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1. Introduction

Even though relativistic QFT provides an excellent description of partlysips, being non-
compact, Lorentz symmetry has been tested only up to a certain energflkcale[s one cannot
exclude the possibility that some high energy processes break the ineariader boosts, thereby
introducing a threshold energ)y, and a preferred frame. It is therefore of interest to understand
what would be the signatures of QFTs wherein this possibility is realized.

Unlike dispersive effects which have been studied in detflils [2], disegaffects have so
far received much less attention. In this work we provide the grounddhi®extension. To this
end, we shall first construct QFT displaying dissipative effects in thelbdéed, to handle dis-
sipation requires settings which are wider than those of relativistic andrdigp&FTs because,
if one introduces dissipation from the outset in the usual settings, oneslbasle unitarity and
predictability. To preserve them, we shall therefore work with Hamiltonianrtbedn which dis-
sipative effects are caused by interactions with additional degreeseafdm. Doing so, we shall
discover that dissipative effects ageneric That is, when starting with a bare Lagrangian in which
LI is broken by some kinetical or interaction term in the UV, the effective théihe generating
functional) unavoidably develops dissipation above a certain enerdgy, staply because noth-
ing can prevent this. (With relativistic QFT instead, LI did prevent it). Westhaarn that it is
illegitimate to deal with purely dispersive QFT, since these do not satisfy Kfeinaedations.

Being engaged in a procedure of generalization, we should have aédg#aaf our motivations,
aims, and requirements. We first present these aspects.

1.1 Two requirements

1%, Unitarity
As already mentioned, we require that our QFT evolve unitarily. This reqment implies that the
dissipative effects be produced by the Hamiltonian dynamics of the entilensyf other words,
we shall introduce additional degrees of freedom calleavhich play the role of an environment,
and couple them to the original fieldin such a way that the latter develops dissipative effects.
This means that the (dressed) two-point functiompefill be given by the usual QM trace

Gu(xy) = Tr | Br $(X) G(y)]. (L1)

wherepr is the initial matrix density of the entire systéth- ¢, wherecﬁ(x) is the Heisenberg field
operator evolved with the time ordered exponential of the total Hamiltonianyhete the trace is
taken over bothV andg.

24, Stationarity and homogeneity
Our second requirement concerns the properties of dissipativeésefiéhen considering the the-
ory in vacuum and in Minkowski space-time, we impose that the dissipafizetebecome signif-
icant only above a critical enerdyiy, and that they preserve the stationary, the homogeneity, and
isotropy of flat space-time. In this case, dissipative effects definderprd frame which is inertial
and globally defined.
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Then, irrespectively of the properties of the additional degrees el and their inter-
actions with¢, the Fourier transform of the retarded Green funct@tx,y), which is given by
Gr(X,Y) = B(tx —ty) 2ImGw (X, y), whereGy is the Wightman function of eq[ (.1), is of the form

(-e?+pP+2R(0.p)

Gr(w, p) = (1.2)

In the true vacuum, at the level of the 2 pt functions, the dissipative (dise¢ effects are indeed
completely characterized by the imaginary and odd (real and even) partohthe (retarded)
self-energyzr(w, p).

In these expressions, the energyand the spatial momentum squarehave been defined in
the preferred frame. To prepare the covariantization of our theodytlaerefore its extension to
curved space-time, it is usefull to characterize the preferred framedaordioate invariant way by
a unit time-like vector field, here after calléé. Thenw andp? are given by

w=I* Py, p2 =1H PuPv , (1.3)

where L#V= nHY 4 [H]V is the (positive definite) metric in the spatial sections orthogon.to

The novelty is thakg is a function ofw and p separately, and not only of the relativistic
invariantw? — p? as it is the case in relativistic QF T. Wh&rdepends on bott andp, dissipation
can become significant above a critical eneagythe mass sheli.e. along the minima of the
denominator of eq[(3].2); a possibility forbidden in LI theories.

With the observation of the simplicity of ed. (IL.2), we understand that mosedggribperties
of W will be irrelevant when restricting attention to observables built with @nlyn other words,
the effective action ofp only retains little information abou¥ in its moments, the second of
which being the self-energy. This is very important, because we shall exploit this arbitrariness
by choosing the simplest models¥fwhich deliver the required properties bf

1.2 Aims and Motivations
1.2.1 The phenomenology and the links with Quantum Gravity

We first aim to describe the phenomenology of dissipative effects in Miskospace-time and in
vacuo. This is rather easy. From ef]. [1.2) we understand that themleewology of dissipative
effects respecting our (minimal) restrictions will be governed by a limited seenations. In fact,
at the level of 2-pt functions, the imaginary part 0fis the only relevant quantity. One easily
verifies that the following self-energies induce significant dissipation abve/ v

w 2\"
Im=g (@, p) =~ P (;) . (1.4)
LV

Later in the text, we shall provide Lagrangiansiéfind ¢ which produce this class of imaginary
self-energies. We can already relate this class to the set of non-linparsiem relations which
have been used in phenomenological studies:

W =RA(p?) = p? £ p? <,€;>n+0((p2)”+2) . (L5)
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The + (—) sign gives superluminous (subluminous) propagation. It is also wotibimg that a
phenomenological study of dispersive and dissipative effects takbettogy can be done with eq.
(L.3) by considering both Rg and I non zero.

Even though Quantum Gravity is not part of our main concerns, let ua $ay words about the
relations with our work. Quantum Gravity, whatever version is adopted, isigt the smooth
manifold of GR should be replaced by a new structure when reaching argstibid energy, call it
Avv. When adopting a phenomenological point of view, there is a shift in theesiteThe question
is no longer: What is this new structure ? but rather: How would it manifest itsobservables ?
That is to say: What are the new expressions oftpeint correlation functions ? Remember that
the predictions of a QFT are all based on its correlation functions.

The simplest of these are the 2-point functions. In whatever replacé4inkewski manifold,
spatial homogeneity and stationarity will be preserved in the mean, (othehwitseersion of QG
does not describe our world). This implies that the Fourier transformesfithe" Feynman Green
functiont will belong to the class of functions given in ed. {122YOf course LI might still be
respected in which case the self-energy induced by QG will only be didmnaf w? — p?.)

The link between our approach and the phenomenological approach wh@6 consists in
parametrizing its effects (rather than computing them from first principledg#s: Since we pro-
vide the general expression of the 2pt function compatible with QM, in theesdrat the Equal
Time Commutations relations be still satisfied, our expressions can also b#nwsptienomeno-
logical QG perspective.

1.2.2 Mode creation in expanding universes

When assuming that LI is broken in the UV in Minkowski space, one can @lemassume that
the density of degrees of freedom, or modes, is finite and of the ordek,of(This density should

lwhatever QG may be, this function will be given by an expression similaq.t) with the trace taken over
the "true" degrees of freedorfor the benefit of the reader, | wish to add here a remark made by eeef®ncerning
this sentence and my reply to it: "While of course one might claim this is a plaus@ignario, one might as well
conjecture that in no way transplanckian physics can be described bgrtgm field theory of any sort (e.g. QM could
be emergent as well)." My answer is twofold. First, | wrote "similar" preligo leave open the possibility that the trace
be not "the usual QM" one. Second, even if QM is only emergent, vamesidering the two-point function of accessible
(effective) degrees of freedom, @$n the present case, (like the two-point functions of the phonon field in § BE€
true expression will, at least, contain a trace (to average out the truegumatfiions so that the correlation function only
depends on the arguments of the two operators), a state function (to weigg ¢bnfigurations), and two operators
(which might be complicate composite objects), because, in the IR, thediwbfunction must behave according to
QM. The beauty of two-points correlation functions is that they are c-nufabetions depending onlg and p, both
in the effective description and in the true description. Therefore a congrad$two versions directly delivers the
relevant modifications, seﬂ [3] for a comparison of 2pt functions obthirging a QFT in a fixed background and the
corresponding ones obtained by studying the solutions of the WheeWitizguation.

2t has been claimed that QG might turn out to be a purely topological tHesrguse reparametrization invariance
would restrict the true observables to be topological charges. If thisl @eucorrect in pure 2+1 Qﬂ[4], it is harder to
conceive the meaning of this statement when applied to 4D, both fromreoptenological and a theoretical point of
view. If it were true, it would imply that all quantum transitions, scatteringns, ... , we observe are in fact topological
invariants (or some part thereof) when properly dressed by QG.ikisbest irrelevant. At a theoretical level, the
guantum transitions of (heavy) atoms exchanging photons are govbynthe Green functions of the radiation field
evaluated where the atoms sit, given their wave function. This shouldérna when including QG effects, seﬂa [5] for
a description of atomic transitions based on solutions of the WDW equatioreinttepology plays no role.
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not be confused with the density of quanta which is always finite in deasaritgm states, the
"Hadamard" stateg[§] 7].) This option was not available as long as Lhjpeey and was in fact
the source of the UV divergences. If the cutdify is much higher than the typical frequencies
involved in the observables we have access to, it is rather easy to shahetlexpectation value of
these observables will not be significantly affected\py, a simple example which can be worked
out explicitely is furnished by the Casimir effect. Therefore, in Minkowsgace, one cannot
expect any significant deviation induced by having cutoff the mode density

On the contrary, it is more challenging to consider how would such a thesirgve in an
expanding universe. Indeed one faces an alternative. Either thaetmidler of degrees of freedom
in a given comoving volume would stay fixed (or nearly fixed), and theeefioe density would
decrease like the inverse of the proper volume, or it is the density that wtaydnearly) fixed,
and in this case, the number of degrees of freedom would grow linearlytingtproper volume,
thereby implying mode creation.

The first alternative seems already excluded because the volume oisdle wniverse in-
creased at least by a factoref? since the onset of inflation (360 = 60 e-foldings during inflation
x two for the radiation erac three because of 3D). Indeed either the density was absurdly high
at the onset of inflation, or if the intial density was decent, we should toddgdiking degrees of
freedom. Moreover if it were true, one could measure the growth of thle $actor by probing
locally the vacuum, thereby violating the Equivalence Principle. So, ondadiassumed a finite
density in flat space, we are left with the conclusion that mode creationvegiadle in expanding
universes, and therefore in any curved background geometry.

When adopting this second alternative, two questions should be cordronte
How to describe mode creation in QFT ?

What fixes the state of the newly born modes ?

Our motivation is to confront these two questions in the presence of dissigdfiects. To this
end we first need to extend our QFTs to curved space times.

The main principle we adopt to covariantize our Lagrangians is the Eqono@lerinciple (or
more precisely its extension in the presence of the unit vectorlfi¢lél That is, the Lagrangians
will be a sum of scalar functions of the four local fielgs¥, g,» and!” which reduce locally to
their Minkowski value in the zero curvature limit. This principle fixes the actiensity (up to the
possibility of some non-minimal coupling) and determines the tensorial natthe Bf fields. As
explained in the text, they containd@nseset of local degrees of freedom at rest with the vector
field IH.

When covariantization is done, without fine tuning nor additional hypothesishall see that
our QFTs are such that, as the universe expands, underdamped enogige from overdamped

3To obtain dissipative QFTs, we could have searched for inspiration idectmed matter models wherdih is

broken in the UV. We have chosen not to pursue this approach foradeeasons. First it distances us form our
aims, as it requires first understanding the physics at play in the ceadenatter analog model, and then explaining
its relevance to the problems which interest us. Second this approactaeitsogenerality and thus hides the steps
necessary to construct dissipative models. Third, the deepeshreases from the Equivalence Principle considered in
expanding universes. Indeed any QFT emerging fraliseretestructure, e.g. a set of atoms, is bound to fail to preserve
the Equivalence Principle after a large number of e-foldings. We seeagdo espace this conclusion, besides either
modifying QM, or assuming that the expansion of the universe doesffeat the "atoms", two options so radical that it
seems hopeless to get an acceptable phenomenolgy when adopting them.
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modes —thereby effectively describing the creation of propagatingdegf freedom— in such a
way that their (proper) density stays constant. Moreover, unlike in foatiempts to describe
"mode creation{[8[]9], there is no need to supply an extra condition to fisttte of the newly
born modes. Indeed, since our models are Hamiltonian, all the informatiomiaiced in the
initial density matrixpr.

1.2.3 The trans-Planckian question

In inflationary cosmology, the primordial density fluctuations arise from thpliication of vac-
uum fluctuations which had very short wave lengths (very large pifopguencies) at the onset of
inflation[19]. Similarly, Hawking radiation emitted by a black hole emerges fronfigurations
which had extremely high initial frequencis[11]. In both cases, the wmbed frequency growth
guestions the validity of the predictions because these have been obtsingdhe standard treat-
ment, namely some quantum field propagating in a curved space time. Howeseerstino reason
to believe that these settings still provide a reliable approximation at freqsemaieabove or even
near the Planck scale.

Following original work of Unruh and Jacobsgn[12] 13], the robusdrud the standard predic-
tions against modifying the theory in the UV have been tested by introducipgrdisn relations
which become non linear above a certain UV soilg, see eq. [(1}5). Even though the prop-
agation of the configurations is severely modified when this scale is reaithveals shown that
the properties are essentially unmodified when the two relevant scaleslhseparated, i.e. in
BH physics[1I§] wherk /ALy < 1 wherek is the surface gravity, and in inflatidn]1p,] 16] when
H /ALy < 1 whereH is the Hubble parameter. What guarantees the robustness is that thenvacuu
state evolves adiabatically.

Our aim is to generalize these works by providing dissipative models in whetpdlver
spectrum (and Hawking radiation) can be computed. These models arantleeas those of the
former subsection. The fact that the Equivalence Principle is pratenlleguarantee, as we shall
see, the adiabaticity of the evolution of the true vacuum as long as the gsadfeahe metric are
much smaller than the UV scalgy .

To conclude, we would like bring to the reader’s attention to the following rmaFirst,
to compute the power spectrum in inflationary models, and the asymptotic pespafrHawking
radiation, it issufficientto know the 2pt function of eq[ (1.1). Indeed, one always has

R(t) = /d3xe*”‘X Ga(t, x;t,0),
1 .
nw,|7m+é = /dté“"Ga(t,r;O,r,l,m), r>>r. (1.6)

In inflation, the first equality follows from the definition of the power specti which is given
by the spatial Fourier transform of the anti-commutaigrevaluated, at equal time after horizon
exit, in the Bunch-Davies vacuum. As of Hawking radiatiofw, |, m), the asymptotic distribution
at fixed angular momentuim, is given by Fourier transform with respect to the asymptotic time
of the in-vacuum anti-commutator far away from the hole.

Second, in the presence of dissipation, as in all interacting models, théddymof the anti-
commutator is alsoecessaryln these cases indeed, the only way to extract the relevant predictions
is through the above expressions.
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We have organized the paper as follows. We first construct dissightegies in Minkowski
space-time. In this case, because of stationarity the analysis is simple andtinstr We then
covariantize these models and briefly comment on the trans-Planckian guestiflation and in
black hole physics. In long Appendices we provide self-containeeéptasons of the properties of
Green functions in the presence of dissipation, and how to use them totheyghenomenology.

2. Dissipation in Minkowski space fromLV effects

In this section, we provide a class of models defined in Minkowski space timehvexhibit
dissipative effects above a certain energy séale Stationarity, homogeneity and isotropy will be
exactly preserved. Therefore, the only invariance of relativistc QRiElwis broken is that under
boosts. These theories define a preferred rest frame which is gloledilhed, as it is the case of
FLRW space-times. Even though a covariant description exists, for simgdicibe presentation,
we first work in that frame. At the end of this Section we shall covariantipedpare the extension
to curved space-times.

2.1 Free field settings

We start with a brief presentation of the free field description to introdut&tinaos and to
point out what are the properties which are lost in the presence of disip
The action of our free massless fighds the usual one:

1
S, = é/dtdsx(dtqoz—dxtp-dxqo), (2.1)

wheret andx are Cartesian coordinates. Due to the homogeneity of space, the equatiotian
can be analyzed mode by mode:

dd -
o(t,x) = / (2n)2 €a(0). 2.2)
The mode operatag, (t) obeys
(0% + wh)@ =0, (2.3)

Wherewg = p? = p-p is the standard relativistic dispersion relation. Notice that[eg (2.3) is decon
order, homogeneous (no source term), and time reversible (no odd pow#g, three properties
we shall loose when introducing interactions breakihg

In homogeneous space-times, the canonical Equal Time Commutator of tharfielt mo-
mentum implies thagy, (t) the Fourier transform of the field operator obeys

(@ (), dgy ()] =13°(P—p'). (2.4)
When decomposing the mode operator as
B(t) =3 @o(t) +a , Gh(t), (2.5)

where the destruction and creation operators satisfy the usual commutators

[ap’ag/] 253(p—p’), [apvap’] =0, (2.6)
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eq. (2.4) is verified at all times because the Wronskian of the positivadrary (c-number) mode

B(t) = e P/ (20p) "2, 2.7)

is constant (and conventionally taken to be unity).

Had an odd term likgg; been present in ed. (2.3) the constancy of the Wronskian would have
been lost. Hence the possibility of realizing the ETC](2.4) with the help of[e8) {@uld have
been lost as well. This already indicates that, unlike dispersive (reabteffdissipative effects
require more general settings than the above.

2.2 Interacting models breakingLl, general properties

We now introduce additional degrees of freedom, here after collectivatyed¥, which
induce dissipation above the eneyy,. We shall work with a particular class of simple models
in order to get an exact (non-perturbative) expression for the wink-function of g of eq. (1.1).
Before introducing these models, we derive general results valid fonidfiry QFT’s possessing
dissipative effects abowk,y in the ground state (the interacting vacuum).

We assume that the total action decomposes as

S=SH+Sv+Spu, (2.8)

where the first action is that of eq]]z.l), the second one governs ohaien of theW fields, and
the last one the coupling betweerand these new fields.

We also impose that the last two actions (and the density matjipreserve the homogeneity
and isotropy of Minkowski space. From now on, the Cartesian codeBna are at rest with
respect to the preferred frame which is defined by the a&ion Sy y, i.e. in a covariant notation
& = I#d,. For these models, the Fourier transform of the Wightman function of et i€lof the
form

Gpp(t.t') = Tr[Br (1) gy (1),
= Gw(t,t';p) 3 (p—p'). (2.9)

At this point, an important remark should be made. In the presence of iitgrscthe notion
(and the usefulness) of the time-dependent modes given i €. (2.@pe&sa. Instead, the time-
dependent functioGw (t,t’; p) of eq. [2.) is always well-defined, for all choicesBfand for all
actionsSy + Sy w.

When the situation is stationai@y ( p;t,t’) further simplifies in the frequency representation:

Gu(t.t;p) = [ 52 Gy (w,p). (2.10)

To computeGw (w, p) in an arbitrary (stationary) state, it is appropriate, as we shall see, to split
the analysis by considering separately the commut@tasf ¢,, which is odd inw, and the anti-
commutatoiG,, which is even.

When working in the ground state, one reaches the simplest case in thaffigllesnse. What-
ever theW fields may be, the Fourier transform of the time ordered (Feynman) patmag

2Gg = Ga+ Gesign(t —t'), (2.11)
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is always of the form given in eq[ (J.2), and therefore charactebyealsingle functiorkr (w, p).
When restricting attention to Gaussian modg&}s(w, p) is given by a 1-loop calculation, whereas
it contains a series of 1PI graphs for non-Gaussian models. In rmuwastates and in non-
stationary situations, 2pt functions have a more complicated structure. Itusderstand the
meaning of this strucure that a separate analysia.&ndG;, is appropriate.

Let us conclude with two remarks. First, the effective dispersion relafignis a posteriori
defined by the poles of eq._(L.2). In this way, non-trivial dispersiatimns arise from dynamical
processes rather than from being introduced from the outset. Thenpresrk therefore provides
physical foundations (and restrictions, as later discussed) to the kinahegtigroach which has
been adopted in the literature. Second, from analyzing dynamical modethall see that, even in
the vacuumen-shelldissipative effects (i.e. dissipation arising along the minima of the denomina-
tor of eq. [1.P)) are unavoidable whehis broken in the UV by the actioBy + Sp,w, in complete
opposition with the fact that on-shell dissipation is forbidden when workimghe vacuum) with
LI actions.

2.3 Gaussian models

To simplify the calculation of(w, p) and to get exact non perturbative expressions (in sta-
tionary situations), we assume that the acns quadratic in all field variables. This is of course
a very restrictive hypothesis. However, it should be recalled that eveatrafter computing from
first principles. Rather our aim is to determine the modifications of the povemtrsp see eqs.
(L.8), when including dissipative effects in the UV sector. To this end, itfficgent to understand
how the properties df affect the 2pt function odp.

Given that we are preserving the homogeneity of Minkowski space, fdusstan assumption
implies that the total action splits as

S = / &pS:(p), (2.12)

where each actioBr (p) depends only on theomplexfield operatorg, and thep-th Fourier com-
ponent of¥; (each of these is a two-mode, (-p) system). The structure & (p) is

Se(p) = 3 [ 8t (=08~ -+ 57, ot i )(—0F — OF(p) (P

+2 [dta(p @i (p). (2.13)

wherei is a discrete (or continuous) index, whélg p) is the energy of the quanta of the oscillators
Wi(p), and whereg;(p) is the coupling constant at fixeai.

These Gaussian models have been used since many years (at leattesieady 50’s) and
for different purposes. They have been introduced (in their contisw@rsion) to study non-
pertubatively atomic transitions, s¢e][20] and refs. therein, and to madatem electrodynamics
in the dipole approximation, see al§o][21] 22] for an application to the Urffabte They have
been used in Quantum Optics and to model quantum Brownian m@fipn [23}. HEve also been
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used to study decoherence effe¢tg [24eedless to say that our intention is not to provide a new
approach to these models, but rather to exploit them to reach our aim: @romithry models
allowing to study dissipative effects in arbitrary curved backgrounds.

Therefore, instead of chosing a priori a specific model, we shall soévedghations of motion
without specifying the set d¥;(p), their energyQ;(p) and their couplingyi(p). We shall choose
them in the next subsection to further simplify the equations we shall needvia Skio preserve
stationarity in Minkowski space, th@’s and theg’s must be time independent. Whe&Xf(p) #

M? + p?, the kinetic action of¥;(p) breaksL| and defines the preferred frame. On the contrary
whenQ2(p) = M2+ p? the preferred frame is only defined by the interaction t&gmthrough the
p-dependence of the coupling functiog$p).

The equations of motion are

(02 + o) @ = Zigi(p) Wi(p), (2.14)
(02 +QF)Wi(p) = 6i(P) ¢ - (2.15)

The general solution of the second equation reads

wi(pat) = l'I',io(pvt) +/dt/Ri0(tvt/; p) Oi (t/; p) (Pp(t/), (216)

whereW?(p,t) is a free solution which depends on initial conditions impose&dp). The second
term containg’(t,t’; p), the (free) retarded Green function¥f(p). It obeys

(02 +QF ()Rt p) = 8(t 1), (2.17)

and vanishes far < t’. (To prepare the application to time dependent geometries, we have treated
wg, Q? andg; as arbitrary functions of time (in cosmology these become indeed time degpenden
through their dependence in the scale faa(oy). ) Injecting eq. [2.16) in eq[ (214) one gets

(02 + W)@ = Zigi(t; P)WP(p.t) + i Gi(t; p) / dUR(t,t; p)ai(t; (). (2.18)

The (exact) solution of this equation has always the following structure

@ (t) = ¢g(t) + / dt'Gi(t,t; p)[ZiGi(t'; P WP (p,1)]. (2.19)

The first term is the "decaying” solution. It contains all the information alblo@ initial condition
of @, and obeys the non local equation

[aulat—t)(@2+ ) - Ea PR LD G PIREL) =0. (220

4Depending on the point of view adopted, these models can be solvedaialyded by means of different methods.
In what follows we shall adopt the atomic physics point of view and usesithelest approach based on Heisenberg
equations of motion. Since we shall work at zero temperature, this agipris also appropriate because quantum
aspects dominate over stochastic ones. Even though legitimate, we hagopted the "open quantum system" point
of view for two reasons. First the general methods used in this agpreae ], somehow hide the simplicity of the
model we are dealing with. In fact only but standard Quantum Mechasic=quired to solve it. Secondly, we are
planning (in a subsequent work) to study the correlations bewgeserd¥;. Therefore we shall tregt andW; on equal

footing as in [2p[ 21 22].

10
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The second term is the "driven” solution. It is governed by the initial édoras of WP(p) and

by the (dressed) retarded Green function, the solution of fq. | (2.20)44ith t;) on the r.h.s.
Therefore the evolution of botp? and G, fully takes into account, through the non-local term
in the above bracket, the back-reaction due to the coupling to the additiegades of freedom.

In Gaussian models, it is quadraticgn Hence the solutiong® andG, are series containing all
powers ofg;. Therefore Gaussian models do give rise to non perturbative effdci®over since
gi(t; p) are arbitrary functions op andt, at this point there is no reason to consider non-Gaussian
models.

We conclude this subsection with two remarks. First, €q. }(2.19) also fesiste exact
solution for the Heisenberg operat@; because the equations we solved are all linear. Since
we shall work quantum mechanically, it is relevant to study the correlatioatifans ofg,. In
Appendix A we present their properties.

Second, eq.[(2.20) tells us that in general, the coupling to an environmant & linear one)
gives rise tanon-localequations of motion. When dealing with stationary situations this does not
cause any problem because, as shown in Appendix B, observahlbs ¢algebraically) computed
in the frequency representation. However in non stationary situatiorie @ndved space-times, to
be able to compute observables it becomes imperative to simplifyf eq] (2.2@Q)estion we now
address.

2.4 Time dependent settings

In Appendix C, we provide a class of stationary models characterizedelpotlver of the ratio
p/ALv which specifies how dissipative effects grow with the energy, see ggs[&1). This class
covers the general case and can be used as a template to study the piedogital consequences
of dissipative effects. In addition, after eq._(5.6), it was noticed thaiibsipative properties
are governed by the produgt(w, p)R°(w, p). Therefore many theories with different kinetic and
coupling terms will give rise to the same (stationary) phenomenology.

In this Section we exploit this freedom to simplify the expressions having in mmdr#ms-
position of our model from Minkowski space to curved metrics. Theeefgood" models should
possess two-point functions with simple properties when expressed irrtiiedétime and space,
and not only in Fourier componends; p.

The core of the problem is that, when dissipation is strong, the relevaatvallideG, (it gives
both the Power Spectrum and Hawking distribution) is given by the "dtitemm in eq. [4.p),
which is a double integral containing a kernel (which can be computedjrencetarded Green
function of ¢ which is not known. Indeed it is only implicitely defined as a solution of £q.qR.2
which is, in general, non-local. We are thus led to choose the acti¢ribrder for eq.[(2.20) to be
local. This implies that the retarded Green functiomddippearing in this equation be proportional
to 6(t —t’). Notice that this requirement concerns the Green function of the envirdreme not
that of the system we probe. Thus it will not restrict the phenomenology.

11
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Given this aim, an appropriate class of models is defined by the action
1 Sk
ST () = 5 [t (-0~ P
1
5 [dt [dkW (plo(~02 - (Ao W(p.K

n+1
+g/\LV/dt/dk</\FL)v> @AY (p,K). (2.21)

When compared with the action of ef|. (3.13), we have replaced the diswlete by the integral
over the dimensionless varialdeAs recalled in Appendix B, one needs a continuous spectrum of
the environment to have proper dissipation, see discussion aftdr €y.TBescontinuous variable
k can be viewed as a momentum (expressed in unitg@f in an extra flat fifth spatial dimension.
The relationship with the Brane World Scenarios [of [[[7, 18] is clear. Inatwmmic’ version of
this model [2]L]32] which has inspired us, the radiation flélés a massless 2 dimensional field
propagating irt and in the dimension associated with

In Syy have factorized out a factor @fy so that the coupling constagtis dimensionless.
We have also introduced an additional time derivative acting’oithis choice leads to the above
mentionedd(t —t’). Indeed, on the one hand, taking this extra derivative, the continlawaacter
of k, and the fact thag is independent df, eq. (2.1B) becomes

(02 + wB) @ = 0k / dK¥°(p, k,t) — gndt / at’ / dkR(ML UK ) (@),  (2.22)

wheregn = g\Lv (p//\Lv)n“. On the other hand, for each 3-momentpnthe Green function of
= = [dKW(K) is that of a massless 2-dimensional free field. In Fourier it is giveRYw, k) =
1/(—(w+i€)? + (m\vk)?). Hence it obeys

3(t—t)

: 2.23
Ay (2.23)

ARO(t,t) = 4, g(':/dkRJ(a),k)e‘i“’(t“') =

which is the required property to simplify eq. (2.22).
When gy is constant, the retarded Green functiongobssociated to eq.[ (2]22) obeys the
following local equation

2
07+ o+ B Gt p) = 8(t 1), (2.24)
LV
To make contact with Appendix B and C, let us rewrite this equation in Foudastorm,
2 2 W o Py2n o
—w —ig°— p(—) + w5 G (w,p) =1. 2.25
[ 0 ny P (Ry) TRl Grlw.p) (2.:25)

We thus see that Rg = 0 and that I, is (exactly) given byg? times the expression of ed._(.1).
Thus, even though we have chosen a simple and definite forR%art’), the above action does
deliver then dissipative behaviors of Appendix B by choosing the appropriate potvprin the
couplingg, appearing in the actioByy.

Wheng and wf, are arbitrary time-dependent functions, the Fourier analysis loosesntrpo
However, in time dependent settings, @urstill obeys a local equation:

02+ 276k + [ + Ak i) ] Gr (tt) = S(t—t), (2.26)

12
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where then-th decay ratéh(t) = g?(t) y is now a definite time dependent function. When transpos-
ing the model of eq.[(2.21) in expanding homogeneous universes, #em &mction will therefore
also obey a local equation.

2.5 Covariant description

We now provide the covariant version of the action of ¢q. {2.21). Tipsession will then be
used to define our theory in curved backgrounds.

Two steps should be done. We need to go freronsiderations to a local description, and
express the various actions in terms of the unit vector fitlshd the spatial metri¢ #V defined in
eq. (L.B). Both are straightforward and, in arbitrary coordinates, thbaction§r”) = d3p§r”) (p)
reads (in Minkowski space-time)

S = - % / d*xy/ =g 9" 0,93, ¢
+% /d“x\ﬁg/dk (1417 = Gy LY ) 0,0, Wie— (Muvk)* W) |

A
+oALy / d‘%ﬁ—g((/\—z)(n“)/ 2<p) 149, / dkW, (2.27)
LV

whereA is the Laplacian on the three surfaces orthogon#t to

We have slightly generalized the action of ed. (P.21) by subtracfng#" to the kinetic
term of W, wherecﬁJ < 1. With this new termp-th components of the field, are now massive
fields which propagate with a velocity (relativel#) whose square is bounded &. In addition
they now possess a well defined energy-momentum tensor which camaieeabby varying their
action with respect tg"V. To obtain the simplified expressions we use in the paper the (regular)
limit ¢Z, — 0 should be taken.

In this limit, the (free) retarded Green function of the= [ dkW field obeys a particularly
simple equation when expressed in space-time coordinates. Indeed;st obe

d d 1 O%(xH —yH)
H - = |H 0 —
| axu/dkF?(x,y,k)_l RO(X,y) , (2.28)

OxH - /\LV v—90

SPerhaps the motivations for these two steps require further explanatimanother referee wrotét do not see
the point of a covariant description of tHé field since it is nothing more than a convenient parametrization of the
environment degrees of freedon®&veral points should be mentionned. First, we are after descrbinigumeffects
when Lorentz Invariance is broken in the UV. Therefore the breakdofALl must comelocally [E]. Second, as in
studies of dispersive effects, we require that our QFT be well definad arbitrary background. It would be physically
guestionable (or even meaningless) to study dissipative effects onsbhevables of eq.@.G) from theories which are
only defined in a particular class of space-times (e.g. homogeneaases)p Third, we have introduced thkfield to
characterizethe effects of dissipation which would stem from fundamental theoriegindp¢he Equivalence Principle,
see m7] for a prototype. Fourth, from the point of view of open quansystems, it could a priori seem inappropriate
to proceed to a covariantization, since in most situations (heat bath, seatienatter systems) there is a preferred
frame which is globally defined. However, when the system is non-hememyus (e.g. a fluid characterized by a non-
homogeneous flow), low energy fluctuations effectively live in a "atiolicurved geometrﬂ?]. Moreover, in this case,
short distance effects, i.e. dispersive (or dissipative) effeatsc@rariantly described when using this metIE [@ 19],
because they arise locally. In brief, we shall write down actions in cuspade using the EP which requires a covariant
description.

13
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On the r.h.s, one finds the "invariant" delta function with respect to the imtariaasurel*x,/—g.
This equation is nothing but the covariantized and "localized" version of2@3). Its physical
meaning is clear. It tells us that the back-reactiorpf) onto itself through= will be local at
every point in space-time.

The equations of motions do not have a particularly simple form when esqutés space-time
coordinates. Using the condensed notafioa [ dkW, the relevant equations read

\/f;gdumg/“av o(x) :g/\wj_fg(/@v)"%?gl“auz(x% (2.29)
where the interacting field field is
=0 =209 - oM [dyvoRxy) [ == au(1VB(5) T e)] . 230
\/jg /\LV

When inserting eq.[(2.B0) in eq._(2129), using dq. (2.28), one verifastie dissipative term is
local and first order ih#d,,. As wished, dissipation occurs along the preferred direction.

3. Dissipative effects in curved background geometries

3.1 The Lagrangian and the properties of¥

To define a dissipative QFT in an arbitrary curved geometry, we need gonugples. From
a physical point of view, we adopt the Equivalence Principle, or betteatwan be considered
as its generalization in the presence of the additional unit time-like vector fklare in fact
dealing with two (sets of) dynamical fields, tipefield we probe, and th#; fields we do not; but
also with two background fieldg,,, andI*. The Generalized Equivalence Principle means that
the action densities of the dynamical fields be given by scalar functionefweneral coordinate
transformations) which reduce to those one had in Minkowski space timbaachomogeneous
and statid* field, i.e. those of eq[(2.R7).

The densities are thus not completely fixed by the GEP, as it was the caseaviiRtliror a
scalar field in a curved geometry, there was always the possibility of cmirgida non-minimal
coupling to gravity by adding to the lagrangian a term proportion&¢g. In the present case, the
ambiguity is larger because the vectbrallows to form new scalars, such asétgpansion

o=0yH= (—9)_1/2(7;1[(—9)1/2'“], (3.1)

wherel, is the covariant derivative with respect to the megjg. The ambiguity can only be
resolved by adopting some additional principle, such as the principle of misioglings which
forbids adding such scalars.

Rather than adopting it, our second principle (which simplifies the equationsotibn in
curved backgrounds, but which is by no means necessary) is thiaictigy of the back-reaction
effects of ¢ through= be preserved. That is, we choose the non-minimal coupling s as
to keep eq. [(2.28). As shown later, this will also guarantee that the pfiagrrency of theWy
fields measured alon stays constant as the universe expands, and more generally, inraag cu
background. Starting from ed. (2} 27), the locality is preserved byceydoth inSy andSy,

© 1
Ho, Wk — AWk = 1Mo, W+ ElPk =5 (IMOpWie+ Op 1MW) (3.2)
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wheredy, is the partial derivative.

To simplify the forthcoming equations, we use the fact that one can alwarksim"preferred”
coordinate systems in which the sHiftzanishes and in which the preferred time is suchiat1.
(We assume that the set of orbitsl8fis complete and without caustic. In this case, every point of
the manifold is reached by one orbit.) It will be found useful to work in thesardinate systems
with rescaled field" = (—g)¥/*W because one can then group the above two terms into a single
expression:

DW= (—9) VAU ((—9) W) = (—g) "V 4IH 9, W (3.3)

Notice also that there exists a subclass of background figltls for which one can find coordinate
systems such tha@oththe shiftl' andg® vanish. In theseomovingcoordinate systems, the above
equations further simplify sinceg = he whereh = det( ;). ©

Having chosen this non-minimal coupling, one verifies that the kinetic termeofdkcaled
fields W, is insensitive to the "curvature" of bot),, andI* (when the IimitcﬁJ — 0 is taken).
Moreover the differential operator which acts on the retarded Grewtifun of W, in the equation
of motion of ¢, see eqs.[(2.29, 2]30), is also "flat" thereby guaranteeing that the ndogkfision

eq. (2.2B) still applies, that is

AR°(xy) = (~g(9) 4113, (RE(xy) ) (~g(y)) /%
1 54 —yH)

AN V=9

whereR?(x,y) is the retarded Green function of the rescaled figldIt obeys (in preferred coordi-

nate systems}R® = 5% /ALy, and "defines" the retarded Green functiRh= (—g)¥/*R? (—g)%/4

which is a bi-scalar. Hence the equations of motion in an arbitrary backdrtensor-vector met-

ric" specified by the coupleyf,,,|#), are given by eqs[(2.pB, 2]90,13.4) with the substitution of eq.

6.2).

Several remarks should be made. First, from the simplified equéatiRfh= 5% /ALy it might
seem that the background tensor meggi¢ plays no role. This is not true, it enters indirectly as it
is used to normalize the vector fidld at every point. Therefore, it intervenes in the specification
that the (proper) energy scaley stays fixed as the universe (or the comoving volung)eexpands.

Second, in the IimitﬁJ — 0, the (rescaled¥ fields define a new kind of field. They propagate
in an effective space-time given by the time development of the 3-dimensieinall srbits of the
[¥ field. Indeed, at fixek, Wk(X) can be decomposed in non-interacting local field-oscillators,
each of them evolving separately along its orbit. This situation is similar to the lang length
(gradient-free) expression of the action of Steward and Salpgek[88the absence df, the
space time geometry must be (nearly) homogeneous for the action of the tgoessess this
decomposition. However, when tih¢ field is given, one can identify, even in non-homogeneous

(3.4)

6 To illustrate this point, let us consider FLRW flat metrics. In comoving cinates, one hads? = —dt? + a2dx?,
andh = he = a®. In Lemaitre coordinateX = ax, one hasls® = —dt? + (dX —Vdt)?, where the velocity i = HX.
The spatial sections are now the Euclidean spaceftwittl, and the (contravariant) components of the unit vector field
arelH = 1,V. To computeh; one should solve the equation of motion of comoving (free falling) olesedX —V dt= 0,
and use the initial position as new coordinates. This procedure will be idcmﬁ)sectio:% starting with Painlevé-
Gullstrand coordinates to describe the black hole metrid riittld.
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metrics, every point in space-time in an invariant way by the spatial positidreaforresponding
"preferred” orbit at some time, and the proper time along the orbit (as Ieh§ as no caustic).
We can thus build covariant actions exploiting this possibility and considesfaithposed of a
dense set of local oscillators (i.e. one has 1 degree of freedom ety @orest with respect t*.
The fieldsWg belong to this class of fields here after call@delvafields.

Third, the analogy between the above formalism and the DefMtt [26] wayrtdi&dhe short
distance behavior of Green (Hadamard) functions seems worth degpenin

Fourth, even though we have chosen to simplify the equation of motigrbgfimposing that
the rescaled kernel obegeR? = 6% /Ay, the 2pt functions of in curved backgrounds are highly
non trivial, and in particular the anti-commutator (which governs Itindn,, in eq. (1.6)). The
reason is double, firss, will be given by a double time integral, see €jg.|(4.6), and second it is the
kernelN and notR which is the source 0B;.

3.2 Application to cosmology

To get the equation of motion we consider efl._(2.27) (with the curved metridfioatbns
introduced in the former subsection) in a FLRW metli€ = —dt? + a?(t)dxdx. To simplify
the notations, we use the conformal tig = dt/a and work with the rescaled fieldg = a¢
and ¥, (k) = a¥2W(k). Notice that their power im differs. Dropping these indices, working
in Fourier transform with respect to the (dimensionless) comoving codedirathe equation of
motion of Heisenberg operatgy is

(07 + 2 0y + (5(N) + 9 Yh)) @ = G0 =°(P) , (3.5)

The conformal frequencwg(n) =p?— 0,§a/a is that of a rescaled minimal coupled massless
field. In this expression, as everywhere in this subsecfads,the conformal (dimensionless and
constant) wave vector. The time dependent coupling coefficient is

Oh=09 al/z /\LV (p/a/\LV)”“ . (36)

Its unusuak-dependence follows from the Generalized Equivalence Principle ahd\igg taken
into account the different rescaling of the two fields.

Straightforward algebra giveg(n ), the decay rate in conformal time. When compared to the
comoving frequency to get the relative strength of dissipation, one gets

() 1( p )2n+1 _ }( pphys(a) )2n+1.

—Z 37
p 2 al\y 2% N 3.7)

In the last equality we have re-introduced the proper momemigiya) = p/a. With this equation
we verify that, at any time in an expanding universe and for any nggdehe relative strength of
dissipation is simply that obtained in Minkowski space at the correspondieig scale, see eq.
(6-3). This is nothing but the expression of the GEP, at the level of thardipal equations.
Notice however that the equation of motion in an expanding universe cerddirequency
shift
%
AVRY,

aH
p

) (=)t (3.8)

on(ingn) = P* (=) (A
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We have factorized out the unperturbed frequency square to getltieve value of the shift. It
vanishes both when dissipation is negligible and walip < 1, i.e. when the expansion rate

is negligible with respect to the proper momentum. From this expression wedreadyaconclude
that it cannot play any role when the two relevant scelend/\y are well separated, i.e. when

H
=— <1 3.9
Ay (3.9)
Indeed when the physical momentum is high and of the ordArpfthe relative frequency shift is
proportional tog, and when the physical momentum is of the ordeHdfat horizon exit, see the
Figure), it is proportional ta?"*1,

Figure caption. We have represented in a log-log plot and by a dashed line the evolution of
dy = Ry /a, the Hubble radius in comoving coordinates, as a function of a, both gunfa-
tion wherein ¢ 0 1/a and during the radiation era whereinydJ a. We have represented by a
thick line the trajectory of the cutoff length scalg ¢ 1/a/\Ly in the case wherd /Ay < Ry
during inflation. The dotted line corresponds to an intermediate fixed ptepgthA which obeys
1/ Ay <A <<R'L‘”'. The vertical line represents a fixed comoving scale-d/ p. Below the cutoff
length, all modes are overdamped. When a mode exits the cutoff lenpggiepines underdamped
and starts propagating. When it crosses the intermediate lehgthbehaves as a free mode, and
gets amplified only when exiting the Hubble radius. As explained in the texhadtidy, which

is guaranteed byt /Ay < Ry, guarantees in turn that, near, modes are all born in the Bunch-
Davies vacuum when the environméhis in its ground state.

In quantum settings however, it is not sufficient that the equations of mptiesess their
Minkowskian form because the quantum state of the system might be dffiegtihe combined
effect of dissipative effects and the expansion rate.

In free settings, when assuming thatgjlare in their ground state at the onset of inflation, i.e.
working in the Bunch-Davies vacuum, the anti-commutator, seeled). (4@)aaed at equal time
n is simply given by

ree in 1 1
G (0.9 = 1= iy (4 ) 320
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In the last equality we worked for simplicity with a constant Hubble paramntétén which case
a= —1/Hn. Then the power spectrum of the physical (un-rescaled) field giyen b

3G2(n, p)
a2(n)

becomes constant after horizon exit. We have addedubscript toH because in slow roll infla-
tion, the relevant value dfi(t) for the p-mode is that evaluated at horizon exit, ite, = H(tp),
wheret, is given byp/a=H. The above equation shows tlitacquieres some scale dependence
throughH,. Similarly thedeviationsfrom this standard behavior stemming from some UV modifi-
cation of the theory will also depend qrthroughH, (and its derivatives). For an explicit example,
we refer to [3R] where the modifications of the spectrum stem from thefatpn, is taken large
but finite.

In the presence of dissipation, the expressiordgradically differs from the above. Indeed,
when dissipative effects grow with the energy (as we suppose itis teg cae reaches the conclu-
sion that in inflation the decaying solution of ef]. [3.5) is completely erasdels@inne fine-tunes
the number of e-foldings so as to keep a residual amplitude). That is, the opedator is entirely
given by its driven term, the second term in efg._(2.19). Hence the pgweetrsm is also purely
driven and given by the second term of €q.](4.6):

P"*%(n) = 2p =HZ(1+(pn)?), (3.11)

Ggriven(n,n, p) = /drll /drIZ Gr(nanla p) Gr (’7» na, p) N(nla N2, p)a (312)

whereG; is the retarded Green function, solution of efj. ](3.5) vdtim — n1) as a source, and
where the kerneN is the anti-commutator af, |3, Wy, the source of eq[(3.5). From ef. (3.12)
we learn that only the (initial) quantum state of the environment matters. Inwtirels, because
of the strong dissipation at early times, the power spectrum is indepenfdéetiaitial state ofep,
whatever it was.

In spite of these differences, one can show that when the two scalegktiseparated, when
eq. (3.9) is satisfied, and when the environment is in its ground state, thietfmes are unchanged,
i.e. the power spectrum obtained fra8{"ve" coincides with that obtained witB1® because the
combined evolution ofp+ W consists in a parametric (adiabatic) succession of stationary states
ordered by the scale factar

The proof goes in two steps. First scale separation, guarantees thataita of the evo-
lution. That is, whem andn’ are close (in the sense that-a(n)/a(n’) < 1), GI"ven is well
approximated by

dw

GI™e(n, ', p) ~ G — n'; wp(a),gp(@)) = ané“’“"”/) Ga(w; wp(a),gp(a)), (3.13)

whereG;(w; wp(a),gp(a)) is the Fourier-component of the anti-commutator calculated with the
Hamiltonian characterized by the constant values of the frequep() and the coupling(a)
both evaluated witta = a(n). In Appendix B, the stationary value of these anti-commutators
has been algebraically solved for all frequencies and all couplingsege [5.1]1). Moreover,
since by hypothesis, we are in the vacuum, €fg.] (5.9) also applies. Inwthnds, the value

of the anti-commutator follows from that @.. This is enough as it guarantees that when the
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mode @, becomes free, i.e. much aftéiy-exit but before horizon-exitH < p/a < Aw), eq.
(6.13) applies, see the Figure. Thirggspectivelyof what was the coupling with the environment,
adiabaticity implies
i 1
driven free _

Ga"(n,n,p) — Gy (n,n,p)——z%(a), (3.14)
thereby guaranteeing that no modification of the Power Spectrum will melfdn brief adiabatic-
ity means that the evolution proceeds slow enough for not inducing amygdiabatic) transition
which in the present case would correspond to pair creation.

The second part of the proof consists in providing an upper bourtddéqrobability amplitude
of obtaining a non-adiabatic transition. This amplitude is governed by theveetediquency change

Hyd,
_ =(2n+1 o ’
@ R T R

wherepphys= p/a andypnys= y/a are the physical momentum and decay rate. Therefore, going
backwards in time from the free regime in the underdamped regime, wl,te> 45, (i-e.
Pphys < ALv), the non adiabatic parameter raises from zero but stays bounded by

eff
Onth  _ _ YadnIn¥h (3.15)

e

(wp')2

4nt1
<3@2n+1)0 (F/’\L*WS) " e3ent o<l (3.16)
Lv

This guarantees that the amplitude for the system to jump out the ground statmseld byo (up
to an overall factor which plays no role). There is no need to study thdistalb the ground state
in the transitory regime from underdamped to the overdamped modepgdpr> Awv), because
whatever transitions happened is suppressed by a factdf! ~ exp(—1/0(2n+ 1)) < 1. This
completes the proof that scale separation guarantees adiabaticity.

3.3 Dissipation in Black Hole metric

In spite of the fact that the background metric is no longer homogeneousfféioes of dissi-
pation on Hawking radiation can be studied along lines similar to the above.

For simplicity we consider only spherically symmetric and stationary BH metrics.aléée
choose the unit vector field' to be stationary and associated with Freely Falling observers which
start at rest at infinity. In this case, the expressions for both the metti¢'aimplify using thePG
(Painlevé-Gullstrand) coordinatest, 8, ¢. One has

ds® = —dt®+ (dr —vdt)2 4 r2dQ?,
Ill (1,v(r),0,0),
O = —luly+ Ly, with 1,y=diag0,1,r% rsin’9), (3.17)

wherev(r) < 0 is the radial velocity of the FF observers, ardeir proper time, not to be confused
with the "Schwarzschild" (Killing) time. From the last equation we learn that tsar8ces per-
pendicular td# are simply the Euclidean space. Therefbre det_L;j= r4sir? @ is independent
of the expansion of, as it is the case in cosmology in Lemaitre coordinates, see fodjnote 6.
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HoweverPG coordinates are not comoving along tiefield since the shift is given by.
To determine the space-time dependence of the comoving volume elgfhgnie introduce the
"preferred" coordinatey = ro(t,r) defined by

rdr
/ro s =t (3.18)

By definitionr =r(t,ro) gives the trajectory of the FF observer who started frgmtt = 0. Thus,
for every(t,r), ro = ro(t,r) gives the value of radial coordinate at titne 0. Using

or v(r)
dr—vdtf—d = dro, 3.19

the line element in preferred (and comoving) coordinétes) reads

ds? = —dt?+ (\m)zdrgﬂ?dgz, (3.20)

wherer = r(t,ro). Therefore, the evolution of a comoving volume centered along gHer-
trajectory is given by

x r2sin@ = h2 x r2sing. (3.21)

1/2 ~ov(n)
c (t,l’o) = V(I’o)
As in cosmology, it is a well-defined time dependent function. In the presesd, it is governed

by the (shift) functionv(r), and the FF trajectorigs=r(t,ro).

Because of spherical symmetry, our Gaussian action separates intcsatitixed angular
momentum Sy = % nSr(l,m), see eq. [(2.12). Each of them contains two-dimensional fields
@ m(t,r) andW¥ m(t,r). We here consider only the s-wave sector, and drop t@éf@ex. We work
with the rescaled field) = rg, ¥ = r ¥ and drop the tilde. Taking into account the 4D character of
the problem and eqd (B2, B.3), the action reads

S = ;//dtdrr2 (0t+vf?r)9)2— @ 9)2}
Z/dk//dtdrr dt+vdr+c9rv)‘Pk (o ﬂ)q:k) ?

+g/\|_v/ dtdr r2 ((/ifv)"“‘f)((aﬁ"df;a"’)/dk“:k)]. (3.22)

By varying this action, there is no difficulty to get the equations of motion. @niéies in particular
that the kinetic action of the (rescalédfj = hiéétp field is as in 2D flat space when expressed in
preferred coordinatesrg:

Sp= ;/dk//dtdro[(dtwrk)z— (A mw)?]. (3.23)

This means that the Chelva fie¥ (t,r) is a collection of independent oscillators labelledrpy
In other words W, (t,r) depends oh andr as

WL(t,r) = Wi (t;ro(t,r)). (3.24)
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One also verifie$" 9, W, (t,r) = g W, (t;r0)|r, , beCauseHd,ro(t,r) = 0, by definition. These facts
guarantee that eq[_(3.4) applies.

By a direct analysis of the equation of motion, one obtains two important grege First,
one verifies that there is no "dilution" of the dissipation rate as time passisisTion trivial (see
[B] for ana priori similar system in which a dilution does occur). This steady behavior is due to
the fact that the Chelva fields form a 3 dimensional dense set (as apotbe discrete lattice of
[BA]) which allows the various. to cancel each other in the determination of the dissipation rate.
Moreover one also verifies that stationarity is preserved, not only inisisgdtive aspects, but also
in the driven properties. This is non trivial either sirfgedepends om and appears in the action
Sy When working with the rescaled fieldld'.

With these two results, one can study the impact of dissipation on Hawkindicedey apply-
ing the technics of[14] which were further developed[in [B]][34] to gtk impact of dispersion.
When the two scales are well separated, i.e. wkgfy < 1, wherek = d,v evaluated at the
horizonv = —1, one can work in the near horizon approximation, whevein—1+ kX, and in
the p-representation. In this representation, the velocity profile becomes -&riviah operator
V= —1-ikdp, in fact the only one. When working at fixed Killing frequenax, one obtains
the radial propagation of the interacting degrees of freedom in terms adliabatic evolution of
Green functions and kernels written in thgepresentation. These are given in Appendix B, with
the frequencyw = ig; of that Appendix replaced by the FF frequerRy=id; +ivd, = wx — Vp.
We are planning to report on this soon.

Acknowledgements.| am grateful to Dani Arteaga and Enric Verdaguer for common work
allowing me to deepen my understanding of dissipative effects. | am alssfigrio Ted Jacobson
for having repetitively invited me to covariantize my action. | am thankful to maegple for
having had the opportunity to present this work starting with the IAP in Oct2b@e4. This work
has been supported by the European Science Foundation networimprog "Quantum Geometry
and Quantum Gravity".

4. Appendix A: Two-point correlation functions

Since the models we consider are Gaussian, the complex function of efy.g¢énsall
observables built with the Heisenberg field operaiono analyse it, as mentioned in the text, it is
appropriate to study separately the commutator and the anti-commutator.

We start with the simple part, the commutator

Ge(t,t'; p) 8% (P —p') = Trlor (@ (1), 5 (t)] -] (4.1)

It possesses several (well-known) properties. First, using[egd)(@rie sees that it decomposes
into two terms, one due to the non-commuting charactepdofhe other due to that d)PiO. Second,
since both commutators are c-numbers, it is independenit adhe state of the system. Hence, for
all Gaussian models, one has

Gelt.':p) = [¢(1). ¢°(1)]- + [ [ dudeGr(t. )G (Y. t2)D(t1, ). @2)

21



Dissipative effects violating Lorentz Invariance R. Parentani

where the "dissipative” kernd(t;,t,) is given by
D(t1,t2) = ZiZj 6i(t1) gj (t2) [WP(tr), W (t2)] - = Zi0i(t1) GZ;(ta,t2)Gi (t2) - (4.3)

Notice how this kernel combines the various couplings constants and thmonamuting properties
of the environment.

The third property is the most relevant for us (and perhaps also lessroéiationed). To all
orders ing; and for all values ofji, Q; (even with arbitrary time dependence), the following identity

i0Ge(t,t';p) v =1, (4.4)

holds because it corresponds to the ETC of €g.] (2.4). The 1 onhthis guaranteed by the
Hamiltonian character of the evolution of the entire system W. It is therefore this equation
which replaces the constancy of the Wronskian that was relevant in Heeatdree evolution.
Eq. (@.}) is crucial for us because the operagdt) exponentially decays ih— ty, wheret, is
the moment when the interactions are turn on, since it is an homogeneousrsofutig. [2.2D).
Hence the first term in eq[_(4.2) decaysap— y(t +t’' — 2tin). Therefore at late times with respect
to ti, in the units of the inverse decay rate!, the non-commuting properties of field operagor
areentirely dueto those of the environment degrees of freedg,

We now analyze the anti-commutator,

Ga(t,t';p) 8 (p—p') = Trlpr {@(t), @l (t)}+]. (4.5)

When the density matrix factorizes gs = py pw before the interactions are turned on (as it is the
case in the "free" vacuum(g, also splits into two terms,

Gal(t,t'; p) = Triop{@"(t), ¢ (t')} 1] +//dt1dt2Gr (t,t1)Gr (t', t2)N(t1, t2) - (4.6)

The first term depends only on the initial stategofSimilarly, the driven term depends on the state
of the environment through the "noise” kernel

N(ty,t2) = ZiZjTrlpw {Gi(t1) WP (1) , 9 (t2) WS (t2) } + | (4.7)

As for the commutator, in the presence of dissipation, the first term exflathgdecays, express-
ing the progressive erasing on the information contained in the initial stage @t late times
therefore, as one might have expected, it is the statd which fixes the anti-commutator af.
This allows to remove the restriction that initially the density matrices factorizeselfs interest-
ing by late time behaviour, onliM matters.

In brief, two important results are been obtained. First, at late time, the Heigefield @
reduces to its driven term, the second term of €q. [2.19), since both its datomand anticom-
mutator are determined by those'8f. Second, only two (real) quantities determined by the envi-
ronment, the se¥? and their couplings, govern the two-point functionsggf namely the kernels
D andN of egs. [4) and[(4.7). Therefore the set of environements (Gaussi@t) possessing
the same kernels will give rise to the same 2pt functionsgfoHence they should be viewed as
forming an equivalent class. The degeneracy can be lifted by comgjdmrrelations with observ-
ables containing the operatd#, or higher order correlations functions @f(for non-Gaussian
environements), two possibilities we shall not discuss in this paper.
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In order to be able to comput@; and G, two different routes can be adopted. Whg(p)
andQ(p) are constant, one should work in Fourier transform because the etgiatio be alge-
braically solved, in full generality. Instead wher{p) and/orQ(p) are time-dependent, as it will
be the case in expanding universes (otherwise the theory would bercwify invariant), it be-
comes imperative to choose the set4fs and their frequenc?(p) so as to simplify the time
dependence of the equations. In the body of the article, we proceed witk¢ijpemdent approach
since it will allow us to combine general covariance and dissipation. Wepréglow the Fourier
analysis which is straightforward and well known][20]. We encouraged¢ader unfamiliar with
the treatment of dissipative effects in Quantum Mechanics to read it.

5. Appendix B :
Stationary states, and vacuum 2-point functions

In this Appendix, we provide relationships betwegg G, which always hold in stationary
states. In these cases, the Green functi@nss,; and the kernel®, N are functions ot —t’,
and are related to each other in a fundamental way, generally refeeeBlastuation-Dissipation
relation. We briefly explain its origin and its physical implications in the presemtext. \We start
the analysis by with the most basic object: the retarded Green fur@tion
5.1 The retarded Green function

The Fourier transform of eq] (2]19) gives

(—” + wf) @b (w) = Zigi (P) WP (P, ) + Zigf (P)RP(w; p) g () , (5.1)

where
1

R(w;p) = (—(w+ie)*+QF(p))) ~, (5.2)

is the Fourier transform (defined as in eg. (P.10)) of the retardedGueetion of ¥;. As usual,
its retarded character is enforced by the imaginary prescription of thedigs o lay in the lower
half plane € > 0). The solution of the above equation is

() = @ (0) + Gr(w, p)Zigi (p)¥2(p, w), (5.3)

where the Fourier transform of the retarded Green functiap, diie solution of eq.[(2.20), always
takes the form

Gr(@,p) = (—(W+i€)2+ W+ (w,p) . (5.4)

All effects of the coupling to th&;’s are thus encoded in the (retarded) self-en&idyo, p). For
Gaussian theories, it @gebraicallygiven by

% (w,p) = ~Z g (PR, ). (5.5)
The dissipative effects are governed by the imaginary pat @b, p). In the present case, one has

2Im, (w, p) = —Z; g7(p)GY;i (w, p) = —D(w, p). (5.6)
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To get the first equality we have used the fact that in stationary statestéinda@ Green function
and the commutator are related by Bpiw) = G¢(w) for all degrees of freedom, free or interact-
ing. In the second equality, we have introdud&dv), the Fourier transform of the kernel of eq.
©3).

Several observations should be made here. First, from[ed. (5.2)btaim thatD(w) is pro-
portional toZ;g?d(w — Q). Therefore there is no dissipation for lower frequencies than the lowest
value ofQ;. This simply follows from energy conservation. Second, to obtain "trissigation,

D(w, p) should be a continuous function and not a sum of delta. This can onlyehappen the

Y; form a dense ensemble. In next Section, we shall thus replace thetelisara oni by an
integral on a continuous variablk, We shall not consider the discrete cases even though these
could display interesting properties. Third, from a phenomenological pbiwiew, only D(w, p)
matters. Hence we cannot separately know what is the spectrum of iherenent, which is given

by R°(w, p), and what is the coupling strengit( p). This is a good thing, because when working

in time-dependent settings, we shall exploit this equivalence to chose thiesimmdel of¥;'s
which gives the kerndD(w, p) we want.

It is also worth noticing that the dispersive (real) effects are not direethted toD (or N).
These are governed by the even parEgiw, p) which is given by
do' D(w)

2 w—w'’
where the integral should be understood as a principal value. Thisahtegmtionship explains
why one often founds that dispersive effects appear before dissifects (for increasingv).

We also learn that the dispersive models studied in the litterature are incompéttblde above
relations since they assume botltRe 0 and Ink; = 0. Therefore these models cannot be viewed
as resulting from dynamical processes.

Rezr (O.), p) =

(5.7)

5.2 Fluctuation-Dissipation relations and vacuum self-energy

In this subsection, we derive the relationships betwgrs,; andZg which exist in the true
(interacting) ground state.

In interacting theories, the only stationary states are thermal states, s€@3.gln these
states, the Fourier transform BfandN are related by

N(w) = D(w) coth(Bw/2),
= D(w)sign(w) [2n(|w]|) +1]. (5.8)
In the second linen(w) is the Planck distribution. It gives the mean occupation numbépof
guanta as a function of the frequency (measured in the rest frame cédittme Bhe above relation
directly follows from the fact that the individual commutators and anti-commrigaibthe free

fieldsWy obey this relation, as any free oscillator would do. It implies that the Fougastorm of
G andG;, are also related by

Ga(w) = G¢(w) sign(w) [2n(w) + 1] . (5.9)

It should be stressed that this equation is exact, i.e. non-perturbatideyadid for all theo-
ries, Gaussian or not. (It indeed directly follows from the cyclic propeniethe trace defining

Gp(t,t') =Trle P op(t) p(t")).
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For Gaussian models, there exists an alternative direct verification of%e). In fact, it
suffices to note that in steady states the decaying terms of[eds. (4.2).@)nol#4 no role, and that
the Fourier transform of the driven terms are respectively given by

Ge(w) = |Gr(w)|*D(w), (5.10)
Ga(w) = |Gr(w)]*N(w), (5.11)

since the Fourier transform of the retarded Green function oBe{®) = G;(—w), see eq.[(5]3).
Irrespectively of the complexity db, i.e. irrespectively of the functiorg(p), Qi(p) and the set
of the W, fields, G andG, are thus related to each other by the FD relatjor (5.9).

These universal relations will be relevant for to inflationary models wihawnly the ground
state contributes. In particular, they imply thathe true vacuumi.e. whenn(w) = 0, G; andG,4
are exactly related b, (w) = G¢(w) sign(w). Hence the Wightman function

G = 5(Ge+Ga) = Geb(®). (5.12)

is determined by the commutator and contains only positive frequency, adiaeh@cuum. Equa-
tions (5.1P[5.1]1) also allow to compute the vacuum self-energy of the FeyGmeen function in
eq. (L.p). For Gaussian models it is given by

2IM3r (w) = —D(w) sign(w) = 2ReX g7GE; (w) (5.13)

where thep dependence has not been not explicitized, and where we have takesatheart
because of thein the numerator of eq.[(1.2). With the last equality we recover the fact that in
the vacuum, it is sufficient to consider Feynman Green functions. Invaonum states, and in
non-stationary situations, this is no longer true, thereby justifying the ueof — in machinery
(also called Schwinger-Keldish formalism).

Before specializing to a specific class of models giving rise to dissipatioighatfiequency,
we make a pause by asking the following important question: What shoulddvekabout théV;
fields to get eqs[(5.10, 5]1[1, 9.12) ? We have proven that it is sufficietite ;’s to be canonical
fields, but is it necessary ?

The answer is two fold. On one hand, $#ecannot be stochastically fluctuating (i.e. commut-
ing) quantities because this would lead to a violation of Eq] (5.8) that would imglyittation of
eq. (5.9) and the ETC eq]_(k.4)They cannot be either a combination of quantum and stochastic
guantities because this would still lead to a violation of the ETC. Hence they raustilh only
from quantum (canonical) degrees of freedom.

On the other hand, thé;’s can be composite operatdtse. polynomials of some (unknown)
canonical fields. Indeed, their commutators would still be all related to théhcammutators

"This constitutes the simplest proof that it is inconsistent to couple quantriables to stochastic (or classical)
ones. If one does so, the ETC of the dressed quantum variables vélfsive dissipated after a time of the ordeyof.
One can therefore view the experimental evidences for the ETC of degrees of freedom as a very strong indication
that all dynamical variables in our world are quantum mechanical in nature. lifleiof thought has been used by
W. Unruh to prove that gravitational waves must be quantized.

8] am grateful to Albert Roura for bringing my attention to this question.
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by the FD relation eq. [(3.8), and this even though both depend non-lineantyco) in non-
vacuum states. The difference with Gaussian models is that these nandjperators possess
non-vanishing connected higher order correlation functions. Heheeself-energieg;, g will
contain higher a series in powersgf, and not just a single quadratic term as in €q.] (6.5,]5.13).
Nevertheless these higher loops corrections preserve the validity ¢5.4@) in the ground state,
as well as that of eqs[ (5]10, 5}11) in any thermal state, when propetériood, i.e. withD now
defined by -2Inx, (as the effective dissipation kernel), aNdelated to it by the FD relation.

In brief, we have reached/recalled the following results. Firstly, thergbhar combination
= = 5gi¥;, the fluctuating source term f, must obey the FD relation (5.8). This can either be
postulated, or better, be viewed as resulting from the factFHatentirely made out of quantum
degrees of freedom. Secondly, to lowest order termy, ithe self-energy can be obtained by treat-
ing = as a quantum Gaussian variable, whatever its composition may be. Thirdiy, ddaling
with non-Gaussian theories, once having compiidd), the resulting equations for the 2-point
functions have the same structure and the same meaning as in Gaussias titirie replaced
by -2ImZ,. Therefore, the entire phenomenology of two-point functions can beried with
Gaussian settings.

5.3 The double limit: g?T — o followed by g? — O.

To perform a phenomenological analysis, we need to understand haivetbiy behaves in
transitory regime from dissipative to free propagation. Similarly, to study pdrabspectra in
inflation or Hawking radiation, we also need to understand how free motiorgesas the proper
frequency get red-shifted. It is therefore relevant to study thewbehef the two-point function in
the following double limit.

One first takeg?T — oo, whereT =t —tiy, tin being the moment when the interactions are turn
on, andt the moment when one studies the field properties. This limit implies that the decaying
term in eq. [2.39) plays no role. Therefore, near timthe Heisenberg fielg(t) is a composite
operator which only acts in the Hilbert space=of

Secondly, one considers the "free" lirgft — 0 of that composite operator. One could naively
conclude thats; and G, of egs. [5.70] 5.11) would vanish since b&@handN are proportional
to g>. However, this is not the case, because the prefactor in these equiidhsis singular in
this second limit. In fact, one verifies that it scales jigdin such a way that, in the (interacting)
vacuum, one always recovers

Gw(w)g_0 = 2;2716(0)%). (5.14)

This is the standard vacuum fluctuations of a free oscillator of frequepcy

Two important lessons have been reached. First we learned is thabheughg actsonly on
the =-Hilbert space, wheg? — 0, it behaves as if it were a free mode possessing its own Hilbert
space, with no reference Exdynamics. Secondly, in spite of this, the quantum state in the would
be Hilbert space is still exactly that & Therefore, in stationary situations, the only "souvenir"
kept by the composite is the equilibrium distributiofw) inherited from its parents.

Let us now emphasize that the above limit is relevant for non-Gaussianisrasievell. In-
deed, in the limitg? — 0, there will always be a value @f sufficiently small that the model can
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be well approximated by a Gaussian model. Therefore the behavior ofph@functions in
the transitory regime from dissipation to free propagation can be analyiteduvrestriction by
studying Gaussian models (at least in the quasi-static limit).

6. Appendix C:
Dissipative effects above\y. The Phenomenology

We now have all the tools to understand models giving rise to dissipation in ¢heweabove
a critical energy scalédy. We proceed in two steps. First, from a purely phenomenological
approach, we provide the class of dissipative models wherein the imagiadrygf the self-energy
is governed by a single term, in analogy with the dispersion relations of €j). (/e then show
how to obtain this class of models starting from an action in order to prepplieapon to inflation
and other curved geometries.

If one considers only stationary situations (i.e. static metrics and stationary)staid if one
adopts a phenomenological point of view, one can simply choose the fofxio, p) entering eq.
(6.8) and eq.[(5.1Ms one wishesThere is indeed no restriction @ w, p) besides its constitutive
properties, namely being odd & and giving rise to poles i5; all localized in the lower halto
plane. In this we have reached our first aim, namely identify how to gerzertthe free settings so
as to incorporate some arbitrary dissipative effects.

We can thus consider the dispersive models which correspond to thiiseddey eq. [(15).
They are charaterized by a single term giving rise to dissipation abhgyeln the vacuum, they
are fully specified by the imaginary part of the (retarded) self-energy

2n
w
—ImZEn)(a), p) = Ay p? </\r|_)v> = 2Wh. (6.1)

In these models, the decay rate (inverse life time) on the mass shell is

2n+1
s
=" ( ALV) | 6.2)

To verify it, assuming that R& = 0, the two poles 06, (w) in eq. (5.4) are located in

we(p) =+ /Wi —y2—iy. (6.3)

From this, by inverse Fourier transfor@} (w), one obtains that the decay rate is indgdd the
underdamped regime, ftwg > 2. In the overdamped regime, fgf > w2, the decay rates of the

two independent solutions & gy =0 arel . = y+,/y2 — w3.

One thus have the following behavior asgrows. Forp < Ay, we ~ p, and one has a
free propagation which is slightly damped with a life time in the units of the frequgiven by
(Av/w)™1 > 1. Instead the opposite regime of high momenta ALy, deep in the overdamped
regime, the two rootgu. are real and the notion of propagation (in space-time) is completely
absent. In anticipation to what will occur in inflation or in black hole physiasjnvite the reader
to study the migration of the poles & when extrapoling backwards in time a mode, i.e.pas
increases. (Remember that the physical momentum of a mode in cosmolp@y s po/a(t)
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wherep, is the norm of the conserved comoving wave vector, whereas nearkahadbrhorizon
one findsp(r) = w/xwherex =r —rsis the proper distance from the horizon measured in a freely
falling frame, andw the conserved Killing frequency measured asymptotically.)

One could of course generalize the above class by considering i &).p@@ynomials inp
dimensionalized by different UV scales. However, unless fine tuningptieaomenology of the
transition from the IR dissipation-free sector to the dissipative sector witldmeinated a single
term. One should also consider the possibility thak Istrictly vanishes below a certain frequency
Q. This would be the case when the spectrum oleelds possesses such a gap, see the remarks
after eq. [56).

Having the phenomenology of dissipative unitary models under control @istersive and
dissipative related by Kramers relations, see eq] (5.7)) one coulcbeopfrrticle and astro-particle
physics data and put lower bounds Ap, for eachn, in analogy with what was done for (pure)
dispersion in[[2].
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