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1. Introduction

Even though relativistic QFT provides an excellent description of particle physics, being non-
compact, Lorentz symmetry has been tested only up to a certain energy scale[1]. Thus one cannot
exclude the possibility that some high energy processes break the invariance under boosts, thereby
introducing a threshold energyΛLV , and a preferred frame. It is therefore of interest to understand
what would be the signatures of QFTs wherein this possibility is realized.

Unlike dispersive effects which have been studied in details [2], dissipative effects have so
far received much less attention. In this work we provide the grounds forthis extension. To this
end, we shall first construct QFT displaying dissipative effects in the UV. Indeed, to handle dis-
sipation requires settings which are wider than those of relativistic and dispersive QFTs because,
if one introduces dissipation from the outset in the usual settings, one looses both unitarity and
predictability. To preserve them, we shall therefore work with Hamiltonian theories in which dis-
sipative effects are caused by interactions with additional degrees of freedom. Doing so, we shall
discover that dissipative effects aregeneric. That is, when starting with a bare Lagrangian in which
LI is broken by some kinetical or interaction term in the UV, the effective theory (the generating
functional) unavoidably develops dissipation above a certain energy scale, simply because noth-
ing can prevent this. (With relativistic QFT instead, LI did prevent it). We thus learn that it is
illegitimate to deal with purely dispersive QFT, since these do not satisfy Kramer’s relations.

Being engaged in a procedure of generalization, we should have a clearidea of our motivations,
aims, and requirements. We first present these aspects.

1.1 Two requirements

1st. Unitarity

As already mentioned, we require that our QFT evolve unitarily. This requirement implies that the
dissipative effects be produced by the Hamiltonian dynamics of the entire system. In other words,
we shall introduce additional degrees of freedom calledΨ, which play the role of an environment,
and couple them to the original fieldφ in such a way that the latter develops dissipative effects.
This means that the (dressed) two-point function ofφ will be given by the usual QM trace

GW(x,y) = Tr
[

ρ̂T φ̂(x) φ̂(y)
]

, (1.1)

whereρ̂T is the initial matrix density of the entire systemΨ+φ , whereφ̂(x) is the Heisenberg field
operator evolved with the time ordered exponential of the total Hamiltonian, andwhere the trace is
taken over bothΨ andφ .

2d. Stationarity and homogeneity

Our second requirement concerns the properties of dissipative effects. When considering the the-
ory in vacuum and in Minkowski space-time, we impose that the dissipative effects become signif-
icant only above a critical energyΛLV , and that they preserve the stationary, the homogeneity, and
isotropy of flat space-time. In this case, dissipative effects define a preferred frame which is inertial
and globally defined.
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Then, irrespectively of the properties of the additional degrees of freedomΨ and their inter-
actions withφ , the Fourier transform of the retarded Green functionGR(x,y), which is given by
GR(x,y) = θ(tx− ty)2ImGW(x,y), whereGW is the Wightman function of eq. (1.1), is of the form

GR(ω ,~p) =
−i

(

−ω2 + p2 +ΣR(ω , p)
) . (1.2)

In the true vacuum, at the level of the 2 pt functions, the dissipative (dispersive) effects are indeed
completely characterized by the imaginary and odd (real and even) part inω of the (retarded)
self-energyΣR(ω , p).

In these expressions, the energyω and the spatial momentum squarep2 have been defined in
the preferred frame. To prepare the covariantization of our theory, and therefore its extension to
curved space-time, it is usefull to characterize the preferred frame in a coordinate invariant way by
a unit time-like vector field, here after calledl µ . Thenω andp2 are given by

ω ≡ l µ pµ , p2 ≡⊥µν pµ pν , (1.3)

where⊥µν≡ ηµν + l µ lν is the (positive definite) metric in the spatial sections orthogonal tol µ .
The novelty is thatΣR is a function ofω and p separately, and not only of the relativistic

invariantω2− p2 as it is the case in relativistic QFT. WhenΣ depends on bothω andp, dissipation
can become significant above a critical energyon the mass shell, i.e. along the minima of the
denominator of eq. (1.2); a possibility forbidden in LI theories.

With the observation of the simplicity of eq. (1.2), we understand that most of the properties
of Ψ will be irrelevant when restricting attention to observables built with onlyφ . In other words,
the effective action ofφ only retains little information aboutΨ in its moments, the second of
which being the self-energyΣ. This is very important, because we shall exploit this arbitrariness
by choosing the simplest models ofΨ which deliver the required properties ofΣ.

1.2 Aims and Motivations

1.2.1 The phenomenology and the links with Quantum Gravity

We first aim to describe the phenomenology of dissipative effects in Minkowski space-time and in
vacuo. This is rather easy. From eq. (1.2) we understand that the phenomenology of dissipative
effects respecting our (minimal) restrictions will be governed by a limited set offunctions. In fact,
at the level of 2-pt functions, the imaginary part ofΣ is the only relevant quantity. One easily
verifies that the following self-energies induce significant dissipation onlyaboveΛLV

ImΣ(n)
R (ω , p) = − ω

ΛLV
p2

(

p2

Λ2
LV

)n

. (1.4)

Later in the text, we shall provide Lagrangians ofΨ andφ which produce this class of imaginary
self-energies. We can already relate this class to the set of non-linear dispersion relations which
have been used in phenomenological studies:

ω2 = F2
n (p2) = p2 ± p2

(

p2

Λ2
LV

)n

+O
(

(p2)n+2
)

. (1.5)
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The+ (−) sign gives superluminous (subluminous) propagation. It is also worth noticing that a
phenomenological study of dispersive and dissipative effects taken toghether can be done with eq.
(1.2) by considering both ReΣR and ImΣR non zero.

Even though Quantum Gravity is not part of our main concerns, let us saya few words about the
relations with our work. Quantum Gravity, whatever version is adopted, implies that the smooth
manifold of GR should be replaced by a new structure when reaching a UV threshold energy, call it
ΛLV . When adopting a phenomenological point of view, there is a shift in the interest. The question
is no longer: What is this new structure ? but rather: How would it manifest itself in observables ?
That is to say: What are the new expressions of then-point correlation functions ? Remember that
the predictions of a QFT are all based on its correlation functions.

The simplest of these are the 2-point functions. In whatever replaces theMinkowski manifold,
spatial homogeneity and stationarity will be preserved in the mean, (otherwisethat version of QG
does not describe our world). This implies that the Fourier transform of the "true" Feynman Green
function1 will belong to the class of functions given in eq. (1.2).2 (Of course LI might still be
respected in which case the self-energy induced by QG will only be a function of ω2− p2.)

The link between our approach and the phenomenological approach to QGwhich consists in
parametrizing its effects (rather than computing them from first principles) isclear: Since we pro-
vide the general expression of the 2pt function compatible with QM, in the sense that the Equal
Time Commutations relations be still satisfied, our expressions can also be usedin a phenomeno-
logical QG perspective.

1.2.2 Mode creation in expanding universes

When assuming that LI is broken in the UV in Minkowski space, one can thenalso assume that
the density of degrees of freedom, or modes, is finite and of the order ofΛ3

LV . (This density should

1Whatever QG may be, this function will be given by an expression similar to eq. (1.1) with the trace taken over
the "true" degrees of freedom.For the benefit of the reader, I wish to add here a remark made by a referee concerning
this sentence and my reply to it: "While of course one might claim this is a plausible scenario, one might as well
conjecture that in no way transplanckian physics can be described by a quantum field theory of any sort (e.g. QM could
be emergent as well)." My answer is twofold. First, I wrote "similar" precisely to leave open the possibility that the trace
be not "the usual QM" one. Second, even if QM is only emergent, when considering the two-point function of accessible
(effective) degrees of freedom, asφ in the present case, (like the two-point functions of the phonon field in a BEC), the
true expression will, at least, contain a trace (to average out the true configurations so that the correlation function only
depends on the arguments of the two operators), a state function (to weigh these configurations), and two operators
(which might be complicate composite objects), because, in the IR, the two-point function must behave according to
QM. The beauty of two-points correlation functions is that they are c-number functions depending onlyω andp, both
in the effective description and in the true description. Therefore a comparison of two versions directly delivers the
relevant modifications, see [3] for a comparison of 2pt functions obtained using a QFT in a fixed background and the
corresponding ones obtained by studying the solutions of the Wheeler-DeWitt equation.

2It has been claimed that QG might turn out to be a purely topological theorybecause reparametrization invariance
would restrict the true observables to be topological charges. If this could be correct in pure 2+1 QG[4], it is harder to
conceive the meaning of this statement when applied to 4D, both from a phenomenological and a theoretical point of
view. If it were true, it would imply that all quantum transitions, scattering events, ... , we observe are in fact topological
invariants (or some part thereof) when properly dressed by QG. Thisis at best irrelevant. At a theoretical level, the
quantum transitions of (heavy) atoms exchanging photons are governed by the Green functions of the radiation field
evaluated where the atoms sit, given their wave function. This should remain true when including QG effects, see [5] for
a description of atomic transitions based on solutions of the WDW equation wherein topology plays no role.
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not be confused with the density of quanta which is always finite in decent quantum states, the
"Hadamard" states[6, 7].) This option was not available as long as LI prevailed, and was in fact
the source of the UV divergences. If the cutoffΛLV is much higher than the typical frequencies
involved in the observables we have access to, it is rather easy to show that the expectation value of
these observables will not be significantly affected byΛLV , a simple example which can be worked
out explicitely is furnished by the Casimir effect. Therefore, in Minkowskispace, one cannot
expect any significant deviation induced by having cutoff the mode density.

On the contrary, it is more challenging to consider how would such a theory behave in an
expanding universe. Indeed one faces an alternative. Either the totalnumber of degrees of freedom
in a given comoving volume would stay fixed (or nearly fixed), and therefore the density would
decrease like the inverse of the proper volume, or it is the density that wouldstay (nearly) fixed,
and in this case, the number of degrees of freedom would grow linearly withthe proper volume,
thereby implying mode creation.

The first alternative seems already excluded because the volume of our visible universe in-
creased at least by a factor ofe360 since the onset of inflation (360 = 60 e-foldings during inflation
× two for the radiation era× three because of 3D). Indeed either the density was absurdly high
at the onset of inflation, or if the intial density was decent, we should today be lacking degrees of
freedom. Moreover if it were true, one could measure the growth of the scale factor by probing
locally the vacuum, thereby violating the Equivalence Principle. So, once having assumed a finite
density in flat space, we are left with the conclusion that mode creation is unavoidable in expanding
universes, and therefore in any curved background geometry.

When adopting this second alternative, two questions should be confronted:
How to describe mode creation in QFT ?
What fixes the state of the newly born modes ?

Our motivation is to confront these two questions in the presence of dissipative effects. To this
end we first need to extend our QFTs to curved space times.

The main principle we adopt to covariantize our Lagrangians is the Equivalence Principle (or
more precisely its extension in the presence of the unit vector fieldl µ ).3 That is, the Lagrangians
will be a sum of scalar functions of the four local fieldsφ , Ψ, gµν andlν which reduce locally to
their Minkowski value in the zero curvature limit. This principle fixes the action density (up to the
possibility of some non-minimal coupling) and determines the tensorial nature oftheΨ fields. As
explained in the text, they contain adenseset of local degrees of freedom at rest with the vector
field l µ .

When covariantization is done, without fine tuning nor additional hypothesis, we shall see that
our QFTs are such that, as the universe expands, underdamped modesemerge from overdamped

3To obtain dissipative QFTs, we could have searched for inspiration in condensed matter models whereinLI is
broken in the UV. We have chosen not to pursue this approach for several reasons. First it distances us form our
aims, as it requires first understanding the physics at play in the condensed matter analog model, and then explaining
its relevance to the problems which interest us. Second this approach alsolacks generality and thus hides the steps
necessary to construct dissipative models. Third, the deepest reason comes from the Equivalence Principle considered in
expanding universes. Indeed any QFT emerging from adiscretestructure, e.g. a set of atoms, is bound to fail to preserve
the Equivalence Principle after a large number of e-foldings. We see noway to espace this conclusion, besides either
modifying QM, or assuming that the expansion of the universe does notaffect the "atoms", two options so radical that it
seems hopeless to get an acceptable phenomenolgy when adopting them.
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modes –thereby effectively describing the creation of propagating degrees of freedom– in such a
way that their (proper) density stays constant. Moreover, unlike in former attempts to describe
"mode creation"[8, 9], there is no need to supply an extra condition to fix thestate of the newly
born modes. Indeed, since our models are Hamiltonian, all the information is contained in the
initial density matrixρ̂T .

1.2.3 The trans-Planckian question

In inflationary cosmology, the primordial density fluctuations arise from the amplification of vac-
uum fluctuations which had very short wave lengths (very large properfrequencies) at the onset of
inflation[10]. Similarly, Hawking radiation emitted by a black hole emerges from configurations
which had extremely high initial frequencies[11]. In both cases, the unbounded frequency growth
questions the validity of the predictions because these have been obtained using the standard treat-
ment, namely some quantum field propagating in a curved space time. However there is no reason
to believe that these settings still provide a reliable approximation at frequencies way above or even
near the Planck scale.

Following original work of Unruh and Jacobson[12, 13], the robustness of the standard predic-
tions against modifying the theory in the UV have been tested by introducing dispersion relations
which become non linear above a certain UV scaleΛLV , see eq. (1.5). Even though the prop-
agation of the configurations is severely modified when this scale is reached, it was shown that
the properties are essentially unmodified when the two relevant scales are well separated, i.e. in
BH physics[14] whenκ/ΛLV ≪ 1 whereκ is the surface gravity, and in inflation[15, 16] when
H/ΛLV ≪ 1 whereH is the Hubble parameter. What guarantees the robustness is that the vacuum
state evolves adiabatically.

Our aim is to generalize these works by providing dissipative models in which the power
spectrum (and Hawking radiation) can be computed. These models are the same as those of the
former subsection. The fact that the Equivalence Principle is preserved will guarantee, as we shall
see, the adiabaticity of the evolution of the true vacuum as long as the gradients of the metric are
much smaller than the UV scaleΛLV .

To conclude, we would like bring to the reader’s attention to the following remarks. First,
to compute the power spectrum in inflationary models, and the asymptotic properties of Hawking
radiation, it issufficientto know the 2pt function of eq. (1.1). Indeed, one always has

Pk(t) ≡
∫

d3xe−ikx Ga(t,x; t,0),

nω,l ,m+
1
2
≡

∫

dt eiωt Ga(t, r;0, r, l ,m), r ≫ rh. (1.6)

In inflation, the first equality follows from the definition of the power spectrum Pk which is given
by the spatial Fourier transform of the anti-commutatorGa evaluated, at equal time after horizon
exit, in the Bunch-Davies vacuum. As of Hawking radiation,n(ω , l ,m), the asymptotic distribution
at fixed angular momentuml ,m, is given by Fourier transform with respect to the asymptotic time
of the in-vacuum anti-commutator far away from the hole.

Second, in the presence of dissipation, as in all interacting models, the knowledge of the anti-
commutator is alsonecessary. In these cases indeed, the only way to extract the relevant predictions
is through the above expressions.
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We have organized the paper as follows. We first construct dissipativetheories in Minkowski
space-time. In this case, because of stationarity the analysis is simple and instructive. We then
covariantize these models and briefly comment on the trans-Planckian question in inflation and in
black hole physics. In long Appendices we provide self-contained presentations of the properties of
Green functions in the presence of dissipation, and how to use them to cover the phenomenology.

2. Dissipation in Minkowski space fromLV effects

In this section, we provide a class of models defined in Minkowski space time which exhibit
dissipative effects above a certain energy scaleΛLV . Stationarity, homogeneity and isotropy will be
exactly preserved. Therefore, the only invariance of relativistc QFT which is broken is that under
boosts. These theories define a preferred rest frame which is globally defined, as it is the case of
FLRW space-times. Even though a covariant description exists, for simplicityof the presentation,
we first work in that frame. At the end of this Section we shall covariantize toprepare the extension
to curved space-times.

2.1 Free field settings

We start with a brief presentation of the free field description to introduce notations and to
point out what are the properties which are lost in the presence of dissipation.

The action of our free massless fieldφ is the usual one:

Sφ =
1
2

∫

dtd3x(∂tφ2−∂xφ ·∂xφ) , (2.1)

wheret andx are Cartesian coordinates. Due to the homogeneity of space, the equation of motion
can be analyzed mode by mode:

φ(t,x) =
∫

d3p

(2π)3/2
eip·xφp(t) . (2.2)

The mode operatorφp(t) obeys
(∂ 2

t +ω2
p)φp = 0, (2.3)

whereω2
p = p2 = p ·p is the standard relativistic dispersion relation. Notice that eq. (2.3) is second

order, homogeneous (no source term), and time reversible (no odd power of ∂t), three properties
we shall loose when introducing interactions breakingLI .

In homogeneous space-times, the canonical Equal Time Commutator of the fieldand its mo-
mentum implies thatφp(t) the Fourier transform of the field operator obeys

[φp(t),∂tφ†
p′(t)] = i δ 3(p−p′) . (2.4)

When decomposing the mode operator as

φp(t) = ap φp(t)+a†
−p φ ∗

p(t) , (2.5)

where the destruction and creation operators satisfy the usual commutators

[ap,a
†
p′ ] = δ 3(p−p′) , [ap,ap′ ] = 0, (2.6)

7
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eq. (2.4) is verified at all times because the Wronskian of the positive frequency (c-number) mode

φp(t) = e−iωpt/(2ωp)
1/2 , (2.7)

is constant (and conventionally taken to be unity).
Had an odd term likeγ∂t been present in eq. (2.3) the constancy of the Wronskian would have

been lost. Hence the possibility of realizing the ETC (2.4) with the help of eq. (2.6) would have
been lost as well. This already indicates that, unlike dispersive (real) effects, dissipative effects
require more general settings than the above.

2.2 Interacting models breakingLI , general properties

We now introduce additional degrees of freedom, here after collectivelynamedΨ, which
induce dissipation above the energyΛLV . We shall work with a particular class of simple models
in order to get an exact (non-perturbative) expression for the two-point function ofφ of eq. (1.1).
Before introducing these models, we derive general results valid for allunitary QFT’s possessing
dissipative effects aboveΛLV in the ground state (the interacting vacuum).

We assume that the total action decomposes as

ST = Sφ +SΨ +Sφ ,Ψ , (2.8)

where the first action is that of eq. (2.1), the second one governs the evolution of theΨ fields, and
the last one the coupling betweenφ and these new fields.

We also impose that the last two actions (and the density matrixρT) preserve the homogeneity
and isotropy of Minkowski space. From now on, the Cartesian coordinates t,x are at rest with
respect to the preferred frame which is defined by the actionSΨ +Sφ ,Ψ, i.e. in a covariant notation
∂t ≡ l µ∂µ . For these models, the Fourier transform of the Wightman function of eq. (1.1) is of the
form

Gp,p′(t, t ′) = Tr [ρ̂T φ̂p(t) φ̂†
p′(t ′)] ,

= GW(t, t ′; p)δ 3(p−p′) . (2.9)

At this point, an important remark should be made. In the presence of interactions, the notion
(and the usefulness) of the time-dependent modes given in eq. (2.7) disappears. Instead, the time-
dependent functionGW(t, t ′; p) of eq. (2.9) is always well-defined, for all choices ofΨ and for all
actionsSΨ +Sφ ,Ψ.

When the situation is stationary,GW(p; t, t ′) further simplifies in the frequency representation:

GW(t, t ′; p) =
∫

dω
2π

e−iω(t−t ′)GW(ω , p) . (2.10)

To computeGW(ω , p) in an arbitrary (stationary) state, it is appropriate, as we shall see, to split
the analysis by considering separately the commutatorGc of φp, which is odd inω , and the anti-
commutatorGa, which is even.

When working in the ground state, one reaches the simplest case in the following sense. What-
ever theΨ fields may be, the Fourier transform of the time ordered (Feynman) propagator,

2GF = Ga +Gcsign(t − t ′), (2.11)

8



P
o
S
(
Q
G
-
P
h
)
0
3
1

Dissipative effects violating Lorentz Invariance R. Parentani

is always of the form given in eq. (1.2), and therefore characterizedby a single functionΣF(ω , p).
When restricting attention to Gaussian models,ΣF(ω , p) is given by a 1-loop calculation, whereas
it contains a series of 1PI graphs for non-Gaussian models. In non-vacuum states and in non-
stationary situations, 2pt functions have a more complicated structure. It is tounderstand the
meaning of this strucure that a separate analysis ofGc andGa is appropriate.

Let us conclude with two remarks. First, the effective dispersion relation of φ is a posteriori
defined by the poles of eq. (1.2). In this way, non-trivial dispersion relations arise from dynamical
processes rather than from being introduced from the outset. The present work therefore provides
physical foundations (and restrictions, as later discussed) to the kinematical approach which has
been adopted in the literature. Second, from analyzing dynamical models, we shall see that, even in
the vacuum,on-shelldissipative effects (i.e. dissipation arising along the minima of the denomina-
tor of eq. (1.2)) are unavoidable whenLI is broken in the UV by the actionSΨ +Sφ ,Ψ, in complete
opposition with the fact that on-shell dissipation is forbidden when working(in the vacuum) with
LI actions.

2.3 Gaussian models

To simplify the calculation ofΣ(ω , p) and to get exact non perturbative expressions (in sta-
tionary situations), we assume that the actionST is quadratic in all field variables. This is of course
a very restrictive hypothesis. However, it should be recalled that we are not after computingΣ from
first principles. Rather our aim is to determine the modifications of the power spectra, see eqs.
(1.6), when including dissipative effects in the UV sector. To this end, it is sufficient to understand
how the properties ofΣ affect the 2pt function ofφ .

Given that we are preserving the homogeneity of Minkowski space, the Gaussian assumption
implies that the total action splits as

ST =
∫

d3pST(p) , (2.12)

where each actionST(p) depends only on thecomplexfield operatorφp and thep-th Fourier com-
ponent ofΨi (each of these is a two-mode (p,−p) system). The structure ofST(p) is

ST(p) =
1
2

∫

dt φ ∗
p (−∂ 2

t −ω2
p)φp +

1
2

Σi

∫

dt Ψ∗
i (p)(−∂ 2

t −Ω2
i (p))Ψi(p)

+Σi

∫

dt gi(p)φp Ψ∗
i (p) , (2.13)

wherei is a discrete (or continuous) index, whereΩi(p) is the energy of the quanta of the oscillators
Ψi(p), and wheregi(p) is the coupling constant at fixedp, i.

These Gaussian models have been used since many years (at least sincethe early 50’s) and
for different purposes. They have been introduced (in their continuous version) to study non-
pertubatively atomic transitions, see [20] and refs. therein, and to model quantum electrodynamics
in the dipole approximation, see also [21, 22] for an application to the Unruh effect. They have
been used in Quantum Optics and to model quantum Brownian motion [23]. They have also been

9
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used to study decoherence effects [24].4 Needless to say that our intention is not to provide a new
approach to these models, but rather to exploit them to reach our aim: provide unitary models
allowing to study dissipative effects in arbitrary curved backgrounds.

Therefore, instead of chosing a priori a specific model, we shall solve the equations of motion
without specifying the set ofΨi(p), their energyΩi(p) and their couplinggi(p). We shall choose
them in the next subsection to further simplify the equations we shall need to solve. To preserve
stationarity in Minkowski space, theΩ’s and theg’s must be time independent. WhenΩ2

i (p) 6=
M2

i + p2, the kinetic action ofΨi(p) breaksLI and defines the preferred frame. On the contrary
whenΩ2

i (p) = M2
i + p2 the preferred frame is only defined by the interaction termSφΨ through the

p-dependence of the coupling functionsgi(p).
The equations of motion are

(∂ 2
t +ω2

p)φp = Σi gi(p)Ψi(p) , (2.14)

(∂ 2
t +Ω2

i )Ψi(p) = gi(p)φp . (2.15)

The general solution of the second equation reads

Ψi(p, t) = Ψo
i (p, t)+

∫

dt′Ro
i (t, t

′; p)gi(t
′; p)φp(t

′) , (2.16)

whereΨo
i (p, t) is a free solution which depends on initial conditions imposed onΨi(p). The second

term containsRo
i (t, t

′; p), the (free) retarded Green function ofΨi(p). It obeys

(∂ 2
t +Ω2

i (p))Ro
i (t, t

′; p) = δ (t − t ′) , (2.17)

and vanishes fort < t ′. (To prepare the application to time dependent geometries, we have treated
ω2

p, Ω2
i andgi as arbitrary functions of time (in cosmology these become indeed time dependent

through their dependence in the scale factora(t)). ) Injecting eq. (2.16) in eq. (2.14) one gets

(∂ 2
t +ω2

p)φp = Σi gi(t; p)Ψo
i (p, t)+Σi gi(t; p)

∫

dt′Ro
i (t, t

′; p)gi(t
′; p)φp(t

′) . (2.18)

The (exact) solution of this equation has always the following structure

φp(t) = φd
p (t)+

∫

dt′Gr(t, t
′; p)[Σi gi(t

′; p)Ψo
i (p, t ′)] . (2.19)

The first term is the ”decaying” solution. It contains all the information about the initial condition
of φp, and obeys the non local equation

∫

dt1[δ (t − t1)(∂ 2
t1 +ω2

p)−Σi gi(t; p)Ro
i (t, t1; p)gi(t1; p)]φp(t1) = 0. (2.20)

4Depending on the point of view adopted, these models can be solved and analyzed by means of different methods.
In what follows we shall adopt the atomic physics point of view and use thesimplest approach based on Heisenberg
equations of motion. Since we shall work at zero temperature, this approach is also appropriate because quantum
aspects dominate over stochastic ones. Even though legitimate, we have not adopted the "open quantum system" point
of view for two reasons. First the general methods used in this approach, see [25], somehow hide the simplicity of the
model we are dealing with. In fact only but standard Quantum Mechanicsis required to solve it. Secondly, we are
planning (in a subsequent work) to study the correlations bewteenφ andΨi . Therefore we shall treatφ andΨi on equal
footing as in [20, 21, 22].
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The second term is the ”driven” solution. It is governed by the initial conditions of Ψo
i (p) and

by the (dressed) retarded Green function, the solution of eq. (2.20) withδ (t − t1) on the r.h.s.
Therefore the evolution of bothφd andGr fully takes into account, through the non-local term
in the above bracket, the back-reaction due to the coupling to the additional degrees of freedom.
In Gaussian models, it is quadratic ingi . Hence the solutionsφd andGr are series containing all
powers ofgi . Therefore Gaussian models do give rise to non perturbative effects.Moreover since
gi(t; p) are arbitrary functions ofp andt, at this point there is no reason to consider non-Gaussian
models.

We conclude this subsection with two remarks. First, eq. (2.19) also furnishes the exact
solution for the Heisenberg operatorφ̂p because the equations we solved are all linear. Since
we shall work quantum mechanically, it is relevant to study the correlation functions ofφp. In
Appendix A we present their properties.

Second, eq. (2.20) tells us that in general, the coupling to an environment (even a linear one)
gives rise tonon-localequations of motion. When dealing with stationary situations this does not
cause any problem because, as shown in Appendix B, observables can be (algebraically) computed
in the frequency representation. However in non stationary situations andin curved space-times, to
be able to compute observables it becomes imperative to simplify eq. (2.20). A question we now
address.

2.4 Time dependent settings

In Appendix C, we provide a class of stationary models characterized by the power of the ratio
p/ΛLV which specifies how dissipative effects grow with the energy, see eqs. (1.4, 6.1). This class
covers the general case and can be used as a template to study the phenomonological consequences
of dissipative effects. In addition, after eq. (5.6), it was noticed that thedissipative properties
are governed by the productg2(ω , p)Ro(ω , p). Therefore many theories with different kinetic and
coupling terms will give rise to the same (stationary) phenomenology.

In this Section we exploit this freedom to simplify the expressions having in mind the trans-
position of our model from Minkowski space to curved metrics. Therefore "good" models should
possess two-point functions with simple properties when expressed in the terms of time and space,
and not only in Fourier componentsω , p.

The core of the problem is that, when dissipation is strong, the relevant observableGa (it gives
both the Power Spectrum and Hawking distribution) is given by the "driven" term in eq. (4.6),
which is a double integral containing a kernel (which can be computed) andthe retarded Green
function ofφ which is not known. Indeed it is only implicitely defined as a solution of eq. (2.20),
which is, in general, non-local. We are thus led to choose the action ofΨ in order for eq. (2.20) to be
local. This implies that the retarded Green function ofΨ appearing in this equation be proportional
to δ (t − t ′). Notice that this requirement concerns the Green function of the environment and not
that of the system we probe. Thus it will not restrict the phenomenology.

11
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Given this aim, an appropriate class of models is defined by the action

S(n)
T (p) =

1
2

∫

dt φ ∗
p(−∂ 2

t −ω2
p)φp

+
1
2

∫

dt
∫

dk Ψ∗(p,k)(−∂ 2
t − (πΛLVk)2)Ψ(p,k)

+gΛLV

∫

dt
∫

dk

(

p
ΛLV

)n+1

φp ∂tΨ∗(p,k) . (2.21)

When compared with the action of eq. (2.13), we have replaced the discreteindex i by the integral
over the dimensionless variablek. As recalled in Appendix B, one needs a continuous spectrum of
the environment to have proper dissipation, see discussion after eq. (5.6). The continuous variable
k can be viewed as a momentum (expressed in units ofΛLV) in an extra flat fifth spatial dimension.
The relationship with the Brane World Scenarios of [17, 18] is clear. In the’atomic’ version of
this model [21, 22] which has inspired us, the radiation fieldΨ is a massless 2 dimensional field
propagating int and in the dimension associated withk.

In SφΨ have factorized out a factor ofΛLV so that the coupling constantg is dimensionless.
We have also introduced an additional time derivative acting onΨ. This choice leads to the above
mentionedδ (t − t ′). Indeed, on the one hand, taking this extra derivative, the continuous character
of k, and the fact thatg is independent ofk, eq. (2.18) becomes

(∂ 2
t +ω2

p)φp = gn ∂t

∫

dkΨo(p,k, t)− gn ∂t

∫

dt′
∫

dkRo(t, t ′;k, p)∂t ′
(

gnφp(t
′)
)

, (2.22)

wheregn ≡ gΛLV (p/ΛLV)n+1. On the other hand, for each 3-momentump, the Green function of
Ξ =

∫

dkΨ(k) is that of a massless 2-dimensional free field. In Fourier it is given byRo(ω ,k) =

1/(−(ω + iε)2 +(πΛLVk)2). Hence it obeys

∂tRo(t, t ′) ≡ ∂t

∫

dω
2π

∫

dkRo(ω ,k)e−iω(t−t ′) =
δ (t − t ′)

ΛLV
, (2.23)

which is the required property to simplify eq. (2.22).
When gn is constant, the retarded Green function ofφ associated to eq. (2.22) obeys the

following local equation

[∂ 2
t +

g2
n

ΛLV
∂t +ω2

p]Gr(t, t
′, p) = δ (t − t ′) , (2.24)

To make contact with Appendix B and C, let us rewrite this equation in Fourier transform,

[−ω2− ig2 ω
ΛLV

p2( p
ΛLV

)2n
+ω2

p]Gr(ω , p) = 1. (2.25)

We thus see that ReΣr = 0 and that ImΣr is (exactly) given byg2 times the expression of eq. (6.1).
Thus, even though we have chosen a simple and definite form forRo(t, t ′), the above action does
deliver then dissipative behaviors of Appendix B by choosing the appropriate powerof p in the
couplinggn appearing in the actionSφΨ.

Wheng andω2
p are arbitrary time-dependent functions, the Fourier analysis looses its power.

However, in time dependent settings, ourGr still obeys a local equation:
[

∂ 2
t +2γ̃n∂t +[ω2

p +∂t γ̃n]
]

Gr(t, t
′) = δ (t − t ′) , (2.26)

12
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where then-th decay ratẽγn(t) = g2(t)γn is now a definite time dependent function. When transpos-
ing the model of eq. (2.21) in expanding homogeneous universes, the Green function will therefore
also obey a local equation.

2.5 Covariant description

We now provide the covariant version of the action of eq. (2.21). This expression will then be
used to define our theory in curved backgrounds.5

Two steps should be done. We need to go fromp considerations to a local description, and
express the various actions in terms of the unit vector fieldl µ and the spatial metric⊥µν defined in
eq. (1.3). Both are straightforward and, in arbitrary coordinates, the total actionS(n)

T =
∫

d3pS(n)
T (p)

reads (in Minkowski space-time)

S(n)
T = −1

2

∫

d4x
√−ggµν∂µφ∂νφ

+
1
2

∫

d4x
√−g

∫

dk
[

(

l µ lν −c2
Ψ⊥µν )

∂µΨk∂νΨk− (πΛLVk)2 Ψ2
k

)

]

+gΛLV

∫

d4x
√−g

(

( ∆
Λ2

LV

)(n+1)/2φ
)

l µ∂µ

∫

dkΨk , (2.27)

where∆ is the Laplacian on the three surfaces orthogonal tol µ .

We have slightly generalized the action of eq. (2.21) by subtractingc2
Ψ ⊥µν to the kinetic

term ofΨ, wherec2
Ψ ≪ 1. With this new term,p-th components of the fieldΨk are now massive

fields which propagate with a velocity (relative tol µ ) whose square is bounded byc2
Ψ. In addition

they now possess a well defined energy-momentum tensor which can be obtained by varying their
action with respect togµν . To obtain the simplified expressions we use in the paper the (regular)
limit c2

Ψ → 0 should be taken.

In this limit, the (free) retarded Green function of theΞ =
∫

dkΨ field obeys a particularly
simple equation when expressed in space-time coordinates. Indeed, it obeys

l µ ∂
∂xµ

∫

dkRo(x,y;k) ≡ l µ ∂
∂xµ Ro(x,y) =

1
ΛLV

δ 4(xµ −yµ)√−g
, (2.28)

5Perhaps the motivations for these two steps require further explanation since another referee wrote:"I do not see
the point of a covariant description of theΨ field since it is nothing more than a convenient parametrization of the
environment degrees of freedom."Several points should be mentionned. First, we are after describingvacuumeffects
when Lorentz Invariance is broken in the UV. Therefore the breakdown of LI must comelocally [19]. Second, as in
studies of dispersive effects, we require that our QFT be well definedin an arbitrary background. It would be physically
questionable (or even meaningless) to study dissipative effects on the observables of eq. (1.6) from theories which are
only defined in a particular class of space-times (e.g. homogeneous spaces). Third, we have introduced theΨ field to
characterizethe effects of dissipation which would stem from fundamental theories obeying the Equivalence Principle,
see [17] for a prototype. Fourth, from the point of view of open quantum systems, it could a priori seem inappropriate
to proceed to a covariantization, since in most situations (heat bath, condensed matter systems) there is a preferred
frame which is globally defined. However, when the system is non-homogeneous (e.g. a fluid characterized by a non-
homogeneous flow), low energy fluctuations effectively live in a "acoustic" curved geometry[27]. Moreover, in this case,
short distance effects, i.e. dispersive (or dissipative) effects, are covariantly described when using this metric [12, 19],
because they arise locally. In brief, we shall write down actions in curvedspace using the EP which requires a covariant
description.
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On the r.h.s, one finds the "invariant" delta function with respect to the invariant measured4x
√−g.

This equation is nothing but the covariantized and "localized" version of eq. (2.23). Its physical
meaning is clear. It tells us that the back-reaction ofφ(x) onto itself throughΞ will be local at
every point in space-time.

The equations of motions do not have a particularly simple form when expressed in space-time
coordinates. Using the condensed notationΞ =

∫

dkΨ, the relevant equations read

1√−g
∂µ

√−ggµν∂ν φ(x) = gΛLV
1√−g

( ∆
Λ2

LV

)
n+1

2
√−glµ∂µΞ(x) , (2.29)

where the interacting fieldΞ field is

Ξ(x) = Ξo(x)− gΛLV

∫

d4y
√−gRo(x,y)

[ 1√−g
∂µ

(

l µ√−g
( ∆

Λ2
LV

)
n+1

2 φ(y)
)]

. (2.30)

When inserting eq. (2.30) in eq. (2.29), using eq. (2.28), one verifies that the dissipative term is
local and first order inl µ∂µ . As wished, dissipation occurs along the preferred direction.

3. Dissipative effects in curved background geometries

3.1 The Lagrangian and the properties ofΨ

To define a dissipative QFT in an arbitrary curved geometry, we need someprinciples. From
a physical point of view, we adopt the Equivalence Principle, or better what can be considered
as its generalization in the presence of the additional unit time-like vector field.We are in fact
dealing with two (sets of) dynamical fields, theφ field we probe, and theΨi fields we do not; but
also with two background fieldsgµν and l µ . The Generalized Equivalence Principle means that
the action densities of the dynamical fields be given by scalar functions (under general coordinate
transformations) which reduce to those one had in Minkowski space time andfor a homogeneous
and staticl µ field, i.e. those of eq. (2.27).

The densities are thus not completely fixed by the GEP, as it was the case with the EP. For a
scalar field in a curved geometry, there was always the possibility of considering a non-minimal
coupling to gravity by adding to the lagrangian a term proportional toRφ2. In the present case, the
ambiguity is larger because the vectorl µ allows to form new scalars, such as itsexpansion

Θ ≡ ∇µ l µ = (−g)−1/2∂µ [(−g)1/2l µ ] , (3.1)

where∇µ is the covariant derivative with respect to the metricgµν . The ambiguity can only be
resolved by adopting some additional principle, such as the principle of minimalcouplings which
forbids adding such scalars.

Rather than adopting it, our second principle (which simplifies the equations ofmotion in
curved backgrounds, but which is by no means necessary) is that thelocality of the back-reaction
effects ofφ throughΞ be preserved. That is, we choose the non-minimal coupling ofΞ so as
to keep eq. (2.28). As shown later, this will also guarantee that the properfrequency of theΨk

fields measured alongl µ stays constant as the universe expands, and more generally, in any curved
background. Starting from eq. (2.27), the locality is preserved by replacing both inSΨ andSΨφ

l µ∂µΨk → Dl Ψk ≡ l µ∂µΨk +
Θ
2

Ψk =
1
2

(

l µ∇µΨk +∇µ [l µΨk]
)

, (3.2)
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where∂µ is the partial derivative.

To simplify the forthcoming equations, we use the fact that one can always work in "preferred"
coordinate systems in which the shiftl i vanishes and in which the preferred time is such thatl0 = 1.
(We assume that the set of orbits ofl µ is complete and without caustic. In this case, every point of
the manifold is reached by one orbit.) It will be found useful to work in thesecoordinate systems
with rescaled fieldsΨr ≡ (−g)1/4 Ψ because one can then group the above two terms into a single
expression:

Dl Ψk = (−g)−1/4 l µ∂µ((−g)1/4Ψk) = (−g)−1/4 l µ∂µΨr
k . (3.3)

Notice also that there exists a subclass of background fields(g, l), for which one can find coordinate
systems such thatboththe shiftl i andgoi vanish. In thesecomovingcoordinate systems, the above
equations further simplify since−g = hc whereh≡ det(⊥i j ). 6

Having chosen this non-minimal coupling, one verifies that the kinetic term of the rescaled
fields Ψr is insensitive to the "curvature" of bothgµν and l µ (when the limitc2

Ψ → 0 is taken).
Moreover the differential operator which acts on the retarded Green function ofΨr in the equation
of motion ofφ , see eqs. (2.29, 2.30), is also "flat" thereby guaranteeing that the modified version
eq. (2.28) still applies, that is

Dl Ro(x,y) = (−g(x))−1/4 l µ∂µ

(

Ro
r (x,y)

)

(−g(y))−1/4

=
1

ΛLV

δ 4(xµ −yµ)√−g
, (3.4)

whereRo
r (x,y) is the retarded Green function of the rescaled fieldΨr . It obeys (in preferred coordi-

nate systems)∂tRo
r = δ 4/ΛLV , and "defines" the retarded Green functionRo = (−g)1/4Ro

r (−g)1/4

which is a bi-scalar. Hence the equations of motion in an arbitrary background "tensor-vector met-
ric" specified by the couple (gµν , l µ ), are given by eqs. (2.29, 2.30, 3.4) with the substitution of eq.
(3.2).

Several remarks should be made. First, from the simplified equation∂tRo
r = δ 4/ΛLV it might

seem that the background tensor metricgµν plays no role. This is not true, it enters indirectly as it
is used to normalize the vector fieldl µ at every point. Therefore, it intervenes in the specification
that the (proper) energy scaleΛLV stays fixed as the universe (or the comoving volumehc) expands.

Second, in the limitc2
Ψ → 0, the (rescaled)Ψk fields define a new kind of field. They propagate

in an effective space-time given by the time development of the 3-dimensional set of orbits of the
l µ field. Indeed, at fixedk, Ψk(x) can be decomposed in non-interacting local field-oscillators,
each of them evolving separately along its orbit. This situation is similar to the long wave length
(gradient-free) expression of the action of Steward and Salopek[33]. In the absence ofl µ , the
space time geometry must be (nearly) homogeneous for the action of the modesto possess this
decomposition. However, when thel µ field is given, one can identify, even in non-homogeneous

6 To illustrate this point, let us consider FLRW flat metrics. In comoving coordinates, one hasds2 = −dt2 +a2dx2,
andh = hc = a6. In Lemaître coordinatesX = ax, one hasds2 = −dt2 +(dX−Vdt)2, where the velocity isV = HX.
The spatial sections are now the Euclidean space withh = 1, and the (contravariant) components of the unit vector field
arel µ = 1,V. To computehc one should solve the equation of motion of comoving (free falling) observersdX−Vdt= 0,
and use the initial position as new coordinates. This procedure will be donein subsection 3.3 starting with Painlevé-
Gullstrand coordinates to describe the black hole metric andl µ field.
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metrics, every point in space-time in an invariant way by the spatial position ofthe corresponding
"preferred" orbit at some time, and the proper time along the orbit (as long as l µ has no caustic).
We can thus build covariant actions exploiting this possibility and consider fields composed of a
dense set of local oscillators (i.e. one has 1 degree of freedom per point) at rest with respect tol µ .
The fieldsΨk belong to this class of fields here after calledChelvafields.

Third, the analogy between the above formalism and the DeWitt [26] way to handle the short
distance behavior of Green (Hadamard) functions seems worth deepening.

Fourth, even though we have chosen to simplify the equation of motion ofφ by imposing that
the rescaled kernel obeys∂tRo

r = δ 4/ΛLV , the 2pt functions ofφ in curved backgrounds are highly
non trivial, and in particular the anti-commutator (which governs bothPk andnω in eq. (1.6)). The
reason is double, firstGa will be given by a double time integral, see eq. (4.6), and second it is the
kernelN and notR which is the source ofGa.

3.2 Application to cosmology

To get the equation of motion we consider eq. (2.27) (with the curved metric modifications
introduced in the former subsection) in a FLRW metricds2 = −dt2 + a2(t)dxdx. To simplify
the notations, we use the conformal timedη = dt/a and work with the rescaled fieldsφr = aφ
andΨr(k) = a3/2Ψ(k). Notice that their power ina differs. Dropping theser indices, working
in Fourier transform with respect to the (dimensionless) comoving coordinatesx, the equation of
motion of Heisenberg operatorφp is

(

∂ 2
η +2γn ∂η +(ω2

p(η)+∂ηγn)
)

φp = gn ∂ηΞo(p) , (3.5)

The conformal frequencyω2
p(η) = p2 − ∂ 2

ηa/a is that of a rescaled minimal coupled massless
field. In this expression, as everywhere in this subsection,p is the conformal (dimensionless and
constant) wave vector. The time dependent coupling coefficient is

gn ≡ g a1/2 ΛLV (p/aΛLV)n+1 . (3.6)

Its unusuala-dependence follows from the Generalized Equivalence Principle and byhaving taken
into account the different rescaling of the two fields.

Straightforward algebra givesγn(η), the decay rate in conformal time. When compared to the
comoving frequencyp to get the relative strength of dissipation, one gets

γn(η)

p
=

1
2

( p
aΛLV

)2n+1
=

1
2

( pphys(a)

ΛLV

)2n+1
. (3.7)

In the last equality we have re-introduced the proper momentumpphys(a) = p/a. With this equation
we verify that, at any time in an expanding universe and for any modeφp, the relative strength of
dissipation is simply that obtained in Minkowski space at the corresponding energy scale, see eq.
(6.2). This is nothing but the expression of the GEP, at the level of the dynamical equations.

Notice however that the equation of motion in an expanding universe contains a frequency
shift

g2
n

ΛLV
∂η(lngn) = p2(aH

p

)( p
aΛLV

)2n+1
. (3.8)
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We have factorized out the unperturbed frequency square to get the relative value of the shift. It
vanishes both when dissipation is negligible and whenaH/p≪ 1, i.e. when the expansion rateH
is negligible with respect to the proper momentum. From this expression we can already conclude
that it cannot play any role when the two relevant scalesH andΛLV are well separated, i.e. when

σ ≡ H
ΛLV

≪ 1. (3.9)

Indeed when the physical momentum is high and of the order ofΛLV , the relative frequency shift is
proportional toσ , and when the physical momentum is of the order ofH (at horizon exit, see the
Figure), it is proportional toσ2n+1.

Figure caption. We have represented in a log-log plot and by a dashed line the evolution of
dH = RH/a, the Hubble radius in comoving coordinates, as a function of a, both during infla-
tion wherein dH ∝ 1/a and during the radiation era wherein dH ∝ a. We have represented by a
thick line the trajectory of the cutoff length scale dΛ = 1/aΛLV in the case where1/ΛLV ≪ RH

during inflation. The dotted line corresponds to an intermediate fixed proper lengthλ which obeys
1/ΛLV ≪λ ≪Rin f l .

H . The vertical line represents a fixed comoving scale dp = 1/p. Below the cutoff
length, all modes are overdamped. When a mode exits the cutoff length, itbecomes underdamped
and starts propagating. When it crosses the intermediate lengthλ , it behaves as a free mode, and
gets amplified only when exiting the Hubble radius. As explained in the text, adiabaticity, which
is guaranteed by1/ΛLV ≪ RH , guarantees in turn that, nearλ , modes are all born in the Bunch-
Davies vacuum when the environmentΨ is in its ground state.

In quantum settings however, it is not sufficient that the equations of motionpossess their
Minkowskian form because the quantum state of the system might be affected by the combined
effect of dissipative effects and the expansion rate.

In free settings, when assuming that allφp are in their ground state at the onset of inflation, i.e.
working in the Bunch-Davies vacuum, the anti-commutator, see eq. (4.5), evaluated at equal time
η is simply given by

Gf ree
a (η , p) = |φ in

p |2 =
1

(2p)

(

1+
1

(pη)2

)

. (3.10)
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In the last equality we worked for simplicity with a constant Hubble parameterH, in which case
a = −1/Hη . Then the power spectrum of the physical (un-rescaled) field given by

Pf ree
p (η) = 2p3Gf ree

a (η , p)

a2(η)
= H2

p (1+(pη)2) , (3.11)

becomes constant after horizon exit. We have added ap subscript toH because in slow roll infla-
tion, the relevant value ofH(t) for the p-mode is that evaluated at horizon exit, i.e.Hp = H(tp),
wheretp is given byp/a= H. The above equation shows thatPp acquieres some scale dependence
throughHp. Similarly thedeviationsfrom this standard behavior stemming from some UV modifi-
cation of the theory will also depend onp throughHp (and its derivatives). For an explicit example,
we refer to [32] where the modifications of the spectrum stem from the factthat pηin is taken large
but finite.

In the presence of dissipation, the expression forGa radically differs from the above. Indeed,
when dissipative effects grow with the energy (as we suppose it is the case), one reaches the conclu-
sion that in inflation the decaying solution of eq. (3.5) is completely erased (unless one fine-tunes
the number of e-foldings so as to keep a residual amplitude). That is, the mode operator is entirely
given by its driven term, the second term in eq. (2.19). Hence the power spectrum is also purely
driven and given by the second term of eq. (4.6):

Gdriven
a (η ,η , p) =

∫

dη1

∫

dη2Gr(η ,η1, p)Gr(η ,η2, p)N(η1,η2, p) , (3.12)

whereGr is the retarded Green function, solution of eq. (3.5) withδ (η −η1) as a source, and
where the kernelN is the anti-commutator ofgn l µ∂µΨp, the source of eq. (3.5). From eq. (3.12)
we learn that only the (initial) quantum state of the environment matters. In otherwords, because
of the strong dissipation at early times, the power spectrum is independent of the initial state ofφ ,
whatever it was.

In spite of these differences, one can show that when the two scales arewell separated, when
eq. (3.9) is satisfied, and when the environment is in its ground state, the predictions are unchanged,
i.e. the power spectrum obtained fromGdriven

a coincides with that obtained withGf ree
a because the

combined evolution ofφ + Ψ consists in a parametric (adiabatic) succession of stationary states
ordered by the scale factora.

The proof goes in two steps. First scale separation, guarantees the adiabaticity of the evo-
lution. That is, whenη andη ′ are close (in the sense that 1−a(η)/a(η ′) ≪ 1), Gdriven

a is well
approximated by

Gdriven
a (η ,η ′, p) ≃ Gstatio

a (η −η ′;ωp(a),gp(a)) =
∫

dω
2π

eiω(η−η ′) Ga(ω ;ωp(a),gp(a)) , (3.13)

whereGa(ω ;ωp(a),gp(a)) is the Fourierω-component of the anti-commutator calculated with the
Hamiltonian characterized by the constant values of the frequencyωp(a) and the couplinggp(a)

both evaluated witha = a(η). In Appendix B, the stationary value of these anti-commutators
has been algebraically solved for all frequencies and all couplings, see eq. (5.11). Moreover,
since by hypothesis, we are in the vacuum, eq. (5.9) also applies. In otherwords, the value
of the anti-commutator follows from that ofGc. This is enough as it guarantees that when the
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modeφp becomes free, i.e. much afterΛLV-exit but before horizon-exit (H ≪ p/a ≪ ΛLV), eq.
(5.14) applies, see the Figure. Thus,irrespectivelyof what was the coupling with the environment,
adiabaticity implies

Gdriven
a (η ,η , p) → Gf ree

a (η ,η , p) =
1

2ωp(a)
, (3.14)

thereby guaranteeing that no modification of the Power Spectrum will be found. In brief adiabatic-
ity means that the evolution proceeds slow enough for not inducing any (non-adiabatic) transition
which in the present case would correspond to pair creation.

The second part of the proof consists in providing an upper bound forthe probability amplitude
of obtaining a non-adiabatic transition. This amplitude is governed by the relative frequency change

∂ηωe f f
p

(ωe f f
p )2

= − γ2
n∂η lnγn

(p2− γ2
n)3/2

= (2n+1)
H γ2

phys

(p2
phys− γ2

phys)
3/2

, (3.15)

wherepphys= p/a andγphys= γ/a are the physical momentum and decay rate. Therefore, going
backwards in time from the free regime in the underdamped regime, up top2

phys > 4γ2
phys (i.e.

pphys< ΛLV), the non adiabatic parameter raises from zero but stays bounded by

∂ηωe f f
p

(ωe f f
p )2

< 3(2n+1)σ
( pphys

ΛLV

)4n+1
< 3(2n+1)σ ≪ 1. (3.16)

This guarantees that the amplitude for the system to jump out the ground state is bounded byσ (up
to an overall factor which plays no role). There is no need to study the stability of the ground state
in the transitory regime from underdamped to the overdamped modes (forpphys> ΛLV), because
whatever transitions happened is suppressed by a factore−

∫

γdt ≃ exp(−1/σ(2n+ 1)) ≪ 1. This
completes the proof that scale separation guarantees adiabaticity.

3.3 Dissipation in Black Hole metric

In spite of the fact that the background metric is no longer homogeneous, theeffects of dissi-
pation on Hawking radiation can be studied along lines similar to the above.

For simplicity we consider only spherically symmetric and stationary BH metrics. Wealso
choose the unit vector fieldl µ to be stationary and associated with Freely Falling observers which
start at rest at infinity. In this case, the expressions for both the metric and l µ simplify using thePG
(Painlevé-Gullstrand) coordinates,t, r,θ ,φ . One has

ds2 = −dt2 +(dr−vdt)2 + r2dΩ2 ,

lµ = (1,v(r),0,0) ,

gµν = −lµ lν+ ⊥µν , with ⊥µν= diag(0,1, r2, r2sin2 θ) , (3.17)

wherev(r) < 0 is the radial velocity of the FF observers, andt their proper time, not to be confused
with the "Schwarzschild" (Killing) time. From the last equation we learn that the 3-surfaces per-
pendicular tol µ are simply the Euclidean space. Thereforeh = det⊥i j = r4sin2 θ is independent
of the expansion ofv, as it is the case in cosmology in Lemaître coordinates, see footnote 6.
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HoweverPG coordinates are not comoving along thel µ field since the shift is given by~v.
To determine the space-time dependence of the comoving volume element

√
hc, we introduce the

"preferred" coordinater0 = r0(t, r) defined by

∫ r

r0

dr′

v(r ′)
= t . (3.18)

By definitionr = r(t, r0) gives the trajectory of the FF observer who started fromr0 at t = 0. Thus,
for every(t, r), r0 = r0(t, r) gives the value of radial coordinate at timet = 0. Using

dr−vdt =
∂ r
∂ r0

dr0 =
v(r)
v(r0)

dr0 , (3.19)

the line element in preferred (and comoving) coordinates(t, r0) reads

ds2 = −dt2 +
( v(r)

v(r0)

)2
dr2

0 + r2dΩ2 , (3.20)

where r ≡ r(t, r0). Therefore, the evolution of a comoving volume centered along ther0-FF-
trajectory is given by

h1/2
c (t, r0) =

v(r)
v(r0)

× r2sinθ = h1/2
c2D × r2sinθ . (3.21)

As in cosmology, it is a well-defined time dependent function. In the presentcase, it is governed
by the (shift) functionv(r), and the FF trajectoriesr = r(t, r0).

Because of spherical symmetry, our Gaussian action separates into actions at fixed angular
momentum :ST = Σl ,mST(l ,m), see eq. (2.12). Each of them contains two-dimensional fields
φl ,m(t, r) andΨl ,m(t, r). We here consider only the s-wave sector, and drop the 0,0 index. We work
with the rescaled field̃φ = rφ , Ψ̃ = r Ψ and drop the tilde. Taking into account the 4D character of
the problem and eqs. (3.2, 3.3), the action reads

ST =
1
2

∫ ∫

dtdr r2
[

(

(∂t +v∂r)
φ
r

)2−
(

∂r
φ
r

)2
]

+
1
2

∫

dk
∫ ∫

dtdr r2
[

(

(∂t +
v∂r +∂rv

2
)
Ψk

r
−

(

(kΛLVπ)
Ψk

r

)2
]

+gΛLV

∫ ∫

dtdr r2
[

(

(
∂r

ΛLV
)n+1 φ

r

)(

(∂t +
v∂r +∂rv

2
)
∫

dk
Ψk

r

)

]

. (3.22)

By varying this action, there is no difficulty to get the equations of motion. One verifies in particular
that the kinetic action of the (rescaled)Ψr = h1/4

c2DΨ̃ field is as in 2D flat space when expressed in
preferred coordinatest, r0:

SΨ =
1
2

∫

dk
∫ ∫

dtdr0
[

(

∂tΨr
k

)2−
(

(kΛLVπ)Ψr
k

)2
]

. (3.23)

This means that the Chelva fieldΨr
k(t, r) is a collection of independent oscillators labelled byr0.

In other words,Ψr
k(t, r) depends ont andr as

Ψr
k(t, r) = Ψr

k(t; r0(t, r)) . (3.24)
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One also verifiesl µ∂µΨr
k(t, r) = ∂tΨr

k(t; r0)|r0 , becausel µ∂µ r0(t, r) = 0, by definition. These facts
guarantee that eq. (3.4) applies.

By a direct analysis of the equation of motion, one obtains two important properties. First,
one verifies that there is no "dilution" of the dissipation rate as time passes. This is non trivial (see
[30] for ana priori similar system in which a dilution does occur). This steady behavior is due to
the fact that the Chelva fields form a 3 dimensional dense set (as opposed to the discrete lattice of
[30]) which allows the varioushc to cancel each other in the determination of the dissipation rate.
Moreover one also verifies that stationarity is preserved, not only in the dissipative aspects, but also
in the driven properties. This is non trivial either sincehc depends ont and appears in the action
SΨφ when working with the rescaled fieldsΨr .

With these two results, one can study the impact of dissipation on Hawking radiation by apply-
ing the technics of [14] which were further developed in [31][34] to study the impact of dispersion.
When the two scales are well separated, i.e. whenκ/ΛLV ≪ 1, whereκ = ∂rv evaluated at the
horizonv = −1, one can work in the near horizon approximation, whereinv = −1+ κx, and in
the p-representation. In this representation, the velocity profile becomes a non-trivial operator
v̂ = −1− iκ∂p, in fact the only one. When working at fixed Killing frequencyωK , one obtains
the radial propagation of the interacting degrees of freedom in terms of anadiabatic evolution of
Green functions and kernels written in thep-representation. These are given in Appendix B, with
the frequencyω = i∂t of that Appendix replaced by the FF frequencyΩ = i∂t + iv∂r = ωK − v̂p.
We are planning to report on this soon.

Acknowledgements.I am grateful to Dani Arteaga and Enric Verdaguer for common work
allowing me to deepen my understanding of dissipative effects. I am also grateful to Ted Jacobson
for having repetitively invited me to covariantize my action. I am thankful to manypeople for
having had the opportunity to present this work starting with the IAP in October2004. This work
has been supported by the European Science Foundation network programme "Quantum Geometry
and Quantum Gravity".

4. Appendix A: Two-point correlation functions

Since the models we consider are Gaussian, the complex function of eq. (2.9) governsall
observables built with the Heisenberg field operatorφ . To analyse it, as mentioned in the text, it is
appropriate to study separately the commutator and the anti-commutator.

We start with the simple part, the commutator

Gc(t, t
′; p)δ 3(p−p′) ≡ Tr[ρT [φp(t),φ†

p′(t ′)]− ] . (4.1)

It possesses several (well-known) properties. First, using eq. (2.19) one sees that it decomposes
into two terms, one due to the non-commuting character ofφd, the other due to that ofΨ0

i . Second,
since both commutators are c-numbers, it is independent ofρT , the state of the system. Hence, for
all Gaussian models, one has

Gc(t, t
′; p) = [φd(t),φd(t ′)]− +

∫∫

dt1dt2Gr(t, t1)Gr(t
′, t2)D(t1, t2) , (4.2)
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where the ”dissipative” kernelD(t1, t2) is given by

D(t1, t2) = ΣiΣ j gi(t1)g j(t2) [Ψo
i (t1),Ψ

o
j (t2)]− = Σi gi(t1)G

o
c,i(t1, t2)gi(t2) . (4.3)

Notice how this kernel combines the various couplings constants and the non-commuting properties
of the environment.

The third property is the most relevant for us (and perhaps also less often mentioned). To all
orders ingi and for all values ofgi ,Ωi (even with arbitrary time dependence), the following identity

i∂tGc(t, t
′; p)|t=t ′ = 1, (4.4)

holds because it corresponds to the ETC of eq. (2.4). The 1 on therhs is guaranteed by the
Hamiltonian character of the evolution of the entire systemφ + Ψ. It is therefore this equation
which replaces the constancy of the Wronskian that was relevant in the case of free evolution.
Eq. (4.4) is crucial for us because the operatorφd(t) exponentially decays int − tin wheretin is
the moment when the interactions are turn on, since it is an homogeneous solution of eq. (2.20).
Hence the first term in eq. (4.2) decays asexp−γ(t + t ′−2tin). Therefore at late times with respect
to tin in the units of the inverse decay rateγ−1, the non-commuting properties of field operatorφ̂
areentirely dueto those of the environment degrees of freedom,Ψ̂.

We now analyze the anti-commutator,

Ga(t, t
′; p)δ 3(p−p′) ≡ Tr[ρT {φp(t),φ†

p′(t ′)}+ ] . (4.5)

When the density matrix factorizes asρT = ρφ ρΨ before the interactions are turned on (as it is the
case in the "free" vacuum),Ga also splits into two terms,

Ga(t, t
′; p) = Tr[ρφ{φd(t) ,φd(t ′)}+ ]+

∫∫

dt1dt2Gr(t, t1)Gr(t
′, t2)N(t1, t2) . (4.6)

The first term depends only on the initial state ofφ . Similarly, the driven term depends on the state
of the environment through the ”noise” kernel

N(t1, t2) = ΣiΣ jTr[ρΨ {gi(t1)Ψo
i (t1) ,g j(t2)Ψo

j (t2)}+ ] . (4.7)

As for the commutator, in the presence of dissipation, the first term exponentially decays, express-
ing the progressive erasing on the information contained in the initial state ofφ . At late times
therefore, as one might have expected, it is the state ofΨ which fixes the anti-commutator ofφ .
This allows to remove the restriction that initially the density matrices factorizes. Ifone is interest-
ing by late time behaviour, onlyN matters.

In brief, two important results are been obtained. First, at late time, the Heisenberg fieldφ
reduces to its driven term, the second term of eq. (2.19), since both its commutator and anticom-
mutator are determined by those ofΨo

i . Second, only two (real) quantities determined by the envi-
ronment, the setΨo

i and their couplings, govern the two-point functions ofφp, namely the kernels
D andN of eqs. (4.3) and (4.7). Therefore the set of environements (Gaussian or not) possessing
the same kernels will give rise to the same 2pt functions forφ . Hence they should be viewed as
forming an equivalent class. The degeneracy can be lifted by considering correlations with observ-
ables containing the operatorsΨi , or higher order correlations functions ofφ (for non-Gaussian
environements), two possibilities we shall not discuss in this paper.
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In order to be able to computeGc andGa, two different routes can be adopted. Whengi(p)

andΩ(p) are constant, one should work in Fourier transform because the equations can be alge-
braically solved, in full generality. Instead whengi(p) and/orΩ(p) are time-dependent, as it will
be the case in expanding universes (otherwise the theory would be conformally invariant), it be-
comes imperative to choose the set ofΨi ’s and their frequencyΩ2

i (p) so as to simplify the time
dependence of the equations. In the body of the article, we proceed with timedependent approach
since it will allow us to combine general covariance and dissipation. We present below the Fourier
analysis which is straightforward and well known [20]. We encourage the reader unfamiliar with
the treatment of dissipative effects in Quantum Mechanics to read it.

5. Appendix B :
Stationary states, and vacuum 2-point functions

In this Appendix, we provide relationships betweenGc, Ga which always hold in stationary
states. In these cases, the Green functionsGc, Ga and the kernelsD, N are functions oft − t ′,
and are related to each other in a fundamental way, generally refered asa Fluctuation-Dissipation
relation. We briefly explain its origin and its physical implications in the present context. We start
the analysis by with the most basic object: the retarded Green functionGr .

5.1 The retarded Green function

The Fourier transform of eq. (2.19) gives

(−ω2 +ω2
p)φp(ω) = Σigi(p)Ψo

i (p,ω)+Σig
2
i (p)Ro

i (ω ; p)φp(ω) , (5.1)

where

Ro
i (ω ; p) =

(

−(ω + iε)2 +Ω2
i (p))

)−1
, (5.2)

is the Fourier transform (defined as in eq. (2.10)) of the retarded Green function ofΨi . As usual,
its retarded character is enforced by the imaginary prescription of the two poles to lay in the lower
half plane (ε > 0). The solution of the above equation is

φp(ω) = φd
p (ω)+Gr(ω , p)Σigi(p)Ψo

i (p,ω) , (5.3)

where the Fourier transform of the retarded Green function ofφ , the solution of eq. (2.20), always
takes the form

Gr(ω , p) =
(

−(ω + iε)2 +ω2
p +Σr(ω , p)

)−1
. (5.4)

All effects of the coupling to theΨi ’s are thus encoded in the (retarded) self-energyΣr(ω , p). For
Gaussian theories, it isalgebraicallygiven by

Σr(ω , p) = −Σi g
2
i (p)Ro

i (ω , p) . (5.5)

The dissipative effects are governed by the imaginary part ofΣr(ω , p). In the present case, one has

2ImΣr(ω , p) = −Σi g
2
i (p)Go

c,i(ω , p) = −D(ω , p) . (5.6)
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To get the first equality we have used the fact that in stationary states the retarded Green function
and the commutator are related by 2ImGr(ω) = Gc(ω) for all degrees of freedom, free or interact-
ing. In the second equality, we have introducedD(ω), the Fourier transform of the kernel of eq.
(4.3).

Several observations should be made here. First, from eq. (5.2), we obtain thatD(ω) is pro-
portional toΣig2

i δ (ω −Ωi). Therefore there is no dissipation for lower frequencies than the lowest
value ofΩi . This simply follows from energy conservation. Second, to obtain "true" dissipation,
D(ω , p) should be a continuous function and not a sum of delta. This can only happen when the
Ψi form a dense ensemble. In next Section, we shall thus replace the discrete sum oni by an
integral on a continuous variable,k. We shall not consider the discrete cases even though these
could display interesting properties. Third, from a phenomenological pointof view, onlyD(ω , p)

matters. Hence we cannot separately know what is the spectrum of the environment, which is given
by Ro

i (ω , p), and what is the coupling strenghtg2
i (p). This is a good thing, because when working

in time-dependent settings, we shall exploit this equivalence to chose the simplest model ofΨi ’s
which gives the kernelD(ω , p) we want.

It is also worth noticing that the dispersive (real) effects are not directlyrelated toD (or N).
These are governed by the even part ofΣr(ω , p) which is given by

ReΣr(ω , p) =
∫

dω ′

2π
D(ω ′)
ω −ω ′ , (5.7)

where the integral should be understood as a principal value. This integral relationship explains
why one often founds that dispersive effects appear before dissipative effects (for increasingω).
We also learn that the dispersive models studied in the litterature are incompatiblewith the above
relations since they assume both ReΣr 6= 0 and ImΣr ≡ 0. Therefore these models cannot be viewed
as resulting from dynamical processes.

5.2 Fluctuation-Dissipation relations and vacuum self-energy

In this subsection, we derive the relationships betweenGc, Ga andΣF which exist in the true
(interacting) ground state.

In interacting theories, the only stationary states are thermal states, see e.g.[29]. In these
states, the Fourier transform ofD andN are related by

N(ω) = D(ω) coth(βω/2) ,

= D(ω)sign(ω) [2n(|ω |)+1] . (5.8)

In the second line,n(ω) is the Planck distribution. It gives the mean occupation number ofΨo
i

quanta as a function of the frequency (measured in the rest frame of the bath). The above relation
directly follows from the fact that the individual commutators and anti-commutators of the free
fieldsΨo

i obey this relation, as any free oscillator would do. It implies that the Fourier transform of
Gc andGa are also related by

Ga(ω) = Gc(ω)sign(ω) [2n(ω)+1] . (5.9)

It should be stressed that this equation is exact, i.e. non-perturbative, and valid for all theo-
ries, Gaussian or not. (It indeed directly follows from the cyclic properties of the trace defining
Gβ (t, t ′) =Tr[e−βHT φ(t)φ(t ′)]).
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For Gaussian models, there exists an alternative direct verification of eq.(5.9). In fact, it
suffices to note that in steady states the decaying terms of eqs. (4.2) and (4.6) play no role, and that
the Fourier transform of the driven terms are respectively given by

Gc(ω) = |Gr(ω)|2D(ω) , (5.10)

Ga(ω) = |Gr(ω)|2N(ω) , (5.11)

since the Fourier transform of the retarded Green function obeysGr(ω) = G∗
r (−ω), see eq. (5.3).

Irrespectively of the complexity ofGr , i.e. irrespectively of the functionsgi(p), Ωi(p) and the set
of theΨi fields,Gc andGa are thus related to each other by the FD relation (5.9).

These universal relations will be relevant for to inflationary models wherein only the ground
state contributes. In particular, they imply thatin the true vacuum, i.e. whenn(ω) = 0, Gc andGa

are exactly related byGa(ω) = Gc(ω)sign(ω). Hence the Wightman function

GW =
1
2
(Gc +Ga) = Gc θ(ω) , (5.12)

is determined by the commutator and contains only positive frequency, as in thefree vacuum. Equa-
tions (5.10, 5.11) also allow to compute the vacuum self-energy of the Feynman Green function in
eq. (1.2). For Gaussian models it is given by

2ImΣF(ω) = −D(ω)sign(ω) = 2ReΣig
2
i Go

F,i(ω) , (5.13)

where thep dependence has not been not explicitized, and where we have taken thereal part
because of thei in the numerator of eq. (1.2). With the last equality we recover the fact that in
the vacuum, it is sufficient to consider Feynman Green functions. In non-vacuum states, and in
non-stationary situations, this is no longer true, thereby justifying the use ofthe in− in machinery
(also called Schwinger-Keldish formalism).

Before specializing to a specific class of models giving rise to dissipation at high frequency,
we make a pause by asking the following important question: What should be known about theΨi

fields to get eqs. (5.10, 5.11, 5.12) ? We have proven that it is sufficientfor theΨi ’s to be canonical
fields, but is it necessary ?

The answer is two fold. On one hand, theΨi cannot be stochastically fluctuating (i.e. commut-
ing) quantities because this would lead to a violation of eq. (5.8) that would imply the violation of
eq. (5.9) and the ETC eq. (4.4).7 They cannot be either a combination of quantum and stochastic
quantities because this would still lead to a violation of the ETC. Hence they must be built only
from quantum (canonical) degrees of freedom.

On the other hand, theΨi ’s can be composite operators,8 i.e. polynomials of some (unknown)
canonical fields. Indeed, their commutators would still be all related to their anti-commutators

7This constitutes the simplest proof that it is inconsistent to couple quantum variables to stochastic (or classical)
ones. If one does so, the ETC of the dressed quantum variables will always be dissipated after a time of the order ofγ−1.
One can therefore view the experimental evidences for the ETC of somedegrees of freedom as a very strong indication
that all dynamical variables in our world are quantum mechanical in nature. Thisline of thought has been used by
W. Unruh to prove that gravitational waves must be quantized.

8I am grateful to Albert Roura for bringing my attention to this question.
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by the FD relation eq. (5.8), and this even though both depend non-linearly on n(ω) in non-
vacuum states. The difference with Gaussian models is that these non-linear operators possess
non-vanishing connected higher order correlation functions. Hence,the self-energiesΣr , ΣF will
contain higher a series in powers ofg2

i , and not just a single quadratic term as in eq. (5.5, 5.13).
Nevertheless these higher loops corrections preserve the validity of eq.(5.12) in the ground state,
as well as that of eqs. (5.10, 5.11) in any thermal state, when properly undertood, i.e. withD now
defined by -2ImΣr (as the effective dissipation kernel), andN related to it by the FD relation.

In brief, we have reached/recalled the following results. Firstly, the q-number combination
Ξ = ΣigiΨi , the fluctuating source term ofφ , must obey the FD relation (5.8). This can either be
postulated, or better, be viewed as resulting from the fact thatΞ is entirely made out of quantum
degrees of freedom. Secondly, to lowest order term ing, the self-energy can be obtained by treat-
ing Ξ as a quantum Gaussian variable, whatever its composition may be. Thirdly, when dealing
with non-Gaussian theories, once having computedΣr(ω), the resulting equations for the 2-point
functions have the same structure and the same meaning as in Gaussian theories, with D replaced
by -2ImΣr . Therefore, the entire phenomenology of two-point functions can be described with
Gaussian settings.

5.3 The double limit: g2T → ∞ followed by g2 → 0.

To perform a phenomenological analysis, we need to understand how thetheory behaves in
transitory regime from dissipative to free propagation. Similarly, to study primordial spectra in
inflation or Hawking radiation, we also need to understand how free motion emerges as the proper
frequency get red-shifted. It is therefore relevant to study the behavior of the two-point function in
the following double limit.

One first takesg2T → ∞, whereT = t−tin, tin being the moment when the interactions are turn
on, andt the moment when one studies the field properties. This limit implies that the decaying
term in eq. (2.19) plays no role. Therefore, near timet, the Heisenberg fieldφ(t) is a composite
operator which only acts in the Hilbert space ofΞ.

Secondly, one considers the "free" limitg2 → 0 of that composite operator. One could naively
conclude thatGc andGa of eqs. (5.10, 5.11) would vanish since bothD andN are proportional
to g2. However, this is not the case, because the prefactor in these equations, |Gr |2, is singular in
this second limit. In fact, one verifies that it scales in 1/g2 in such a way that, in the (interacting)
vacuum, one always recovers

GW(ω)g2→0 =
1

2ωp
2πδ (ω −ωp) . (5.14)

This is the standard vacuum fluctuations of a free oscillator of frequencyωp.
Two important lessons have been reached. First we learned is that eventhoughφ actsonly on

theΞ-Hilbert space, wheng2 → 0, it behaves as if it were a free mode possessing its own Hilbert
space, with no reference toΞ-dynamics. Secondly, in spite of this, the quantum state in the would
be Hilbert space is still exactly that ofΞ. Therefore, in stationary situations, the only "souvenir"
kept by the composite is the equilibrium distributionn(ω) inherited from its parents.

Let us now emphasize that the above limit is relevant for non-Gaussian models as well. In-
deed, in the limitg2 → 0, there will always be a value ofg2 sufficiently small that the model can
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be well approximated by a Gaussian model. Therefore the behavior of the 2-point functions in
the transitory regime from dissipation to free propagation can be analyzed without restriction by
studying Gaussian models (at least in the quasi-static limit).

6. Appendix C:
Dissipative effects aboveΛLV . The Phenomenology

We now have all the tools to understand models giving rise to dissipation in the vacuum above
a critical energy scaleΛLV . We proceed in two steps. First, from a purely phenomenological
approach, we provide the class of dissipative models wherein the imaginarypart of the self-energy
is governed by a single term, in analogy with the dispersion relations of eq. (1.5). We then show
how to obtain this class of models starting from an action in order to prepare application to inflation
and other curved geometries.

If one considers only stationary situations (i.e. static metrics and stationary states), and if one
adopts a phenomenological point of view, one can simply choose the function D(ω , p) entering eq.
(5.6) and eq. (5.10)as one wishes. There is indeed no restriction onD(ω , p) besides its constitutive
properties, namely being odd inω and giving rise to poles inGr all localized in the lower halfω
plane. In this we have reached our first aim, namely identify how to generalyze the free settings so
as to incorporate some arbitrary dissipative effects.

We can thus consider the dispersive models which correspond to those defined by eq. (1.5).
They are charaterized by a single term giving rise to dissipation aboveΛLV . In the vacuum, they
are fully specified by the imaginary part of the (retarded) self-energy

−ImΣ(n)
r (ω , p) =

ω
ΛLV

p2
(

p
ΛLV

)2n

= 2ω γn . (6.1)

In these models, the decay rate (inverse life time) on the mass shell is

γn =
p
2

(

p
ΛLV

)2n+1

. (6.2)

To verify it, assuming that ReΣr = 0, the two poles ofGr(ω) in eq. (5.4) are located in

ω±(p) = ±
√

ω2
p− γ2− iγ . (6.3)

From this, by inverse Fourier transformGr(ω), one obtains that the decay rate is indeedγ in the
underdamped regime, forω2

p > γ2. In the overdamped regime, forγ2 > ω2
p, the decay rates of the

two independent solutions ofG−1
r φd = 0 areΓ± = γ ±

√

γ2−ω2
p.

One thus have the following behavior asp grows. Forp ≪ ΛLV , ω± ≃ p, and one has a
free propagation which is slightly damped with a life time in the units of the frequency given by
(ΛLV/ω)n+1 ≫ 1. Instead the opposite regime of high momentap≫ ΛLV , deep in the overdamped
regime, the two rootsω± are real and the notion of propagation (in space-time) is completely
absent. In anticipation to what will occur in inflation or in black hole physics, we invite the reader
to study the migration of the poles ofGr when extrapoling backwards in time a mode, i.e. asp
increases. (Remember that the physical momentum of a mode in cosmology isp(t) = po/a(t)
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wherepo is the norm of the conserved comoving wave vector, whereas near a black hole horizon
one findsp(r) = ω/x wherex = r − rS is the proper distance from the horizon measured in a freely
falling frame, andω the conserved Killing frequency measured asymptotically.)

One could of course generalize the above class by considering in eq. (6.1) polynomials inp
dimensionalized by different UV scales. However, unless fine tuning, thephenomenology of the
transition from the IR dissipation-free sector to the dissipative sector will bedominated a single
term. One should also consider the possibility that ImΣ strictly vanishes below a certain frequency
Ω1. This would be the case when the spectrum of theΨ fields possesses such a gap, see the remarks
after eq. (5.6).

Having the phenomenology of dissipative unitary models under control (withdispersive and
dissipative related by Kramers relations, see eq. (5.7)) one could confront particle and astro-particle
physics data and put lower bounds onΛLV for eachn, in analogy with what was done for (pure)
dispersion in [2].
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