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1. Introduction

The microscopic studies of collective motion in nuclei are usually performed in mean field
theories like random-phase approximation (RPA) [1, 2]. RPA, however, accounts only for the frag-
mentation of the collective mode due to its decay to single-particle states (Landau damping) [3].
Important anharmonic features, like the collisional damping, responsible for the so called spread-
ing width, are outside the domain of mean field theories. Moreover, the evidence of multiphonon
spectra, with their inherent anharmonicities, has been growing rapidly in recent years. Low-lying
double-quadrupole, double-octupole and mixed quadrupole-octupole multiplets have been detected
in resonance fluorescence scattering experiments [4]. A class of multiphonon quadrupole excita-
tions known as proton-neutron (F-spin) mixed symmetry states has been discovered in experiments
combining different γ−ray spectroscopy techniques [5, 6, 7]. Quadrupole three-phonon excitations
have been also observed [6, 7]. At high energy, the double giant dipole resonance has been estab-
lished in a number of different reactions [8, 9]. In deformed nuclei, a recent γ cascade experiment
[10] could disentangle the M1 from the Eλ deexcitations and provide evidence of a scissors mode
[11, 12] built on excited states. A series of (p, t) transfer reaction experiments have populated an
impressive number of 0+ states up to 3 MeV [13, 14, 15, 16].

In order to properly describe the fragmentation of the one-phonon collective modes as well as
the anharmonic features of the multiphonon spectra, it is compulsory to go beyond mean-field theo-
ries. To this purpose, Boson expansion techniques, to be implemented under some Fermion-Boson
mapping prescription, have been developed long ago [17, 18, 19]. A celebrated application of this
technique is represented by the phenomenological interacting-boson model (IBM), so successful
in providing systematics of the low-energy multiphonon spectra [20]. The IBM, indeed, can be
considered a phenomenological realization of a Marumori Fermion-Boson mapping [21].

On the other hand, realistic microscopic calculations exploiting explicitly the Boson expansion
techniques are not very many, because of the slow convergence of the Boson series. The most
widely adopted approaches are only inspired by the Fermion-Boson mapping. Notable examples
are the nuclear field theory [22, 23], especially suitable for characterizing the anharmonicities of the
vibrational spectra and the spreading widths of the giant resonances, and the quasiparticle-phonon
model (QPM) [24], extensively adopted to describe multiphonon excitations and their anharmonic
features [25, 26, 27]. It is worth mentioning also some microscopic multiphonon approaches based
on the iterative solution of equations of motion [28, 29].

Moving along similar lines, we have developed a new equation of motion method [30] which
generates iteratively a basis of multiphonon states, built out of phonons constructed in the Tamm-
Dancoff approximation (TDA) [1]. The basis is then used to solve exactly the nuclear eigenvalue
problem in the space spanned by such a correlated basis. The method holds for the most general
Hamiltonian.

We first outline briefly the mean field approaches and the limits of their validity. We then
illustrate the main steps of our multiphonon method and show how the procedure is implemented,
with no approximations, in the specific case of 16O, which, because of its highly complex shell
structure, represents a severe test for any microscopic calculation.
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2. Mean field approaches

In purely collective models, one constructs a harmonic oscillator (HO) Hamiltonian in the
collective coordinate αλ , of multipolarity λ , and its conjugate momentum πλ , which fulfills the
eigenvalue equations

[H,O†
λ ] = h̄ωλ O†

λ , (2.1)

where O†
λ and Oλ are, respectively, the quanta creation and annihilation operators with respect to

the bosonic vacuum |0 >. The collective mode is described by the first excited state |λ >= O†
λ |0 >,

of energy ωλ . Such a state collects the whole strength of the coordinate αλ .
The nuclear Hamiltonian H is far from being harmonic. Its form in second quantization is

H = ∑
i

εia
†
i ai +

1
4 ∑

i jkl
Vi jkl a†

i a†
jalak , (2.2)

where εi are the single-particle energies, Vi jkl the antisymmetrized matrix elements of the nucleon-
nucleon interaction, a†

i (ai) the creation (annihilation) particle operators with respect to the Fermionic
vacuum.

It is nonetheless possible to turn formally the nuclear eigenvalue problem into a HO-like eigen-
value equation [1, 2]. If |0〉 is the lowest eigenstate of H, namely the nuclear ground state, one can
always define operators Oλ and O†

λ satisfying the conditions

Oλ |0〉= 0 , |λ >= O†
λ |0 > (2.3)

for any eigenstate |λ > of H. Under the above constraints, the operators Oλ and O†
λ satisfy the

following HO-like equations
[

H,O†
λ

]

|0〉 = ωλ O†
λ |0〉= (Eλ −E0)O

†
λ |0〉. (2.4)

RPA consists in solving the above eigenvalue equations in a restricted space spanned by particle-
hole (ph) states, assuming that |0 > is the true, highly correlated, ground state. Under this assump-
tion, the Boson-like operators takes the form

0†
λ = ∑

ph
(Y λ

pha†
pah−Zλ

pha†
hap) . (2.5)

The explicit eigenvalue equations are obtained by expanding the commutator in Eq.(2.4) and mak-
ing use of the approximation

< 0|a†
pap′ |0 > ∼ < |a†

pap′ |>= 0 (2.6)

< 0|a†
hah′ |0 > ∼ < |a†

hah′ |>= δhh′ , (2.7)

where |〉 is the Hartree-Fock ph vacuum. The replacement of the correlated vacuum |0 > with the
unperturbed one |> represents the quasi boson approximation (QBA). One finally obtains
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where

Aph,p′h′ = (εp− εh)δpp′δhh′ +Vph′h′p , (2.9)

Bph,p′h′ = Vpp′hh′ . (2.10)

The RPA states |λ 〉= O†
λ |0〉 are normalized according to

〈λ |λ ′〉= 〈0|0λ 0†
λ ′ |0〉= 〈0|[0λ , 0†

λ ′ ]|0〉 ∼= 〈|[0λ ,0†
λ ′ ]|〉 = δλλ ′ , (2.11)

where, once again, use of the QBA has been made. In virtue of this approximation, the normaliza-
tion condition yields

∑
ph

(Y λ∗
ph Y λ ′

ph −Zλ∗
ph Zλ ′

ph) = δλλ ′ . (2.12)

The transition amplitudes for the generic one-body operator W are given by

〈λ |W |0〉= 〈0|[0λ , W ]|0〉 ∼= 〈|[0λ , W ]|〉= ∑
ph

(Y λ∗
ph Wph +Zλ∗

ph Whp) . (2.13)

For open shell nuclei, one has to move from a particle to a quasiparticle formalism by means of the
canonical Bogoliubov transformation

α†
α = uαa†

α − vαaᾱ ,

αα = uαaα − vαa†
ᾱ , (2.14)

where ᾱ denotes time reversal. The quasiparticle RPA (QRPA) states have the form

|λ 〉= 0†
λ |0〉= ∑

αβ
{Y λ

αβ α†
αα†

β −Zλ
αβ αβ αα}|0〉 (2.15)

and yield the QRPA transition amplitudes

〈λ |W |0〉= 〈0|[0λ , W ]|0〉 ' ∑
α>β

(Y λ ∗

αβWαβ +Zλ ∗

αβWβα)(uαvβ + τvαuβ ) , (2.16)

where τ = +1 or −1 according that the operator W is even or odd under time-reversal.
Clearly, the RPA equations, to be solved numerically, have a much richer structure than the

purely Bosonic one (2.1). Indeed, they yield not one but many eigenvalues. Only one state, how-
ever, is collective and gets a large fraction of the strength. The others are non collective and get
a relatively small strength. Thus, the mode gets fragmented because of its decay to single-particle
levels (Landau damping).

It is to be pointed out, once more, that RPA is not exact but relies on the QBA. This approx-
imation can be removed by using from the beginning the Hartree-Fock ph vacuum, |0 >= | >. In
such a case, one obtains the TDA eigenvalue equations

∑
p′h′

A(ph ; p′h′) Xλ (p′h′) = (Eλ −E0) Xλ (ph) (2.17)

where A is given by Eq. (2.9). The eigenstates have the simple form

|λ >= O†
λ |>= ∑

ph
Xph(λ )a†

pah|> . (2.18)
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TDA is exact. It is nothing but the shell model of the nuclear Hamiltonian within the ph space. It
is, however, inconsistent with the HO-like Eqs. (2.4) which, strictly, hold only if |0 > is the true,
correlated, ground state. Just because these correlations are neglected, TDA is less general than
RPA and less suitable for investigating collective modes.

While accounting for the Landau damping, neither TDA or RPA can describe the fragmenta-
tion induced by the coupling of the mode with complex configurations. In order to account for such
a collisional damping, one has to go beyond mean-field and enlarge the space so as to allow for
multiphonon excitations. This is achieved, for instance, in the QPM developed by Soloviev [24]. In
this approach, a Hamiltonian of generalized separable form is expressed in terms of QRPA phonon
operators and then diagonalized in a severely truncated space which includes a selected set of two
and three RPA phonons. The method has been extensively and successfully adopted to describe
both low and high energy multiphonon excitations in spherical as well as deformed nuclei. It has
greatly contributed to clarify the microscopic structure of the mixed-symmetry states [25] and of
the double giant dipole resonance [26]. The method has also been crucial in the understanding of
the nature of the 0+ states observed in large abundance in deformed nuclei [27].

Though very successful, the QPM has some limitations. It is suitable only for a Hamiltonian
of separable form and is based on the quasi-boson approximation. One consequence of such an
approximation is that the correlations in the ground state are accounted for only virtually.

Very recently, we have developed a new multiphonon approach which is free of the QBA and
accounts explicitly for the correlations in the ground state [30]. The method is in principle exact
and completely equivalent to shell model.

3. A new multiphonon approach

The goal of this new method is to generate a basis composed of multiphonon states | n;α〉,
where n = 0,1,2, . . . ,N denotes the number of phonons constructed in TDA. The most obvious
basis would be

| n;α〉= |ν1,ν2, ....,νN >= O†
ν1

O†
ν2

....O†
νN
|>, (3.1)

where |νi > is for instance the TDA phonon given by Eq. (2.18). A direct diagonalization in
such a basis is simply prohibitive. We have therefore to find ways of circumventing the direct
diagonalization.

Such a way out is suggested by the structure of the TDA state itself. Let us suppose in fact
that the (n− 1)-phonon states are known. We can then adopt for the n-phonon subspace a basis
composed of the states

b†
ph |n−1;α > , (3.2)

where b†
ph = a†

pah. For n = 1, |n−1;α >= |> is simply the ph vacuum and b†
ph |> is just the TDA

basis. For more than one phonon n > 1, we have to keep in mind that our goal is to find, starting
from the basis (3.2), the states |n,α > which bring the Hamiltonian H to diagonal form within the
n-phonon subspace. Having in mind this goal, and exploiting the fact that the ph operators a†

pah

couple only subspaces which differ at most by one TDA phonon, we derive the following equations
of motion

< n;β | [H,b†
ph] |n−1;α >= (E(n)

β −E(n−1)
α ) < n;β |b†

ph|n−1;α > . (3.3)
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We then write the Hamiltonian in second quantized form and expand the commutator [H,a†
pah]

on the left-hand side of the equation. After a linearization procedure, we obtain for the n-phonon
subspace the eigenvalue equation

∑
γ p′h′

A(n)
αγ (ph ; p′h′) X (n)

γβ (p′h′) = E(n)
β X (n)

αβ (ph), (3.4)

where
X (n)

αβ (ph) ≡< n;β |b†
ph|n−1;α > (3.5)

are the vector amplitudes and

A(n)
αγ (ph; p′h′) = δhh′δpp′δ

(n−1)
αγ

[

(εp− εh)+E(n−1)
α

]

+ ∑
h1

Vp′h1h′p ρ(n−1)
αγ (h1h)−∑

p1

Vp′hh′p1ρ(n−1)
αγ (pp1)

+
1
2

δhh′ ∑
p1 p2

Vp′p1 pp2ρ(n−1)
αγ (p1 p2)−

1
2

δpp′ ∑
h1h2

Vhh1h′h2

{

ρ(n−1)
αγ (h1h2)

}

. (3.6)

The quantity
ρ(n)

αγ (kl) =< n; γ|a†
kal|n; α > (3.7)

is the density matrix and plays a crucial role. It is, in fact, seen to weight the particle-hole, particle-
particle and hole-hole interaction.

The simple structure of the equations is to be stressed. It is also to be pointed out that the
above matrix A(n) contains only density matrices defined within the (n−1)-phonon subspace. For
them, as we shall see, recursive relations hold which allow an iterative solution of Eq. (3.4). We
can indeed start from the ph vacuum | n = 0〉 = | > and solve the equations step by step up to a
given number of phonons. In the first step, n = 1, since the (n−1)-phonon subspace contains only
the ph vacuum |〉, the density matrices appearing in Eq. (3.6) assume the values

ρ(0)(pp′) =<| a†
pap′ |>= 0, ρ (0)(hh′) =<| a†

hah′ |>= δhh′ ,

so that the matrix A(n=1) becomes just the TDA Hamiltonian matrix (2.9). Thus, our equations (3.4)
represent the most natural extension of the Tamm-Dancoff equations to multiphonon spaces. Their
eigenvalues are relative energies with respect to the energy of the ph vacuum.

The iterative process, however, cannot be implemented in the way we just did. In fact, when
we move to subspaces with n > 1, we run into the problem of the redundancy of the basis states.

3.1 Generation of a redundancy-free multiphonon basis

The basis states we have adopted are of the factorized form b†
ph|n−1; α >= (a†

pah)|n−1; α >,
where the ph operator a†

pah acts on each phonon state |n−1; α > as a whole and not on its Fermion
constituents. It is therefore impossible to enforce the Pauli principle. In the absence of such a
constraint, the number of ph states is determined independently of the phonon states |n− 1; α >

and vice versa.
It follows that the states b†

ph|n−1; α > form an overcomplete set of linearly dependent states,
yielding a redundant number of eigensolutions with spurious admixtures in each eigenvector.

6
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In order to eliminate this redundancy problem and obtain the correct number of spuriosity free
eigenstates, we have to formulate an eigenvalue problem of general type. Let us denote by Nr the
total number of states b†

ph|n− 1; α >. It is always possible to expand the state to be determined
|n; β > in terms of these redundant Nr states

|n; β >= ∑
α ph

C(n)
αβ (ph)b†

ph |n−1; α > . (3.8)

Upon insertion into Eqs. (3.5) and (3.6), we get

X = DC (3.9)

ADC = EDC, (3.10)

where D is the overlap or metric matrix

d(n−1)
αβ (ph; p′h′) = 〈n−1;β | bp′h′b

†
ph | n−1;α〉. (3.11)

Eq. (3.10) defines an eigenvalue equation of general form. It is, however, ill-defined. The matrix D

is singular. Its determinant is necessarily vanishing, since the vectors b†
ph | n−1;α〉 are not linearly

independent.
The traditional prescriptions [31] adopted to overcome this problem are based on the straight-

forward diagonalization of D , which is time consuming. We have avoided the direct diago-
nalization of D by adopting an alternative method based on the Choleski decomposition[30].
This provides a fast and efficient prescription for extracting a basis of linear independent states
b†

ph |n−1; α > spanning the physical subspace of the correct dimensions Nn < Nr.
We are now ready to solve the generalized eigenvalue Eqs. (3.10). To this purpose we need to

compute the matrices A and D . The calculation of the metric matrix D is a highly non trivial task.
Elaborated diagrammatic techniques and complex iterative procedures have been envisaged to this
purpose[28, 29, 32, 33].

Our equation of motion method provides the easiest and most natural solution to this latter
problem by yielding the simple formula

d(n−1)
αβ (ph; p′h′) = ∑

γ

[

δpp′δγβ −ρ(n−1)
γβ (pp′)

]

ρ(n−1)
αγ (hh′), (3.12)

where the matrix densities are computed by using the recursive relations

ρ(n)
αβ (p1 p2) = ∑

phγδ
C(n)

αγ (ph)X (n)
δβ (p1h)

[

δpp2δγδ −ρ(n−1)
γδ (pp2)

]

, (3.13)

ρ(n)
αβ (h1h2) = ∑

phγδ
C(n)

αγ (ph)
[

δhh1δγδ X (n)
γβ (ph2)−X (n)

δβ (ph)ρ (n−1)
γδ (h1h2)

]

. (3.14)

The Matrix A is also easily computed by exploiting the above Eqs. (3.13) and (3.14).
We have thus accomplished all necessary steps for solving the generalized eigenvalue problem

(3.10). These can be summarized as follows:
1. Assuming that the eigensolutions in the (n−1)-phonon subspace are known, construct the matrix
A(n) through Eq. (3.6).

7
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2. Compute the metric matrix D .
3. Use the Choleski decomposition method to extract a set of Nn linearly independent states and
construct the Nn×Nn non singular matrix Dn.
4. Solve the generalized eigenvalue equation in the Nn-dimensional physical subspace to obtain
the correct number of eigenvalues and the expansion coefficients C(n)

αβ (ph) of the corresponding
eigenvectors.
5. Compute within the n−phonon subspace the amplitudes X (n)

αβ (ph) using Eqs. (3.9) and the

density matrix ρ (n)
αβ (kl) using the recursive relations (3.13) and (3.14).

6. X (n)
αβ (ph) and ρ (n)

αβ (kl) are the new entries for the equations of motion in the (n + 1)-phonon
subspace.

The iterative process is clearly outlined. To implement it, we have just to start with the lowest
trivial 0-phonon subspace, the ph vacuum, and, then, solve the eigenvalue problem step by step
within each n-phonon subspace following the prescriptions 1 to 6.

Such a procedure yields a multiphonon basis which reduces the Hamiltonian to diagonal
blocks, mutually coupled by off-diagonal terms

H = ∑
nα

E(n)
α | n;α〉〈n;α |+ ∑

nαn′β
| n′;β 〉〈n′;β | H | n;α〉〈n;α |, (3.15)

where n′ = n±1,n±2, since only subspaces differing from each others by two-phonons, at most,
are coupled. The off-diagonal pieces are given by recursive formulas and, therefore, easily com-
puted.

It remains now only to diagonalize the Hamiltonian matrix to get the exact nuclear eigenvalues
and eigenvectors. These are given by

|Ψν〉= ∑
n,αn

C(ν)
αn | n;αn〉. (3.16)

Iterating Eq. (3.8) for the states | n;αn〉, for each n, we get

|Ψν〉= ∑
n=0,N

∑
ν1..νn

C(ν)
ν1,ν2,....,νn | n;ν1,ν2, .....νn〉, (3.17)

where νi labels TDA states and the coefficients C(ν)
ν1,ν2,....,νn are very involved sums of products of

expansion coefficients. Clearly, the above states, including the ground state, are highly correlated.
Using the wave functions (3.16), we can compute the transition amplitudes

M (i f ) = 〈Ψν f |M |Ψνi〉 (3.18)

of the one-body operator
M = ∑

kl
Mkla

†
kal , (3.19)

obtaining

M (i f ) = 〈Ψν f |M |Ψνi〉= ∑
klnin f αiβ f

MklC
(νi)
niαiC

∗(ν f )

n f β f
ρ(nin f )

αiβ f
(kl). (3.20)

These amplitudes involve the density matrix, which can be easily computed. Their composite
structure reflects the fact that all correlations are accounted for explicitly and not virtually as in
RPA.

8
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Figure 1: Low-lying negative parity spectrum in 16O. The energy of the one-phonon ground state, namely
the ph vacuum, is relative to the one of the correlated 0+

gs, assumed coincident with the experimental ground
state level.

4. A numerical illustrative application of the method for 16O

For illustrative purposes, we apply the method to 16O, whose low-lying excitations are known
to have a highly complex ph structure since the pioneering work of Brown and Green [34].

The low-energy positive parity spectrum of this nucleus was studied in a shell model calcula-
tion which included up to 4p− 4h and 4h̄ω configurations [35]. The same spectrum was studied
very recently within a no-core shell model and an algebraic symplectic shell model [36]. In both
approaches, the model space was enlarged so as to include all configurations up to 6h̄ω .

We have included all ph configurations up to 3h̄ω , which limits our phonon space up to n = 3.
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Figure 2: E3 strength distributions in 16O

Such a space is considerably smaller than the one adopted in shell model. This is sufficient for our
purpose, which is to show that our method can be implemented exactly. Moreover, our approach
generates at once the whole spectrum of positive and negative parity states. This allows the study
of low-lying as well as high energy spectroscopic properties and, in particular, the anharmonic
features of the giant resonances. To this purpose, we used a modified harmonic oscillator one-body
Nilsson Hamiltonian [37] plus a bare G-matrix deduced from the Bonn-A potential [38].

We have adopted the method of Palumbo [39] to separate the intrinsic from the center of mass
motion. This method was applied to standard shell model by Glockner and Lawson [40] and, since
then, widely adopted in nuclear structure studies. It consists of adding an HO Hamiltonian in the
center of mass coordinates multiplied by a coupling constant. If all configurations up to 3h̄ω are
included, as in our case, each eigenfunction of the full Hamiltonian gets factorized into an intrinsic
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and center of mass components. For a large enough coupling constant, the center of mass excited
states are pushed high up in energy, leaving at the low physical energies only the intrinsic states,
namely the eigenfunctions with the center of mass in the ground state. Thus, a complete separation
of the center of mass from the intrinsic motion is achieved.

Figure 3: Isovector E1 strength distributions in 16O

4.1 Results

Being the space confined to 3h̄ω , the ground state contains correlations up to 2-phonons only.
These account for about 20% of the state, while the remaining 80% pertains to the ph vacuum.
These values are reasonably close to the estimates of the consistent no-core symplectic shell model.
This yielded about 60% for the 0p− 0h, 20% for 2p− 2h and 20% for the other more complex
configurations[36], excluded from our restricted space.

As shown in Fig. 1, the effect of the multiphonon configurations on the low-lying negative par-
ity spectrum is very important. The coupling with the two phonons pushes down the one-phonon

11
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levels. The energy shifts, however, are much smaller than the one induced by the positive parity
two-phonons on the ground state, so that the gap between excited and ground state levels increases
with respect to the one phonon case. The three phonon configurations are considerably more ef-
fective and bring all the states down in energy within the range of the corresponding experimental
levels [41, 42, 43].

Let us now investigate the anharmonicities induced by the multiphonon configurations on
some selected giant resonances. We have studied isoscalar and isovector dipole and quadrupole
transitions. To this purpose, we have computed the strength function

S (λ ,ω) = ∑
ν

Bν(λ )δ (ω−ων)≈∑
ν

Bν(λ )ρ∆(ω−ων), (4.1)

where ω is the energy variable, ων the energy of the transition of multipolarity λ from the ground
to the νth excited state Ψ(ν)

λ of spin J = λ , given by Eq. (3.16), and

ρ∆(ω−ων) =
∆

2π
1

(ω−ων)2 +(∆
2 )2

(4.2)

is a Lorentzian of width ∆, which replaces the δ function as a weight of the reduced transition
probability [44]

B(ν)(λ ) = ∑
µ

∣

∣

∣
〈Ψ(ν)

λ µ |M (λ µ)|0〉
∣

∣

∣

2
. (4.3)

For all electric (Eλ ) transitions, we adopt the standard multipole operator

M (Eλ µ) =
e
2

A

∑
i=1

(1− τ i
3)r

λ
i Yλ µ(r̂i), (4.4)

where τ3 = 1 for neutrons and τ3 = −1 for protons. The isoscalar E1 transition deserves special
attention. The τ = 0 component of the λ = 1 operator (4.4) excites the center of mass spurious
mode. It is remarkable that such a mode has been completely removed in our calculation. In order
to excite the intrinsic isoscalar dipole mode, known as squeezed dipole mode, we have to go beyond
the long wavelength approximation and use the operator

MIS(λ = 1µ) =
A

∑
i=1

r3
i Y1µ(r̂i). (4.5)

It is important to notice the absence of the corrective term generally included in order to eliminate
the spurious contribution due to the center of mass excitation. Such a term is not necessary in our
approach which guarantees a complete separation of the center of mass from the intrinsic motion.

Fig. 2 shows the distribution of the E3 strengths over a very large energy interval. The two-
phonon configurations have a damping and spreading effect and push the spectrum up in energy.
The strength is further redistributed and shifted downward by the three phonon configurations.

It is interesting to investigate the phonon structure of some of these 3− states. While the low
lying ones are mainly one-phonon states, those contributing to the main peaks at high energy are
dominated by three phonon components.

The isovector E1 response SIV (E1,ω) is only slightly affected by the multiphonon configura-
tions (Fig. 3), an indication that the isovector giant dipole resonance mode is basically harmonic.
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More dramatic is the effect of the multiphonon excitations on the isoscalar E1 response. The
strength gets spread over a much larger energy range as we include these more complex configura-
tions (Fig. 4). Such a spreading was expected. Indeed, the isoscalar giant dipole resonance is due
to ph excitations of 3h̄ω . This is also the energy of many 2p−2h as well as 3p−3h configurations
which are therefore to be included in a consistent description of the mode.

Figure 4: Isoscalar E1 strength distributions in 16O

5. Conclusions

The method we have proposed yields eigenvalue equations of simple structure and of easy
solution for a Hamiltonian of general form. The method is exact not only in principle but also in
its actual numerical implementation, as shown here for 16O.

Indeed, no approximations of any sort have been made in the numerical treatment of such a
nucleus. Such a calculation was confined to a space which included up to three-phonons and 3 h̄ω ,
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sufficient for our illustrative purposes, but too restricted to describe exhaustively and faithfully all
spectroscopic properties of this complex nucleus.

In order to extend the method to spaces with a larger number of phonons we need to trun-
cate the dimensions of the phonon subspaces. The highly correlated nature of the phonon basis
generated by the eigenvalue equations suggests that such a truncation should be feasible with little
detriment to the accuracy of the solutions. It is, in fact, conceivable that most TDA phonons are
non collective and unnecessary. To this purpose we are developing a new formulation which should
render the truncation procedure efficient and, at the same time, accurate. Such a new formulation
should allow to select naturally the relevant TDA phonons and discard the others, thereby reducing
drastically the number of TDA phonons coming into play. Such a severe cut should render possi-
ble the access to phonon subspaces with a quite large number N of phonons and, thus, render the
approach competitive with shell model even in describing the low energy spectroscopic properties.
The method, however, goes beyond shell model. In fact, it allows to include in TDA phonons ph
configurations of arbitrarily high energy not at reach of shell model calculations.

The method can be extended in several ways. It can be reformulated so as to include RPA
phonons. This extension, however, might be unnecessary since the method, already in its present
TDA formulation, yields an explicitly correlated ground state.

A formulation of the method in terms of quasiparticle rather than particle-hole states is also
straightforward and especially useful. It allows, indeed, to study anharmonicities and multiphonon
excitations in open shell nuclei not easily accessible to shell model methods.
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