instead of fixing the triangulation, i.e. considering a specific GFT Feynmanaliagone
freezes GFT field degrees of freedom (thus fixing the geometric data) to sostentosalue, the
same GFT provides a definition of the dynamics of quantum geomiat®sum over triangulations
weighted by purely combinatorial amplitudes, i.e. functions of the combinatoriteaimplicial
complexes only. This is a definition of quantum graviitythe same spirit and language of the
dynamical triangulations approact&chematically:

1

symf]

The quantum amplitudes weighting histories of the gravitational field are giveotlingoan-
tum Regge calculus and dynamical triangulations, by the exponential of tigeRetion for dis-
crete gravity, while in most spin foam models the connection between the quanfolitudes and
the Regge action is clear only in a particular regime and even there it is ratherad\@R]. How-
ever, such relation is much clearer in the recent GFTs of [10], whose amplitadesrdeed the
form of simplicial gravity path integrals, with clearly identified classical simplicial gravity astion
GFTs can then be said to incorporate both traditional simplicial quantum gravity apesand
to do so in a nice complementary way. We do not know, however, is they algacdoectly or
whether, by doing so, they extend the definition of both beyond what is usefdeded. Much
more work is needed, for example, to study in greater detail the (classical andiga@mplicial
geometry corresponding, for given triangulation, to the known GFTs. And muck mork is
needed in order to understand what is the QFT meaning of many of the caiifigns, e.g. those
corresponding to non-trivial spacetime topologies, or the hon-manifold-like onesaidhpgin the
perturbative GFT sum over triangulations; how one could gain control over tha&moisen, impor-
tant issue. Also, in the moderausaldynamical triangulations approach, the nice result (that we
are going to discuss in the following) concerning the continuum limit of the sum ovegtri@ions
seem to depend on specifiausalityrestrictions on the class of triangulations summed over [6];
whether and how one can understand and implement such restrictions from a fieldgaespec-
tive and within the GFT setting is presently unclear. At the same time, there is hopedlsainth
over triangulations may provide a more powerful alternative to the refinemergquoe of Regge
calculus to lift the restriction to a fixed simplicial complex, and that the additional fieldrétic
data and associated gauge symmetries and non-perturbative information of GREsusseful not
only because they provide the theory with a well-identified space of states etc, bigrajaming
control of the sum over triangulations of the dynamical triangulations approd¢hT8 summa-
rize, even given the present limited level of understanding of GFTs, it is cleahtarepresent a
unification and a generalisation, that can perhaps turn out to be useful in the &itboth quan-
tum Regge calculus and dynamical triangulations, together with a radicalebpgrspective on
them: GFTs define the 2nd quantized description of the dynamics of fund@mnsemplicial build-
ing blocks of space, and simplicial quantum gravity path integrals arise in a perterbafinition
of this dynamics around the vacuum, either when considering single virtual itibgrgcocesses,

Z= /9¢és{¢] ~ Zpt = Z Ar(A) =~ /DgeiSGR(g)"
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i.e. single Feynman diagrams (quantum Regge calculus), or the full perturbayinenée sum
restricted to its purely combinatorial properties (dynamical triangulations).

3.4 To whose benefit?

So far so good. All this may be interesting and indeed it is intriguing to speculate of angnify
framework for all discrete quantum gravity approaches, that encompasses lodpmugavity
structures as well as simplicial quantum gravity ones. But is it useful? Can it be hielghllving
any of the outstanding open problems that these various approaches faest Bally offer a
new perspective on them and on quantum gravity in general?

In fact, we believe it does offer such a new perspective and that becauseg ibttn be very
useful in helping to solve some of the current open problems, also by providing nenidaic
tools for doing so. We have mentioned already some of the possibilities, e.g. the issge of th
dynamics and of the definition of the physical inner product in LQG, or a posgibp on non-
trivial topologies in dynamical triangulations. However, what we have mainigimd is the issue
of the continuum limit, because it is here that the change in perspective offer@# by can be
most relevant. We are going to discuss this issue at length in the following. Here, we lisetas
to sketch very briefly what this change in perspective amounts to and what nksvit teeggests
and provides.

The change in perspective, with respect to all the other approaches we aatremad, stems
from the following consideratiorall of them, spin foam models, quantum Regge calculus, dynam-
ical triangulations, arise in perturbative expansion around the ‘no-particle fundameatalum’,
as Feynman amplitudes or Feynman diagrams surhs means two main things: 1) th&pm the
point of view of GFTs, the discretization of spacetime used by all of these appmcdescribing
the dynamics of geometry, and encoded in a 2-complex (spin foams) or in a simmiTiplex
(simplicial quantum gravity) is not a regularization of the theory (gravity, here) eubual lat-
tice gauge theory sense, but corresponds to describing the physics of ‘few-pacbel¢isem spin
network vertices or simplices) and virtual processes, with no individual meaningéhes, ex-
cept in very limited and specific approximations; 2) that, at the same timeGFT formalism
is in principle suited for going beyond this regime and describe the many-particle lhasithe
non-perturbative physicsf the same system, that is, unless -all- of these approaches are wrong,
guantum spacetime.

Together with a change in perspective, luckily, comes therefore the possibility af nein
mathematical tools and physical ideas, provided as well by the GFT formalism. abhssid, is
a 2nd quantization of the same basic kinematical (space) structures used in theptbaches,
and we know very well how advantageous it is to have at one’s disposadl @j@antized and
field-theoretic framework for studying the dynamics of a physical system described ia ¢érm
‘particle-like objects’. A 2nd quantized, field theory description allows: to overcome fresie
impracticability of solving the 1st quantized equations of motions involving martjcfes (here,
very complex spin networks or extended triangulations), to deal in an easier wathevglymme-
tries and statistics of the fundamental quanta, to have full control on quantum (H-gnexgy)
effects. Most importantly, a field theory description is the best way of: studying the prapeftie
systems with many degrees of freedom (and, again, gravity in general, and g@pipi@etworks
or extended triangulations, are certainly examples of such systems); connectingoopicanany-
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particle physics and macroscopic, collective dynamics of the same, its statistidemucand the
corresponding thermodynamical quantities. We are going to expand on this pthiatfollowing.

4. Building up a coherent picture of quantum spacetime

Once we have seen how (the basic ingredients of) different discrete approachestonqg
gravity are incorporated within the group field theory formalism, we can take a fresh |dbk& at
many important results obtained in them, regarding the classical and quantum fagtanéty and
spacetime, and try to re-interpret them in the GFT language and framework. We age@bia
rather brief, and possibly superficial, in our attempt to summarize in a few key pointswetave
learned during many years of quantum gravity research in such diverse directiets sppace (and
time) constraints, as well as our limited knowledge. We apologize for this. Thisissdras two
purposes. 1) It may help in acquiring a new understanding of the insights the difigEoiaches
provide, and in analyzing their mutual compatibility, and possibly also suggestsiwaysich
what we have learned from one approach can contribute to solving presently kidenms of
another or common to all. 2) It is needed in order to check whether a singégesutpicture of
guantum gravity, patching together all these various insights and results, is possibie,théth
GFT setting. Ifit turns out that, indeed, it is possible, then we believe it would heblgthe best
thing to use it and develop it further.

4.1 Insights from loop quantum gravity and spin foam models

So, what have we learned about quantum gravity from loop quantum gravityd4joam foam
models [12]? We have learned first of all that the kinematical degrees of freetiguantum
space can be captured and encoded in discrete, purely combinatorial ardialgehctures, spin
network states: graphs labelled by group representations. And this applies as welnatidaé
semi-classical states approximating continuum geometries. Of this space of stategwstdray
mathematical results concerning inner products, kinematical observables, fahptioperties and
much more [4]. Moreover, although all this has been discovered by a direaticahquantiza-
tion of continuum classical General Relativity with Einstein-Hilbert action, we nowerstdnd
this result as a very generic feature of any description of geometry based on: d)rdiffghism
invariance and background independence, requiring a purely relational diescofspace, hence
the purely combinatorial substratum; 2) a formulation of geometry in terms of conng¢aod
local reference frames), i.e. a gauge-theory-like formulation of gravity, hence the gseup
elements and representations to encode gravitational degrees of freedom arehpaeely kine-
matical considerations, referring solely to the way information about space and itstgecare
be encoded, to a “possible backbone”of any theory of quantum gravitytharsdmay well hold
regardless of specific dynamical details, e.g. choices of action, additionaletyyrmaquirements,
spacetime dimension, etc. Similar considerations apply to the dynamics of spacaytias well
be represented in purely combinatorial and algebraic terms. We have learned thdy &loea
the quantization of the Hamiltonian constraint in LQG [4], but this is all the more evidehe
spin foam description [12] of the dynamics of quantum space. As we have sedmve/@again
purely combinatorial structures (2-complexes) labelled by purely algebraic data fgpresenta-
tions and elements) to represent possible histories of geometry, at the quantum levelgahm,
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this general features follow naturally from the requirements of background independnd from
a description of gravity as a gauge theory, either imported from the canonical foionular im-
plemented in some discrete re-formulation of lagrangian quantum gravity, or somiewyiatt
in categorical quantizations of geometry, which are the main ways in which a spim flrmal-
ism arises [12]. Recent results have confirmed that a spin foam formulation indeecldecap
describing key properties of the dynamics of quantum gravity, both in 3 and diams, includ-
ing matter coupling and graviton propagation, at least in the approximation in wheatelevant
spacetime geometry information can be encoded in discrete structures. For these resefe;, we
to the literature (see, e.g. [12, 25, 27]). And also the canonical LQG formulation of tlzeriys
has been shown to provide very interesting physical insights on quantum geormktagtan the
symmetry reduced context of Loop Quantum Cosmology [24].

From the overview of the GFT formalism that we have given earlier, it should betbiazall
these insights are are not only compatible but also already fully incorporated in the GRg- fra
work. In this context, they imply the following: 1) th&FT quantum multi-particle states encode
correctly guantum geometric degrees of freedom in a very precise sensestati@akinematical
level, and satisfy the requirements of background independgd@ptieatGFTs are also able to de-
scribe the corresponding multi-particle dynamics, at least in the approximation in wheclhole
perturbative series needs not be re-summed or high order Feynman diageammze neglected.
In particular, the results on the coupling of matter Feynman diagrams to spin foansh{2%
how natural it is to treat matter Feynman diagrams on the same footing as spin foan®&; T.e
Feynman diagrams, which is also confirmed by the corresponding GFT formulatibe séme
gravity+matter models [26]. And the nice results on graviton propagator in LQG/spin fodips [2
using as well and in a crucial way GFT techniques, seem to us to indicate that(@~IQG and
spin foam models) permit first of all to re-formulate perturbative gravity questions in a fudkr ba
ground independent language (which it is we believe the greatest achigysmtar, of this line of
work), and also that GFT perturbative particle dynamics can in fact reprodunesaleelativistic
semi-classical dynamics in the (semi-classical, large distance and close to flat) approximation
which discrete gravity is directly applicable: GFT few particle physics, and where, inylartic
GFT Feynman amplitudes reduce to semi-classical quantum Regge calculusindkieth is at the
heart of these results [27], together with LQG semi-classical kinematical states.

4.2 Insights from quantum Regge calculus

Let us then turn then our attention to what we have instead learned up to now from (qua
tum) Regge calculus, referring to the literature for more details [5, 28]. The main lesson, we
believe, is at the classical level: Regge calculus represents a beautiful and thgbfatization of
classical geometry and of its dynamics. It has been shown, in fact, that claseggé Ralculus
reproduces General Relativity in the continuum approximation in at least two nais: vi) the
Regge action approximates well the Einstein-Hilbert action (and the correspornglamemlises
to higher-derivatives extensions of the same) in the sense of measures, andi@)saoliuthe lin-
earised Regge equations converge to analytic solutions to the linearised Einstadtisres) when
some appropriate conditions are met. Even more confidence in the correctnessrefte dis-
cretization of classical geometry stems from the possibility of identifying characteristic symmetries
of continuum gravity in the simplicial setting, including diffeomorphisms, when appratyide-
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fined, as well as the related discrete Bianchi identities (but see, on this, [30]. In thiafduage,

this can be re-phrased by saying thiat; GFT models that possess Feynman amplitudes of the
form of simplicial path integrals for (some version of) the Regge action, or in the aippation in
which such form is obtained, there is evidence that the “classical dynamics”of tliepgaRicles

can correctly reproduce relevant features of classical gravity, includingnsgtries, and better and
better the more GFT particles we consid@&his already hints at the relation between continuum
geometry and the thermodynamic limit in GFTs (large number of particles), on widahill say
more in the following.

At the quantum level, the results are also interesting [5]. In particular, in the semi-classical,
large scale, and flat approximation, quantum Regge calculus reproduceweléthe graviton
propagator and thus Newton'’s law, plus quantum corrections, even for simpleutgtiogs. It is
quite natural to expect this to be the case also in GFTs with a simplicial path integral fdhne o
Feynman amplitudes, and indeed the mentioned results on the spin foam propagfa¢dattice
graviton seem to confirm it, while at the same time confirming the correctness of the aifoic
boundary states operated in that context. Many other results concern matter gogpantum
cosmology, etc. As for the definition of the full gravitational path integral in quarRegge
calculus, the situation is more controversial, and much debate in particular has fooukedssue
of the quantum measure to be used [5]. More precisely, the object of interest is thaiaamtin
limit of the discrete path integral defined by Regge calculus, on which there arestimigrieut not
fully conclusive results [28], and about which we will say more in the next sectionxplaieed
above, this discrete path integral is nothing more (for specific GFT models, or in ldpait&of
the same) than the GFT Feynman amplitude for a particular interaction proces3 ofuahta.

4.3 Insights from matrix models and dynamical triangulations

In matrix models for 2d quantum gravity and in their higher-dimensional extensiongn.e
sor models, as well as in the strictly related dynamical triangulations (DT) approach][tfe
goal is to obtain a consistent and computable definition of the gravitational paghahtee. of the
sum over geometries for given spacetime topology, with some results being obdésonesh the
limited extensions of the same to non-trivial topologies. As such, the classical simplicraktyy
is of limited interest, and indeed it cannot be fully captured by the approach due tatttation
of the geometric degrees of freedom associated to the individual lattices. The ¢lasaiiaium
geometry, on the other hand, is possibly reproduced to the extent in which tharfitiop function
reproduces the gravitational continuum path integralGFT termsthis is easily understood, as it
this means thapnce one has frozen the field degrees of freedom, the classical particle idgnam
(classical simplicial gravityrannot be reproduced in a satisfactory manner, but at the same time
the continuum field dynamig¢sontinuum quantum gravityjould still in principle be reproduced,
at least to the extent in which the truncated sum over Feynman diagrams, restoidt®@dombina-
torial properties, reproduces properties of the full field partition functidherefore, all the many
results obtained in this approach refer to the continuum approximation of the discnatatgraal
path integral defined as a sum over triangulations, and we defer their discussionéattBection.
Here we limit ourselves to notice that work in matrix models and dynamical trianguatias
resulted in an immense amount of results and available tools, both analytical aedealnin an
almost complete understanding of 2d quantum gravity with a nice discrete-contiraruesmon-
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dence, in both Riemannian and Lorentzian cases, and in important results obtaieeittyréor
higher dimensions concerning this discrete-continuum correspondence, in théziareontext
of so-calledcausaldynamical triangulations [6].

5. The problem of the continuum: current strategies from a GFT perspective

Given our favorite formulation of quantum gravity, using discrete structures of sorh&so
describe spacetime and to encode quantum geometric degrees of freedmit, produce, in
some controlled and well defined approximation, a smooth spacetime, andjgahtim dynam-
ics of spacetime geometry effectively approximated, in the same regime, tyuaon General
Relativity, possibly modified by quantum effect#fs is the problem of the continuum in quantum
gravity, for how we see it. And this is, in our opiniotie outstanding unsolved issue that all the
current approaches to quantum gravity, and certainly the ones we have redntimrp quantum
gravity and spin foam models, quantum Regge calculus, dynamical triangulatawestchtackle
hard and solve, to be considered successful. The same, of course, is true for dbtiebey.

The importance of obtaining a satisfactory understanding of this issue cannotristated we
believe, as it would amount to showing that our favorite formalism, whatever ibiss thdeed
provide at leasbne possible@uantum theory of gravity. In absence of such result the connection
with gravity would remain a (more or less plausible) hypothesis, and, as stressed, fmexam
[29], any interpretation of the discrete expressions one has in terms of quantum spastatica
tures can be taken only as a suggestlmefprea physically correct continuum approximation to
them has been found:he group field theory formalism, in the perspective we are proposing, can
offer new tools to solve this issteeeach of the different approaches it (potentially) subsumes, and
at the same time capitalise on their results and insights. However, we believeatsatcalls for

a change in perspective and for a consequent new stra®gywill be arguing in this direction in

the next section; here we would like first to briefly overview the strategies currently adeiken

the other approaches, all of course sensible and potentially successful, and thelatéfdrem in

the GFT language, since this translation will make clear why a change in pergpatistrategy

is naturally suggested.

5.1 The loop quantum gravity/spin foam strategy

Research on the semi-classical and continuum approximation in loop quantum gravity a
spin foam models has been mainly carried out, at least in the 4-dimensional settirggcantni-
cal formulation and is mainly confined to the kinematical settifige starting point of the LQG/SF
strategy (usingsU(2) spin networks and related observables) for recovering continuum physics is
the construction of appropriate kinematical quantum states of space which app@xwontinuum
space geometries in some sense. The first type of such semi-classical/almost continianestate

1The exceptions, that may come to mind, are the many results in Loop Quantum I6gg1#!], and the recent
progress on the spin foam calculation of the lattice graviton propagator. Howewdirsthapply to symmetry reduced
situations, where it is possible to encalkthe (finite number) degrees of freedom of the continuum theory in the discrete
spin network structures. The second is limited to perturbative phgsizsid a semi-classical space geometry, first of
all, but, more important, remains confined at the level of (justified) discrete appati@ims and large scale information,
thus not really addressing the issue of the continuum in this framework.
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the so-called “weaves”[31, 32]. These are defined by a (directed) graph eetbiedd reference
compact spacg, the links are dressed with holonomies of2ld(2) connection in the representa-
tion j = 1/2, with appropriate intertwiners labelling the vertices of the graph. This graph is taken to
be a huge collection of loops i, uniformly distributed with respect to some classical 3-geometry
hap. The mean spacing between the loops (akin to a sort of lattice size for the grapttesoofler

of the Planck lengths. This means that the number of loops is approximaiely (ﬁ)3 whereL is

the distance scale corresponding to the volume region one is interested in approximetsgred

in the reference metriby,. The observables considered as a probe of the semi-classicality of our
quantum state are areas of surfaces and 3-volumes of regions contained in it. The nice resultis
that for large enough volume regions, the areas and volumes as compatadrgumechanically
on the weave state are very close to the ones measured in the classical continuurhgmetrid
with very small uncertainties. In this sense, one can say that the quantum state corfséceaed
good continuum and semi-classical approximation [31]. This type of constructidvecaxtended

to consider random weaves and averages over ensembles of graphs, usingattatisticiques
[32]. A different type of improvement of this construction is to change test obdes/g38], using

for this scope the basic canonical pair of variables of loop quantum gravity, i @ atiaholonomy
operators. The resulting quantum states are then semi-classi@ent stateproviding expecta-
tion values for both of them that are close to the classical continuum values, aswetlienizing

the uncertainties of both, in an appropriate sense. The resulting quantum states ae ¢lien
more satisfactory approximation of continuum 3-geometry, and many nice result® qaoven
for them [33] (overcompleteness, Ehrenfest properties, etc). Notice however thet tdlaon-
fined at the kinematical level, while what we are really interested in reproducing, gthtin out
qguantum gravity formalism, is the continuusignamicsand thespacetime continuunThe way to

do this test in the Hamiltonian/canonical setting would be to study the action of the Haianilto
constraint of the theory on these weave or coherent states. This is extremely edecpldue also

to the intrinsic complications involved in the very definition of the Hamiltonian constraietador,
and has not been done, to the best of our knowledge. More work has beatedi recently to the
spin foam formulation of the dynamics, so maybe one would want to use these weaanleecent
states in that context. It has not been done, yet. The general idea haveeidibe to use the above
semi-classical/almost continuum states as boundary states for an appropriate spin fea@nuod
compute the quantum gravity analogue of 2-point functions between two of thenspin foam
amplitudes would impose the quantum dynamics and the result should then baredmwith con-
tinuum path integral calculatioAs The calculation could be done for fixed spin foam 2-complex,
but most likely should involve a sum over spin foams, that could then be truncataddseof some
physical requirements. One way to define such sum would be through the correspG#ar
formulation, with the GFT here used only as a auxiliary tool, devoid of physical imgaior gen-
erating the sum over 2-complexes. All this is possible and sensible. However, notare ¢ne of
magnitude that would be involved, generally speaking, in such calculations:airwat reproduc-
ing continuum physics over a scale of, shy: 10-1%m (the distance scale of a quark), we would
need boundary states, in our spin foam calculations, that are weaves withNaboLig*2 loops,

or, which is arguably the same, spin networks with a similar number of verticescarhplexity

20ne would also have to compute observables other than 2-point functions, litésisot alter our argument.
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of the spin foam complex would go accordingly. It is not obvious that such aledilen would be
doable, and at the very least we are lead to look for some alternative, morengfficieedure.

Let us look at the GFT translation of the same procedure, taking the GFT formalismhgde p
ically meaningful in itself and not just a mathematical tool, and see how the abordsbke. In
the GFT language, interpreteghlistically, the procedure would then be the following: 1) consider
a carefully chosen multi-particle state of a given GFT (a quantum field theory) cordiagdn a
wave function satisfying some carefully specified conditions (with respect to your faghotee
of test observables); this state should contain ablot10*?> GFT quanta, say; more precisely you
should consider two of these states, one per boundary in a typical “scatteringggrageonstruct
the corresponding field observable and insert it in the GFT patrtition function; 3) éxparGFT
partition function in perturbative expansion around the vacuum state (i.e. the state withTho G
guanta), i.e. in Feynman diagrams; these Feynman diagrams give all the poisaiblenteraction
processes of the #dinitial and final particles, including all quantum loops, self-interactions etc.;
even for the simplest diagrams (e.g. tree level and next to tree level), their compldkibe of
the same order of and scale with the complexity of the boundary states; 4) comptitanition
amplitude in this Feynman expansion, maybe truncating the expansion to s@meogier in the
GFT coupling constant (notice that the needed order would be necessarily dythémgihg.

The strategy is not wrong, in any sense, but it definitely does not look like omeawould
naturally do to study the physics of such hugely populated multi-particle state in a field/ the
context. The basic point is thatwhen we choose as our system of interest a hugely populated
particle state, we put ourselves immediately in the situation in which the vacuum ndestéite
and its physics is not relevant, the Feynman diagrams of the individual particéenot relevant,
in a sense the microscopic dynamics itself is not relevant anyindreany case, the Feynman
diagrammatics and the individual particle picture is not the most conveniegukage to describe
the relevant physics of these statéfe are lead to look for an alternative.

5.2 The quantum Regge calculus strategy

In quantum Regge calculus[5, 28], the theory is defined by the Euclideanizsthfistical)
discrete gravity path integral on a fixed lattice (most often hypercubic, then suldiivitlesim-
plices)T (thus also for fixed topology, usually the sphere or the torus):

Zr = |_| /.@Iee—SReggi'e)7 (5.1)
e

wheree labels the edges of the lattice,are the corresponding edge lenghts, which are the fun-
damental variables, integrated over with some mea$tige and the most studied version of the
discrete action, in 4d, is the Regge one augmented by quadratic higher gerbeaitns (a dis-
cretization of the Riemann tensor squared):

30ne can of course be more optimistic and hope that a smooth continuum spacetimenarsegeneral relativistic
description of it, holds already, say, for distances 100 times the Planck length; thiwakié the number of needed
particlesN = 10°. The numbers are then vastly different but the result is the same: for this nunmipearuf, the direct
solution of the corresponding microscopic dynamical equation for wave functiotie study of their dynamics via
Feynman expansion around the vacuum are at best unpractical and possibgpaeeptually mistaken. If such a lucky
situation occurs, it would simply mean that already at the order Bfphfticles, we are free to take the linit— .
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Aae?) 52)

Sreapdle) = 3 (Wlle) ~ kAl + a2 (e

where the sum runs over the triangles of the 4d simplicial com@eare their areas;; the as-
sociated deficit angle (discrete curvature), ahds the contribution of the given triangle to the
total 4-volume of the lattice [5, 28, 30]. The partition function is then a function of thuplking
constants\ (cosmological constantk (inverse of Newton constant), arad The integration over
the edge lengths is usually cut-off both in the IR and UV, to ensure convergence.

Studying the continuum approximation of this theory means studying the above pdrtitio
tion and appropriate geometric observables (average curvature, average squettgeetc) for
very large simplicial lattices (often at fixed total 4-volume) in a scaling limit, while rengpttie
cut-offs, as a function of the coupling constants. The aim is to show that in a regioa phtame-
ter space the above reproduces continuum spacetimes and continuum geobsein@bles, thus
representing a good (regularised and computable) substitute of the formal continwiiy fath
integral. As said, this analysis has been done exclusively for statistical path integna¢siolidean
geometries, and mainly numerically. The main results are the evidence for a twogphasere:
for a certairk; the average curvature vanishes;Kor k; (smallGy) the simplicial complex degen-
erates into a crumpled phase incompatible with a smooth geometry with simplices of \aty sm
volumes and large curvature; far< k. there is instead evidence for a smooth phase, depending
also on the value o andA, with small (and negative) curvature. See [28] for more details. There
is evidence for a second order nature of the phase transition [28], which is whatedsg in order
to have long-range correlations, but this evidence does not seem to be confitlgreahclusive
by the community (see, e.g. [30]). The result seems to be rather generic, i.e. not tayste-
pendent on the specific measuré chosen or on the specific topology or lattice structure chosen,
even if for irregular lattices the phase structure is more involved (more critical points) audiesin
structures seem to appear (spikes) and the choice of measure becomes more impah=2end,
we cannot yet conclude whether this approach reproduces continuwsitgloy not, but we def-
initely have gained lots of insights in the properties of similar discrete gravity path integndls, a
many tools to analyze them have been developed.

Once more, this does not look like the most natural procedure to adopt to stuchyntieuum
approximation of the same structures when embedded and re-interpreted in a GEXt.cdhe
discrete gravity path integral on a fixed lattice, in fact, amounts to the evaluatiosiofle GFT
Feynman amplitude for a given interaction process of the GFT quanta, and &lttihe prescrip-
tions used in quantum Regge calculus require a Feynman diagram with aeutl0® vertices
of interaction (numerical simulations have been performed with up fo~16 x 10° lattice size,
and the continuum approximation is expected to be only improved going to latgees).Such a
huge Feynman diagram computation would indeed capture some informatio® wiany-particle
physics of the corresponding GFT, which is again suggested to be the reginesmamding to
continuum gravity, but the truncation to a single Feynman diagram is most likelgamsistent
within the GFT setting. Moreover, just as in LQG, it seems that to study the manylgahstitam-
ics of the theory at the level of perturbative expansion around the vacuurfinfielg not the most
convenient thing to do.
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5.3 The dynamical triangulations strategy

In the traditional euclidean triangulations programme, the theory is defined by ttitiopa
function:

1
= —e EQQG{I =kaA)
z ZGe% : (5.3)

i.e. by a sum oveequilateral triangulations T at fixed topology (usually the spherical one),
with fixed edge length (which is interpreted as a cut-off), weighted by a symmetry factor (the
automorphism group of the triangulatiddy, and a euclideanized exponential of the same Regge
action usually limited to a cosmological and a curvature term, thus in the end a funttiba o
combinatorics of the triangulation only and of the paramdt&ra. The continuum approximation
involves again evaluating explicitly this suf{A,l,k) or, more precisely, its Legendre transform
Z(Ng,1,k) which corresponds to work for fixed number of 4-simplidésand thus with fixed 4-
volumeV ~ |4N,4. Having done this, one is interested in the thermodynamic Mgit> o, | — 0,
V ~ constant. Simplifying a bit, the resulting phase structure was found to be given again by
two phases separated by a critical valuekpk., depending ont he volumi,. For k < k. we
have a crumpled phase characterised by small curvature, high graph connecti/itgry large
Hausdorff dimension. Fdk > k; one finds an elongated phase with large and positive curvature
and an effective branched-polymer geometry with effective Hausdorff diroerequal to 2. One
could still hope that a continuum theory is defined at the transition point, if the transigi®second
order, but further analysis (again not fully conclusive) suggested that the transitimtdad first
order. For more details and further references, see [30].

The situation changes drastically in the modern form of this approach, the so-cailsdl
dynamical triangulationsto the point that one can even make the case [6, 29, 30] fooriga
of the troubles encountered in the euclidean dynamical triangulations, as wellsamsne extent,
in euclidean quantum Regge calculus, in finding a good continuum approximtatie the domi-
nance of pathological configurations such as baby universes and otbsiofygingular geometries.
These configurations are basically unavoidable in the euclidean setting. Theyt ae however,
in a Lorentzian one, where instead one can indeed identify conditions on the trigmggilummed
over that rule out them from the start (i.e. by construction). This is what is achieved aattsal
dynamical triangulations approach. Here the basic ingredients for the construatiatefinition
of the triangulations summed over are (see [6] for more details): 1) a local light contuséu.e.
a differentiation between spacelike and timelike edges (which have a relativejpwopbty factor
A for their values, on top of the difference in the sign of their square); 2) the existéacgiabal
discrete time function; 3) no spatial topology change allowed with respect to this ‘tinetigteu
The triangulations are then weighted by a complex exponential of the same Retijgn but now
for Lorentzian simplicial geometries. The results are striking [6]. There are now three phpses: a
for largek a phase characterised by 3-dimensional slices of a branched-polymer type asédot
smooth geometry, once more; b) for sma#ind small asymmetry parametern phase with crum-
pled 3-dimensional slices, similar to the euclidean setting; so, again, not a smootbhmdtge
c) for sufficiently smallk and sufficiently large\, a stable, extended 4-geometry, with Hausdorff
dimension equal approximately to 4 and a global shape of spacetime related tdearaimipuper-
space model of gravity, similar to those used in quantum cosmology. This is strorexeitidg

21



Group field theory as the microscopic description of the quantum spacetime fluid Daniele Oriti

evidence for a smooth geometry and thus a continuum limit, even though sewatabteof the
model itself and of the resulting dynamics of geometry are yet to be understobdaswdhether
the results are robust with respect to limited extensions of the ensemble of triangulatisits co
ered, how much exactly of the full dynamics of general relativity is recovergddrcontinuum
approximation, whether there is a way to generate analytically the above suitniangulations,
that is at present constructed algorithmically and only studied numerically, etc.

How does the GFT translation of the above sound like? In the GFT language, dhe ab
corresponds to the following: 1) consider a specific GFT model, producing Feyamplitudes
with appropriate exponential form (either real or complex) for a discrete gravity agtitimfield
theoretic data interpreted as either euclidean or lorentizian discrete geometries)liZhéxXiald
theoretic data, e.g. the momenta of the GFT field to some constant value, gigmegdhilateral
triangulations dual to the GFT Feynman diagrams (producing the pararheteds in the causal
casep); this corresponds to restricting to a specific momentum regime for the GFT particles, i.e. to
particles all having the same momentum; 3) restrict the perturbative sum over &egliagrams
to only those diagrams of some given topology (and further restrictions have to becantpla
recover the causal restrictions of [6]); finally, perform thirole sum computing in this way the
corresponding restricted sector of the theory partition function, and appropriate olsgréhce
more, we see thaine necessarily needs to study Feynman diagrams or arbitrary combinatorial
complexity, and involving huge numbers of GFT quanta, supporting furthétdéadhat continuum
physics corresponds to the many-particle physics of the théaportantly, the work on dynamical
triangulations provide lots of technical tools for studyingThe CDT resultsmoreoverseem to
indicate that, at least in that regime of the GFT, some continuum physics caeditdecaptured
in satisfactory form by this procedyrevhich is exciting indeed. However, once more the above
procedure seems not so convincing from the GFT perspective (that of course foee ot to
take): first of all it is well possible that the DT and the CDT restrictions at the level fisGF
are not consistent from a field theory perspective. Here we are not so much aahégrithe
restriction on the momenta, which may well simply correspond to a particular sector GHhe
and thus to a reasonable approximation of the full theory. Rather, what mapigepmoblematic
is the restriction to fixed topology and, in the CDT case, to fixed slicing structures of t@dia
summed over. We have a too poor understanding of the GFTs themselves Efdify what
these restrictions amount to, from a purely field theory perspective. For exampieayvein into
problems in asuming these restrictions, if they do not clearly amount to a classical limésday,
example the large-N planar limit of matrix models, and still involve removing the Gfalogue
of quantum loops or the like. Modulo these remarikss clear that the (C)DT restriction does
indeed amount to extract at least some non-perturbative information far beyemhytsics of the
GFT vacuum state, i.e. the few particle physics, so it is a sensible thing to do even witGiRThe
setting; in practice, in fact, amounts to solving the theory (computing the partition fuhcton
least in a restricted sector, which may well turn out to be the one in which contintavitagional
physics lies.

However the same doubt put forward concerning the other approaches apptiascon-
venient is it to study the non-perturbative many-particle physics, and the corresgoratinum
state and its dynamics, using what remains a perturbative expansion around-fheetiade vac-
uum, encoding the the many-particle dynamics in hugely complicated Feytagmams, and then
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re-summing all of them?Again, the GFT perspective calls for the use of different tools and for a
change in strategy.

5.4 Lessons and further motivations

Let us summarize briefly the outcome of this sketchy overview. First adilathese strategies
and approaches do teach us something about GFTs, when embedded in it. Satofidhem
suggest or strongly support the view that continuum physics corresponds to iyepaudicle sec-
tor of the GFT formalismand most likely involve collective and non-perturbative effects. Third,
their translation in the GFT language suggests that maybe, although we havédeed studying
the relevant sector of the (GFT) theory, we have not used the most corvatieftoolsand lan-
guage for doing so. Fourth, luckily enoughe GFT formalism potentially provides us with all the
non-perturbative, field-theoretic tools and concepts for trying out a differentestyaAs we had
stressed, in fact, we know from condensed matter physics and statistical physicddhhefiey
and 2nd quantization language are the most convenient ones to study nmacie-physics, the
corresponding phases, collective behaviour, etc.

6. Quantum spacetime as a condensed matter system

Let us now give some more specific suggestions for what this GFT perspective tesiemply.
We will put forward an hypothesis for the continuum phase of a GFT, i.e. the phesgime of the
theory in which we expect continuum gravitational physics to be reproducegcane general hints
at what the strategy to check this hypothesis could be. The general idea footleevaill be to take
GFTs seriously for what they (formally) seem to be, at least as a working hypothesisy@sider
them as the microscopic description of a very peculiar condensed matter systemisahiantum
space. In other wordsye will consider the GFT quantdhat can be pictured, as we have seen, as
spin network vertices or (D-1)-simpliceas the true “atoms of quantum space”, its fundamental
hypothetical constituents, and the GFT formalism as the microscopic (fundamentaiRjidton
of their quantum dynami¢ghus described in terms of a peculiar (non-local, etc) quantum field
theory, but a quantum field theory nonetheless. Then, we will broaden the disalittle and
try to summarise some of the general insights that, once we have taken this standpoto ais
from condensed matter physics (and from condensed matter analog gravity models).

6.1 If GFT is its microscopic description, what is the continuum and how to get there?

We have seen that all current approaches seem to suggest that continuuntigmalppaysics
is obtained in what is, in the GFT language, the (very) many-particles sector ofetbiy.thT his
perfectly match the working hypothesis of GFTs as the microscopic description ofaims af
space. In other words, we most likely needeay large numbenf them to constitute a region of
space that can be governed effectively by continuum gravitational physitfeadescribed by a
continuum space to start with.

Moreover, from results in these approaches, as well as from general physical intaition a
again, from the perspective of spacetime as a “material’of some sort, made of ¢GfSEituents,
we would expect these many constituents making up the continuumvierpemall, in the appro-
priate sense, probably of order of the Planck length (volume). In GFT terms, geneedkirsp,
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this translates into th&FT quanta to be in a low momentum regim@n top of this, we expect
the quantum constituents of space togowerned, in their continuum phase/regime, by collective
dynamical lawsnot anymore by the microscopic individual dynamics, simply because otherwise
we would have noticed already the “true”atomic nature of space. Finally, wdratey exact phase
looks like, whatever the symmetries characterizing it are, and whatever théiveffdgnamics
governing it is, we expect our condensed matter system, i.e. quantum spacetidedied by our
favorite GFT, to bevery close to equilibriumIn other words, we expect a continuum description
of spacetime to prove itself correct, and not only possible, when closedqualibriumand stable
vacuum/phase of the (GFT) system, at least to scales close to the sector of thel plyrbitthat

has already probed (by us). Again, this is simply because otherwise we would havékelgst
already noticed a failure of the continuum description of spacetime. From this peérepéoe
breakdown of general relativistic theories of geometry in cosmological situatiansotack hole
physics can bepeculatedo be a sign of a phase transition occurring in the (fundamental?) GFT
system.

Notice that none of the above implies that the continuum approximations goessaily in
hand with the semi-classical approximation, which may be needed later on to simptegtex
specific dynamics or for capturing some relevant features of the system in the regiare imter-
ested in, but as far as the above reasoning is concerned, the possitalicppfinuum description
may even be the result of a purely quantum property of the systemwill give later on an explicit
proposal for this.

So,a continuum space is a very large number of very small GFT quanta very clogaitibe
rium, i.e. very close to some yet to be determined many-particle vacuum, to be eeswilec-
tively and whose dynamics is to be given by continuum larger-scale equations. This seems (to us,
at least) just a description of a fluid (whether gaseous or liquid or what else, is todvmated by
hard, technical, future work), close to equilibrium, governed indeed by hydratgabequations.

The picture that seems to come out of the above reasoning, then, and moretlyflive admit
that) from work in the various approaches to discrete quantum gravity we have disiusdf
guantum spacetime as a (quantum) fluid of GFT particles, governed microsktypgdhe GFT
partition function, but macroscopically by a suitably identified GFT effective luyaramics.

As we had stressed, this is at present just a suggestion, of course, given the little vetamnite
GFTs themselves and the (basically nihil) amount of work that has been dayoteEdnow to
develop and test it. But we find it a very intriguing and, most important, convingirgy It
immediately implies one thing: at least for a while, at least from the GFT standpothgrdy if
we intend to tackle the issue of the continuum approximation and its effective dysahmay be
convenient to partially forget about spin foams and even the simplicial gravityipsi of the
GFT system, and focus our attention on other aspects of the formalism. This is sinoplysbe
as we have stressed, the perturbative formulation of GFTs, which is where the spinrfdahea
simplicial gravity descriptions appeatr, is very useful for the physical interpretatiore afystem,
of its quanta and field theoretic data (indeed, we have relied exclusively on it fdfrthe above
reasoning), but it isechnicallyuseful for describing the system in its few-particle regime. If we
are interested in describing the many-particle behaviour of the same system we shoellgwagv
from the no-particle vacuum.

In its stead, we need to develop first and then useatstical group field theorjormalism
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for identifying first and then select the different phases of the theory, i.e. the posgilligium
configurations in which the system may find itself, hoping that some of the GFT meddiave

or we will construct for the scope allow for the existence of at least one with the niexpthat
allow for a continuum geometric description. Second, we need to obtafientive field theory or
hydrodynamic descriptigrcoming from the fundamental GFT, for describing the dynamics close
to the different phases, and probably tied to each particular phase under cdimidevde will
speculate more, but also try to be more specific, about how both may look like iexheattion.

6.2 What can quantum gravity learn from condensed matter theory and analogue gravity
models

The idea of spacetime as a condensed matter system in general, and as a fluidutapatid
of GR as an hydrodynamic effective description of it, is of course not new asthéen advocated
many times, and very convincingly, in the past [35, 36, 23, 37, 38], and ighetivated by and an
inspiration for the many condensed matter analog gravity models [39]. What is meve loaly the
argument that it is the very research in non-perturbative quantum gravity carti¢ol date, and
the many results obtained in the many approaches it is split into, that points in thigotiredso,
what is new here is the hypothesis that GFTs can represent: 1) the framework intiadge many
approaches to quantum gravity and their insights can be seen as part of a degntformalism
and physical picture of spacetime; 2) also because of this, a solid and motivatedigonto be
used to realise concretely, in mathematical and physical terms, the suggested idezetifrepas
a condensed matter system of a peculiar type, and a concrete, if tentativele@sdyiption of its
microscopic structure. This description, moreover, as we stressed repeatedly, ukkthadiy
language that may facilitate the application in this context of traditional condenséter ideas
and tools (probably suitably adapted).

This is probably the main contribution that GFTs can provide researchers workiranin c
densed matter analog gravity modetsconcrete formalism and systesn which to apply their
insights, if they are interested in unravelling the true microscopic structure of quantum sgacetim
and not only in finding out more about its effective continuum descriptione amterpreted as a
condensed matter system, or in using the same gravitational analogy and thd geatvistic
tools to discover more interesting properties of the usual condensed matter systernBi(Btsia
condensates, eft)

In other words, it is often stated in the analog gravity literature and in the condensed-matter
but-interested-in-gravity community that [36, 23, 39]: 1) quantum gravity is not sdirabout
quantizing general relativity in a strict sense, but rather about identifying the migiosoon-
stituents of space and provide a tentative description of their microscopic dynamiss @
not know what this microscopic structure and dynamics is; 3) the current top-dmevoaches to
guantum gravity are so different and so complicated that no coherent picture alenindication
about the fundamental structure of space is provided by them, that could seniky dinethe appli-
cation of the insights coming from condensed matter theory. What we have asghedollowing.

The first thing is true, ani is the very same approaches to non-perturbative quantum gravity that

“Needless to say, both things are definitely worthwhile and of fundamental signéicsimply, they are not quan-
tum gravity issues.
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have lead (in a rather tortuous way) to the GFT formalism which itself is not a quantization
classical GRjjust look at the GFT action). The second statement is true in a s@ag#g not have

a clear and complete picture of the spacetime microscopiagsfalse or at least overly pessimistic
in another:we have several candidates for this microscopic structure, and one, the @GRalfo
ism, that seem to encompass many of thdime third statement is falséhe respective pictures
that at least some of these approaches to quantum grébvibge we have discusseptpvide are
not only compatible and coherently build up a tentative picture of quantunetpagthe one en-
coded in the GFT formalismhput also one that allows for a rather direct application of condensed
matter concepts, formalisms and techniques for understanding the microscomase@pic and
discrete-continuum transition.

What quantum gravity, and in particular the GFT approach, can learn from ceediematter
(CDM) physics and from condensed matter analog gravity models is much more.

Concretely, the main help that condensed matter techniques can provide stentldrfact
thatin that contextas stressed in [39%he transition from discrete microscopic physics and con-
tinuum macroscopic one is well understammhceptually and there are many theoretical tools that
can be applied to its analysis and study. As we have seen, this is the main opempoblie
discrete quantum gravity approaches have to solve, even after they have graviglgative de-
scription of microscopic spacetime. This holds for GFTs as well, and its field theorygsettikes
the application of CDM techniques even more straightforward. More generally, takGighh
perspective means also a conceptual shift with respect to what we expect frémeaiy, and how
we approach our physical challenges. We list here only some of the CDM wisdomdfer;, see
[36, 23, 37, 41, 39]), that is useful for approaching our quantum gravity prahlan our opinion.
We should not expect a rigorous, deductive path from the microscopic dynanhesrt@acroscopic
one, and even the kinematics (relevant variables, symmetries, etc) at the mpresate or in
the ‘continuum phase’, thus in the hydrodynamic regime, can be very loosely rétatiee one
of the corresponding microscopic theory. In other words, even the relation betwesrscopic
variables and collective ones is often less that direct, and the specific form of ttesatipic QFT
for your atoms is often not at all similar to the macroscopic effective QFT for thétirestluid. In
particular, many of the small details of the microscopic theory become irrelevéme aydrody-
namic effective level. This is governed mainly by general macroscopic symmatrieassociated
conservation laws, that should acquire thus a fundamental importance in our Iondding. It
is not reasonable, in light of the above, and at least if one is first of all interestwbining that
a continuum approximation exists, to demand necessarily for exact treatments ok forlex-
act solutions of microscopic dynamics, because this exactness will almost ineetabiyp being
irrelevant at a different (larger) scale. All this should apply to our future treatmenedsHT for-
malism, in our attempt to use it to obtain the correct macroscopic effective contideseniption.
Nothing revolutionary here, of course, but things that are worth keeping in minaintgjn gravity
research, and in particular when one sees spacetime as a condensed mattelbgystese, they
are often neglected (by us, at least). Also, we are warned that experimental is absolutely
for guiding model building and for guessing what are the relevant features in thredynamic
regime, thus at the effective level. The recent development of quanturitygplienomenology
[40] it therefore of extreme importance, also in this condensed matter interpretation.

At the same time, as stressed very nicely in [41] (see also [37]): “The behavior of ladge an
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complex aggregates of elementary particles, it turns out, is not to be understoodsmofa simple
extrapolation of the properties of a few particles. Instead, at each level of catpmetirely new

properties appear”. This is a warning but also an encouragement becauskeis inghness and
potential fun in unravelling it.

7. Guessing the future: several research directions, an hypothesis and some
speculations

The above discussion has been very general, serving only the purpose of sketchtraye
further inputs to the GFT perspective on the continuum we are advocating, agaanworking
hypothesis. Now we will try to be a bit more specific about how one can develop fartdevhat
may come out of this condensed matter perspective, in concrete terms, in th&aaiework.
We will put forward one specific proposal for what can be the phase of the GFThéeaelevant
vacuum for the GFT multi-particle physics, where continuum geometry and its dymnaoiéd be
reproduced, and then explore, tentatively, some possibilities for the dynamics thiibry in this
phase, and how it can relate to known formulations of classical continuum gravity.

It should be clear that, given our present understanding of the GFT formalisnguasg in
this direction can be only partially based on known results, but rather speculatwstudy of the
GFTs in their own right, treated as peculiar lnaina fidefield theories, is in its infancy and only
the first basic steps have been or are being taken [11]. Nevertheless, they already poove
hints of what may come next, and we are going to build upon these hints in theifalow

Before we do so, let us mention three other directions of work that, in the perspestive
are advocating, are certainly relevant (see also [34] for a more detailed discussionif tigne
development and use of renormalization group techniques. The renormalizedigmig in fact
one of the most powerful tools we have in field theory and in condensed mayscgho explore
the structure and behaviour of our system at different scales. It is indeed applteteisoin
condensed matter for investigating phase structures, which is exactly what wednaee we have
to do in our GFTs. In particular, we believe that it would be very important, andeztglirect
relevance for solving the problem of the continuum, to develop the formalism of the Ai¢itso
Exact Renormalization Group for group field theories, with the construction of thetieffeaction
and the analysis of the corresponding flow, for specific GFT models. This wou@hfyoprove the
consistency of the given models (renormalisability, etc) but also suggest what isetvemtdorm
of the theory (action) at the scales we expect to be related to continuum physicsoidsmne
is the study of classical solutions of the GFT equations. Of course, they encogeriorbative
information about the system, and thus are also relevant for the continuum phésevothhas
started [42]. However, we would like also to stress that, from a condensed matter poieivof
it may be even more important to constragproximatesolutions to the GFT dynamics, tailored
to the multi-particle situation. The third, and maybe most important, is the analysis of the GF
classical symmetries, to be done both at the lagrangian and hamiltonian level [11d;ihbause,
as stressed, macroscopic behaviour and hydrodynamics in particular are liketgidetemore by
these symmetries, or their broken version, than by the exact microscopic GFTidgnam
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7.1 Geometrogenesis using GFTs

Our proposed general scheme for the emergence of continuum geometry é&dgmtmics of
the GFT quanta can be seen as a particular possible implementationgeicimetrogenesidea.

This is the catchy name given in [43] to a conjectured phase transition of a cdoriaha
and algebraic model of quantum space described by a a labelled graph, likedpa networks,
between a high-temperature ‘pre-geometric phase’in which space has the form gqflateagraph,
and thus no notion of locality or geometry (e.g. distance), to a ‘geometric phase’ih thieigraph
acquires a more regular, local structure, where geometric data can be identifidterfmore, the
data labelling the graph then allow for the emergence of matter degrees ofrfrebdeing the
role of gqausi-particle moving on the resulting regular lattice, in the same way as the ofodel
topological order studied by Wen et al [44] does, in terms of string condensation.

Now, the details of the model do not concern us here. We just want to note therisynifigh
the idea we are proposing for the emergence of the continuum in GFTs. The bastom states
of the GFTs, as we have seen, are characterized by labelled combinatorial strastuvell, of
the spin network type (or, dually, of a simplicial type). It seems to us that becaubkespfiny
phase transition in a GFT setting will be described by a transition from some irregularly structured
and labelled graph or from an ensemble of such graphs to a more regular and e lower
temperatures, in the same spirit as the model of [43]. Further, we are suggesting thtteafte
ground state has been identified its own effective dynamics will be described, stdnario we
are suggesting is correct, by an effective continuum field theory with a geometricréettrpn,
and in principle derivable (but not necessarily deducible) from the microscopic Bd#if. the
hamiltonian function driving the transition, and thus the selection of the ground state larttittne
effective hamiltonian governing the dynamics of quasi-particles around the regyitingd state,
the two main ingredients of the model in [43], can in principle be derived from amngihoice
of GFT action, whose dynamical content is indeed the same, after approprigldisations. If
our understanding is correct, then, the model of [43] can be interpreted afeetivefsimplified
GFT Hamiltonian, and similar models can be constructed and inspired by the GFTlifonnas
well. Conversely, we believe that more work in the direction opened by the maglelvjik be of
importance also for the research programme we are suggesting, in that it will amouptdee
models that may indeed capture relevant features of GFT phase transitionsaadsavell.

7.2 Continuum space as a GFT Bose-Einstein condensate

Our tentative proposal for a relevant vacuum of a GFT model in which a eantirapprox-
imation could be expected, i.e. a continuum and geometric phase of the maaainiple one:
a Bose-Einstein condensate. Again, here it is not so much important the idea in itsalisbec
the similarities between continuum spacetime and condensates have been naticegd@nd a
similar possibility has been advocated by several authors, and very convincingB®3]J3&nd the
effective (and emergent) spacetime character of real Bose-Einstein condeftisase stored in
laboratories) is the basis of many condensed matter analog gravity models [39]isWwihabrtant
here is the fact that the concrete realization of this scenario within a specific micioauogel of
guantum spacetime, i.e. a GFT model, seems to us not only possible, but within @famurse,
such scenario involves first of all the development of a statistical group field theomglism, the
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identification of the GFT analogues of relevant thermodynamical quantitidsnpare, and, as we
have noticed above, even basic steps in the analysis of GFTs apart from theindregmplitudes
have been taken only recently [11]. We will now sketch, also based on these inititi résu
thermodynamical quantities in a GFT setting could be defined and then how ghibifity of a
Bose-Einstein condensate of GFT quanta could be realized, including some likeiseteaf the
resulting vacuum state.

GFT thermodynamic quantities [45] will have to be defined in a formal way, lettimgeives
be guided, at first, only by the field theory look of the GFT formalism, and only in anskstage
one should try to match the definition of each of them with a corresponding physigdrietation.
In turn, this physical interpretation will have to rely almost exclusively on the (pre-)gemme
interpretation that the GFT variables have in the context of the Feynman expansioin the
context of simplicial gravity. This can be done more easily in an Hamiltonian settiminathe
same context we will give now a sketch of a possible concrete definition of Hamit¢tinus of a
GFT “energy”) and temperature, while for other quantities we can only offesgges, at this point,
although reasonable ones, we hope.

Consider a GFT action like (we restrict here to the free theory, which sffices for oumprese
purposes)[9]:

<|'| / dg/ ds) (91815190, %) [ ] (195 + i) @(91,1; -9, 50) +h.c.
|

with g € G, 5 € R, [ being the Laplace-Beltrami operator @nfor generic grouss (Riemannian
or Lorentzian). The kinetic term has the structure of a product of differential operatmis acting
independently on one of the D (sets of) arguments of the field. Each of theifSdkraedinger-
like operator with “Hamiltonian”]. This suggests that one should consider the variahles
“time"variables, to be used in a GFT generalization of the usual time+space splitting cdthe
figuration space coordinates, with the group elements treated instead as “spas@hplies that
we have a field theory with D “times”, all to be treated on equal footing. The approaosen
in [11] is to use the DeDonder-Weyl generalized Hamiltonian mechanics, awgdedet both the
classical and quantum level agpalysymplectic (or polymomentum) mecharbgsKanatchikov
[46], as a starting point and to adapt it to the peculiar GFT setting.

The general idea is the following [11]. One starts from a “covariant”definition of nmbaye
hamiltonian density, Poisson brackets, etc treating all “time variables”on equal foofirgt,dte.
when defining densities. Then one defines 'scalar’ quantities referring to each itentah’(to be
turned into operators at the quantum level), including a set of D Hamiltonians, byatitegover
appropriate hypersurfaces (i@ x R)*P, so that each Hamiltonian refers to a single time direction,
but at the same time all time directions are treated equally but independently. A sinitadure
is adopted for other canonical quantities, e.g. Poisson brackets, scalar products etc

Let us sketch one example of such procedure, for the Dase?, referring to [11] for more
details. We start from the naive phase spagep’, 1, = 3 a & n';pf =3 a‘:'-(pf), with the product struc-
ture of the kinetic term resulting in a peculiar expression for the momenta;r#.:g(—iderDz)qu,
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and define the DeDonder-Weyl Hamiltonian density (summation over repeateeldnthderstood):

How = Tlyds O+ T @' — L = 215 16+ imyh p+ 520+ hec..

One then proceeds to re-write it as a sum of two contributions, each uniquely asstxtdgle
time parameterstpw = 4 + 74 , with 74 = n(}nfﬁ- i n';ODi @-+h.c. The Hamiltonians governing
the ‘time evolution’ with respect to the different time directions identified by each Jargalare
then defined by integration over independent hypersurfaces, each orghagandifferent time
direction, e.gH; = [ dsdg.741. EachH; results in being independent of tirse

One can then proceed, after suitable decomposition in modes of fields andtapthe defini-
tion of (a GFT-adapted version of) the covariant Poisson brackets, etc, to the chgoait#zation
of the theory, with the definition of a Fock structure on the space of states. We reéemame to
[11] for the results of this analysis.

From the above results, it is easy to guess how the notion of GFT temperature mdinbd,de
because it simply involves following the usual QFT procedure. One could repeadysis above
but now requiring periodicity of the fields in thlsevariables, with periog@, and would then be left
with a partition function in hamiltonian form:

Z= /@(p@(p* gl 2i [ dsHi(e.¢)

with the integration oves restricted to the intervalO, ), and thus obtaining, after Wick
rotation in the samsg variables:

Z= /@(p@q)* e PriHi(@e) — /g¢g(p* e BH(0.0)

with B = % defining the GFT temperature. The notion of temperature, then, may be defined
and indeed the corresponding quantity will play the role of a temperature at least fatrnal
level. However, its physical interpretation will have to be studied with care (even isndions
may not be those of a temperature). In other words, just as the varglplieyed the role of time
in the formalism, and could be treated formally as such in a consistent way, but still dawet
the geometric interpretation of time variables on any physical spacetime, nottahersanplicial
level, similarly the GFT temperature may be found to correspond, say, at the simplicial level,
to a geometric quantity that a priori has no similar interpretation, even though the @ETitse
indeed as a temperature parameter. An even clearer example is the notionggfiariee above
simple GFT. The hamiltonian in each ‘time direction’is given[Byacting on the group manifold
G for the i-th field argument, and corresponding to a particular set of field modes sslafithe
GFT equations of motion. In momentum space, i.e. in representation space, énssgiwly by
the Casimir of the groufs, and for compact groups (Riemannian models) it will have a discrete
spectrum with minimal eigenvalue 0. Thus we see that the group representhtiorrespond to
the “energy”of the GFT. However, their geometric interpretation (at least aitmgicial level) is
that of (D-2)-volumes, i.e. distances, areas etc according to the dimension chomsas.thé type
of procedure we were envisaging above for defining thermodynamical Géiititjas: be guided
first by the field theory formalism, then look for a geometric interpretation. As a furtherpgam
as the GFTs are field theories on the group maniftd®, its is (the normalisation chosen for)
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this group manifold and any eventual cut-off in the group integrals that will pravidiefinition of
GFT “volume”in which the GFT quanta could be confined. From this quantitiebilee partition
function itself, one can proceed to define other thermodynamical quantities, rstestdtistical
ensembles etc.

What is most relevant for us here is that within the same type of formulation, a straighfiorwa
proof of Bose-Einstein condensation seems possible, at least for the free theory,thadase
in which indeed the GFT quanta are bosons (which is not obvious [11]). Indeedexpect to
be able to even adapt to the peculiar GFT setting the standard (textbook) derpfatimnBose
distribution and proceed as usual. In the model sketched above, in fact, awsitat for fixed
number of particles (GFT quanta) and at low temperaiyrine system will reach its ground state
represented by (almost) all the GFT quanta condensed into the samé&-stateAgain, according
to the simplicial geometry emerging from GFTs in perturbative expansion, this rheairg all
(D-2)-volumes being of Planck size. Work on this is currently in progress [47].

The interpretation of thisacuum statés exciting, we think. It corresponds tfree gas of
spin network vertices or of (D-1)-simplices that has condensed in momentum spaeeBbse-
Einstein condensate of spin network vertices/simplices; geometrically, a Bose-Einsteingaiade
of the fundamental building blocks of quantum space all of Planck size.

This also resembles, in general terms, the heuristic picture of a “semi-classical state”in LQG,
with two differences: no embedding is needed for its definition, and it is selecyedfiaically”,
in a GFT statistical setting.

From a more general perspective, there are many reasons why a condersedfgghis kind
would be a very attractive possibility, in our opinion, for the vacuum relevant focdméinuum
limit. We have mentioned the first: it is realisable in concrete terms, and not just an bgjsottill
at the practical level: the theory of Bose-Einstein condensates is vast and lotsvis &bpout them
(see for example [48]), so in principle many tools from the condensed matter theorCaBEems
can be imported in the GFT setting to study the property of this new phase. At the thda@natica
conceptual level it is also very attractive: itdagpurely quantum phenomenon, thus a realisation of
the possibility we anticipated that the emergence of a continuum spacetime from Gétlirstsu
could be considered indeed a quantum effect;iaiber generid48], being robust to the presence
of interactions, even strong ones, if they are repulsive, but surviving (when déakltmch care)
also small attractive ones; it gives rise to a pletora of emergent phenomena3[3B]2as we
will discuss in slightly more details in the followinghe approximate collective motion of the
condensate admits (in mean field theory approximation) a description in term of a elgsitter,
1st quantized) equatigithe Gross-Pitaevskii equatiotpndensate atoms move as a whole, so that
small purely quantum effects can be amplifiadd one can speculate the same to happen for this
guantum gravity condensate, thus leading (we are speculating!) to observabitsnggmavity
effects or, more likely, to the possibility that large scale properties of spacetime (etgrefeaf
GR) that we are accustomed to, can be understood as originating from purelyrgdaatures of
this GFT vacuum.

To summarise, we are proposing the possibility tB&T will produce geometrogenesis in the
form of a condensation of the GFT particles in momentum space accompaniea dyyptioach to
equilibrium of the systerfotherwise, no hydrodynamic description is possible).

Let us close this section with a comment, that will be relevant for the following guetses a
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the effective dynamics of the condensate. GFT quanta (think of them nowessspin network
vertices) are labelled by both representation&a@ind by corresponding vector indices in the rep-
resentation spaces. It may happen (and indeed is what we would expecsdetaymmetry
considerations at the level of the GFT action) that the GFT hamiltonian, anthtaesergy of the
vacuum state does not depend on these additional parameters. Now, suppiieedbatlensation

is not complete, so that the vacuum state is actually a mixture of spin net vertice® withand
J=1/2, for G = SU(2), or in general of lowest eigenvalue (which has also a single value for the
vector indices) and next to lowest eigenvalue for the energy. Alternativelgpseghat the lowest
eigenvalue is forbidden by some symmetry or by the quantum measure; or, nmeralfe the
lowest allowed eigenvalue (for some gro@@mnd choice of GFT action) may have a representation
space of dimension bigger than 1. What this means is that we do not necesgaadytte conden-
sation to lead to a unique vacuum state, even iflthe O limit. Instead, it may lead us to any of
the quantum states correspondind\tspin network vertices for the lowest allowed representation
parameters and some given choice for their vector indices. Now in particulacaoreonsider all
linear combinations of such states, obtained by contracting in all possible ways theespork
vertices along their open links labelled by the vector indices. Each of these paxsildactions,
which is equivalent to a gluing of the dual (D-1)-simplices, corresponds to a possititee abf

the topology of the corresponding quantum space, formed by the same spin netwalksésim
Of course each possible choice also corresponds to a different effective caedeasa function
[48], that then carries a dependence on the resulting topology of quantum $panehe other
hand, the GFT dynamics or some additional symmetry consideration will seleatificspentrac-
tion of the vector indices or the absence of any such contraction, once moxeiltlasmount to
selecting one specific space topology for our quantum space in this phase.

7.3 Effective dynamics of spacetime in the condensed phase from GFT

Let us move to discuss how we could try to extract and study the effective dynawiaally
the hydrodynamics, of the GFT condensate. In discussing this issue, once morestre ptatus
of the field will force us to remain at the level of arguments, guesses, speculaticais, g hope
the reader will find them interesting.

Generally speaking, the effective collective dynamics will depend heaviltherphase the
system is in, i.e. on the vacuum selected by the GFT microscopic dynamics. At thisestage,
to guess it is impossible. However, we can try to forecast some general featureskanaselves
very general questions about it.

We are assuming here that a sort of Bose-Einstein condensate has formed, that thesgtstem
equilibrium or very close to it, that we have made one specific choice of vacuten altéaining a
specific effective vacuum wave function [48], or equivalently a classical fieddqttier parameter).

It is possible that a clever redefinition of the field variables will bring us collectiviabkes
with a direct geometric interpretation, say connection field or a metric, so that we kopél
that the effective hydrodynamics for these collective variables is given difegtipme extended
gravity theory. However, we find this possibility very unlikely, for the following reasons:

¢ while the effective topology of the physical quantum space is probably detedrbin¢he
vacuum (following the comments at the end of the previous section), nothing seseisct
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for us the effective topology dfpacetime; in general, we should expect an effective theory
in which spatial topology change and non-trivial spacetime topologies are inglude

e in analog gravity models [39], the effective spacetime that quasi-particles see mayybe
different from the original spacetime on which the microscopic field theory is defined,
both geometry and topology, but the spacetime on whichhgterodynamicss defined is
very close to the one one started from;

e in particular, the GFT we have started from has the interpretation of a discrete 3rd quan-
tized formulation of gravity and indeed, at least in perturbative expansion, prediscrete
virtual spacetimes of arbitrary topology, and moreover it was a theory on an intgougp
manifold and not a physical continuum spacetime; we expect neither the ‘|fteweh of
guantization’nor the nature of the manifold on which the effective field is défioehange
with respect to the original microscopic (group) field theory.

For all the above reasons, and some others, we expect the effective GHhicyriar the
chosen condensate vacuum to be not directly of the form of an extended grawitdtieory on a
fixed spacetime, but rather of the form of a continuum 3rd quantized field thégrawity, i.e. of
a quantum field theory on a continuum superspace (space of continuum geomeétriesype of
gravitational theories have not been much studied, beyond the original defi#ifip50], but are
supposed to have the general action (schematically):

S= / DXW*(X) A (X)W(X) +/\/W”(X)V(X) (7.1)
5

whereW(X) is a scalar field on the superspacg i.e. the space of all space geometries
(not spacetime) for given space topolagyand X are then coordinates on this space, i.e. some
geometric variables (3-metrics, connections, etc); the (non-local) interactioivigtingenerates,
in perturbative expansion spatial topology changing processes (producing distahoniverses)
while the free kinetic term is given by a canonical Hamiltonian constrzdfit Notice that the
superspace” is a metric space itself [52].

As we have said, for our GFT condensate, we expect the effective fieldt ¢lhs well,
to be determined by the vacuum state, from which would most likely inherit also theechbic
space topology and the topological and metric properties of the effective superspgcthat
will depend on the space topology chosen. In turn, as we have said, the propgttiessacuum
state depend on the original choice of GFT field and of group man@dd. We then expect the
emergent superspace to be some sort of group manifold, with an exact structuneirtkdeby
the topology of space we have selected with the vacuum, and thus again pe@aniey group
elements or, equivalently by a (gravity) connection.

To summarise, we would probably obtain, as our effective GFT hydrodynarshiggantum
space, 1st order versions of the old quantum field theories on superspace. NoHmnogis(to
the best of our knowledge) about how these may look like, and a detailgdesnaf such possible
field theories (involving the metric structure of a 1s order superspace, first of all) is frzlled

In general, then, our effective GFT hydrodynamics, in the GFT analoguesah#an field
approximation, will be a continuum field theory of the form:
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S— /,, DXW(X) . (X)W(X) +/V(w, W) (7.2)

for some kinetic termz” and higher order (non-local) interactivif¥, ¥*).

The corresponding equations of motion with be our hydrodynamics equationdjnear
equations for the field/wave functidkthat will represent the GFT analogue of the Gross-Pitaevskii
eqguation for Bose-Einstein condensates [48]. Notice that the above field theorg eanily recast
in a more customary hydrodynamic form by redefining the basic variabkéXg = /p(X)d?X)
wherep(X) is the condensate density anK) = [06(X) is the condensate velocity field.

Let us now see how the link with continuum GR (in some extended form, probably)ean
investigated. The type of gravity theory we would have obtained will be en¢a@hethopefully
fully specified, by the quadratic term in the above action, that would give thetigéfiétamiltonian
constraint of the corresponding canonical theory. Notice that all of the abod@{#me following)
is at the level otlassicaleffective theories. We then would have to extract the quadratic part of the
action, here represented b . However, it is clear that the split of the above action, and more gen-
erally the very form of the effective hydrodynamics action depends strongly asptafic mean
field ansatz one has chosen to obtatn Anyway, assuming that, in some approximation, we have
got up to here, we could then compare the kinetic tefmwhich would be in general a differential
operator on an effective 1st order superspateand thus depending on connection variables and
their conjugate variables, with the classical Hamiltonian constraints of various cahbsiorder
formulations of gravity for space topolo@y or re-interpret it as such, and study in this way what
type of effective gravity theory our GFT reproduces in this phase, i.e. for thisebbcondensate
vacuum state

Another possibility, that we mention in passing, comes from the interpretation of classical
gravity as a single particle theory on superspace [51]. In our case, the continuum aopéssp
effective and corresponds to the effective manifold on which our GFT ceatietives. The proce-
dure for identifying classical gravity in our hydrodynamic field theory on superspammg@stent
with this interpretation. But what if classical gravity is@uasi-particle” of the above theory on
superspace, and not a particle? Then the effective superspace it would livelchwad be given
by .~, but by a space with an effective geometry functiop@X) andv(X) [39]. We are not going
to expand on this, but it is clear that in this case the body of knowledge dexklogondensed
matter analog gravity models [39] would become even more directly relevant.

It is clear that the realm of possibilities for the structure of the vacuum and even mahe for
way to extract effective dynamics for it, and to find our what back to classiaalty, is enormous.
This is true even if one accepts the idea of the correct vacuum being reprebgredndensate
of the type we suggested. And there are for sure many other plausible hypothesinthatronade
at this stage. Again, condensed matter physics wisdom suggests to be cautiuse lvecalensed

5As they say, mean field theory, and in general the procedure of constructingveffégnamics for collective
variables, is a complicated art.

8In principle it would be also possible to extract the corresponding lagrangian form for thegganity theory
and even the corresponding continuum path integral, i.e. the 2-point function foortlesponding free field theory on
superspace. Obviously this would have only a formal meaning, and limited aplifycast as the formal quantization
of hydrodynamics has, and in any case will not resembles at all the originaW@BTarted from, just as the quantization
of hydrodynamics for ordinary quantum fluids does not reproduce at all tiherlying microscopic atomic theory [23].
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matter systems are rich, and always richer than we imagille.simply wanted to suggest one
possible path from the microscopic discrete to the macroscopic continmionoscopic GFT—
condensate~ condensate hydrodynamies effective continuum 3rd QGR- approximate free
theory— classical (extended) GR.

This probably means we have been un-cautious enough already.

8. Conclusions

We have presented a brief introduction to the group field theory formalism for quantwm gra
ity. We have then argued that GFTs may provide a common framework for ketleea discrete
approaches to quantum gravity (loop quantum gravity, quantum Regge caltytasnical trian-
gulations), and shown how the connection with these other approaches catebstood. Having
done so, we have tried to sketch the elements of a single coherent picture ofryspaicetime,
incorporating the insights and results achieved in all these different approachesndsose a
GFT standpoint. We have tried to argue that the GFT formalism offers also a new pisespac
the same structures.

We have then stressed the importance of solving the open problem of the continprox-ap
imation of the discrete structures representing spacetime at the quantum level in thasenqua
gravity models, including GFTs, and overviewed the strategies adopted in loop guitisihap-
proaches to do so, and the results obtained. At the same time, we have translated tlegsesstra
the GFT language, showing that the GFT formalism would suggest a different oregireiel then
sketched what we believe is a new GFT perspective on the continuum problemnitum gravity.
This amounts to consider quantum spacetime as a condensed matter system@Rd tHwethe
microscopic quantum field theory for its fundamental constituents. We have findlilyezlia GFT
strategy from tackling the problem of the emergence of the continuum, put forwangipmthe-
sis for the relevant GFT phase, a Bose-Einstein condensate, and sketched a (esthietigp, at
present) programme for realizing this idea and connecting GFT microscopics tourontgravity
and GR, obtained from the effective hydrodynamics of the GFT condensate.

We hope that, in spite of necessary conciseness of the first part of this contributbaf an
the speculative nature of much of the second, we have managed to elicit ifiterédst ideas
presented and for this, we believe, very exciting area of fundamental theordtiatp that is
non-perturbative quantum gravity. The hope is also that the reader will then joefftres of
researchers working in this area, and contribute to turning the present speculationsdmasstis,
in the conviction that most of the many impressive results already obtained in thissfasgifield
have been just tentative suggestions or speculations at an earlier stage.
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