
P
o
S
(
C
P
O
D
0
7
)
0
1
3

Fluctuations in Statistical Models

Mark Gorenstein∗

Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine.
E-mail: mark@mgor.kiev.ua

The multiplicity fluctuations of hadrons are studied withinthe statistical hadron-resonance gas

model in the large volume limit. The role of quantum statistics and resonance decay effects are

discussed. The microscopic correlator method is used to enforce conservation of three charges –

baryon number, electric charge, and strangeness – in the canonical ensemble. In addition, in the

micro-canonical ensemble energy conservation is included. An analytical method is used to ac-

count for resonance decays. The multiplicity distributions and the scaled variances for negatively

and positively charged hadrons are calculated for the sets of thermodynamical parameters along

the chemical freeze-out line of central Pb+Pb (Au+Au) collisions from SIS to LHC energies. Pre-

dictions obtained within different statistical ensemblesare compared with the preliminary NA49

experimental results on central Pb+Pb collisions in the SPSenergy range. The measured fluc-

tuations are significantly narrower than the Poisson ones and clearly favor expectations for the

micro-canonical ensemble. Thus, this is a first observationof the recently predicted suppression

of the multiplicity fluctuations in relativistic gases in the thermodynamical limit due to conserva-

tion laws.
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1. Introduction

For more than 50 years statistical models of strong interactions [1 – 3] have served as an important
tool to investigate high energy nuclear collisions. The main subject of the past study has been the
mean multiplicity of produced hadrons (see e.g. Refs. [4 – 7]). Only recently, due to a rapid devel-
opment of experimental techniques, first measurements of fluctuations of particle multiplicity [8]
and transverse momenta [9] were performed. The growing interest in the study of fluctuations in
strong interactions (see e.g., reviews [10]) is motivated by expectations ofanomalies in the vicin-
ity of the onset of deconfinement [11] and in the case when the expanding system goes through
the transition line between the quark-gluon plasma and the hadron gas [12].In particular, a crit-
ical point of strongly interacting matter may be signaled by a characteristic power-law pattern in
fluctuations [13].

There is a qualitative difference in the properties of the mean multiplicity and the scaled vari-
ance of multiplicity distribution in statistical models. In the case of the mean multiplicity results
obtained with the grand canonical ensemble (GCE), canonical ensemble (CE), and micro-canonical
ensemble (MCE) approach each other in the large volume limit. One refers here to the thermody-
namical equivalence of the statistical ensembles. It was recently found [14, 15] that corresponding
results for the scaled variance are different in different ensembles, and thus the scaled variance is
sensitive to conservation laws obeyed by a statistical system. The differences are preserved in the
thermodynamic limit.

We calculate the multiplicity fluctuations in central collisions of heavy nuclei within the MCE
formulation of the hadron-resonance gas model [16]. Fluctuations are quantified by the ratio of
the variance of the multiplicity distribution and its mean value, the so-called scaled variance. The
model calculations are compared with the corresponding preliminary results [17] of NA49 on cen-
tral Pb+Pb collisions at the CERN SPS energies.

2. Statistical Models

The mean multiplicities of positively, negatively and all charged particles are defined as:

〈N−〉 = ∑
i,qi<0

〈Ni〉 , 〈N+〉 = ∑
i,qi>0

〈Ni〉 , 〈Nch〉 = ∑
i,qi 6=0

〈Ni〉 , (2.1)

where the average final state (after resonance decays) multiplicities〈Ni〉 are equal to:

〈Ni〉 = 〈N∗
i 〉+∑

R

〈NR〉〈ni〉R . (2.2)

In Eq. (2.2),N∗
i denotes the number of stable primary hadrons of speciesi, the summation∑R runs

over all types of resonancesR, and〈ni〉R≡ ∑r bR
r nR

i,r is the average over resonance decay channels.
The parametersbR

r are the branching ratios of ther-th branches,nR
i,r is the number of particles of

speciesi produced in resonanceR decays via a decay moder. The indexr runs over all decay
channels of a resonanceR, with the requirement∑r bR

r = 1. In the GCE formulation of the hadron-
resonance gas model the mean number of stable primary particles,〈N∗

i 〉, and the mean number of
resonances,〈NR〉, can be calculated as:

〈Nj〉 ≡ ∑
p
〈np, j〉 =

g jV

2π2

∫ ∞

0
p2dp〈np, j〉 , (2.3)
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whereV is the system volume andg j is the degeneracy factor of particle of the speciesj (number
of spin states). In the thermodynamic limit,V → ∞, the sum over the momentum states can be
substituted by a momentum integral. The〈np, j〉 denotes the mean occupation number of a single
quantum state labelled by the momentum vectorp ,

〈np, j〉 =
1

exp[(εp j −µ j)/T] − α j
, (2.4)

whereT is the system temperature,mj is the mass of a particlej, εp j =
√

p2 +m2
j is a single

particle energy. A value ofα j depends on quantum statistics, it is+1 for bosons and−1 for
fermions, whileα j = 0 gives the Boltzmann approximation. The chemical potentialµ j of a species
j equals to:

µ j = q j µQ + b j µB + sj µS , (2.5)

whereq j , b j , sj are the particle electric charge, baryon number, and strangeness, respectively,
while µQ, µB, µS are the corresponding chemical potentials which regulate the average values
of these global conserved charges in the GCE. In the limitV → ∞ , Eq. (2.3-2.5) are also valid
for the CE and MCE, if the energy density and conserved charge densities are the same in all
three ensembles. This is usually referred to as the thermodynamical equivalence of all statistical
ensembles. However, the thermodynamical equivalence does not apply tofluctuations.

In statistical models a natural measure of multiplicity fluctuations is the scaled variance of the
multiplicity distribution. For negatively, positively, and all charged particles the scaled variances
read:

ω− =
〈(∆N−)2〉
〈N−〉

, ω+ =
〈(∆N+)2〉
〈N+〉

, ωch =
〈(∆Nch)

2〉
〈Nch〉

. (2.6)

The variances in Eq. (2.6) can be presented as a sum of the correlators:

〈(∆N−)2〉 = ∑
i, j; qi<0,q j<0

〈∆Ni∆Nj〉 , 〈(∆N+)2〉 = ∑
i, j; qi>0,q j>0

〈∆Ni∆Nj〉 ,

〈(∆Nch)
2〉 = ∑

i, j; qi 6=0,q j 6=0

〈∆Ni∆Nj〉 , (2.7)

where∆Ni ≡ Ni −〈Ni〉. The correlators in Eq. (2.7) include both the correlations between primor-
dial hadrons and those of final state hadrons due to the resonance decays (resonance decays obey
charge as well as energy-momentum conservation).

In the MCE, the energy and conserved charges are fixed exactly for each microscopic state of
the system. The primordial (before resonance decays) microscopic correlators in the MCE has the
form [16]:

〈∆np, j∆nk,i〉m.c.e. = υ2
p, j δi j δpk −

υ2
p, jv

2
k,i

|A| [ qiq jMqq+bib jMbb+sisjMss

+ (qisj +q jsi)Mqs − (qib j +q jbi)Mqb − (bisj +b jsi)Mbs

+ εp jεkiMεε − (qiεp j +q jεki)Mqε + (biεp j +b jεki)Mbε − (siεp j +sjεki)Msε ] , (2.8)
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where|A| is the determinant andMi j are the minors of the following matrix,

A =











∆(q2) ∆(bq) ∆(sq) ∆(εq)

∆(qb) ∆(b2) ∆(sb) ∆(εb)

∆(qs) ∆(bs) ∆(s2) ∆(εs)
∆(qε) ∆(bε) ∆(sε) ∆(ε2)











, (2.9)

with the elements,∆(q2) ≡ ∑p, j q
2
j υ2

p, j , ∆(qb) ≡ ∑p, j q jb jυ2
p, j , ∆(qε) ≡ ∑p, j q jεp jυ2

p, j , etc. The
sum,∑p, j , means integration over momentump, and the summation over all hadron-resonance
speciesj contained in the model. The first term in the r.h.s. of Eq. (2.8) correspondsto the
microscopic correlator in the GCE. Note that a presence of the terms containing a single particle

energy,εp j =
√

p2 +m2
j , in Eq. (2.8) is a consequence of energy conservation. In the CE, only

charges are conserved, thus the terms containingεp j in Eq. (2.8) are absent. TheA in Eq. (2.9)
becomes then the 3×3 matrix (see Ref. [15]). An important property of the microscopic correlator
method is that the particle number fluctuations and the correlations in the MCE or CE, although
being different from those in the GCE, are expressed by quantities calculated within the GCE. The
microscopic correlator (2.8) can be used to calculate the primordial particle correlator in the MCE
(or in the CE):

〈∆Ni ∆Nj 〉m.c.e. = ∑
p,k

〈∆np,i ∆nk, j〉m.c.e. . (2.10)

A second feature of the MCE (or CE) is the modification of the resonance decay contribution
to the fluctuations in comparison to the GCE results of Ref. [18]. In the MCE it reads [16]:

〈∆Ni ∆Nj〉m.c.e. = 〈∆N∗
i ∆N∗

j 〉m.c.e. + ∑
R

〈NR〉 〈∆ni ∆n j〉R + ∑
R

〈∆N∗
i ∆NR〉m.c.e. 〈n j〉R

+ ∑
R

〈∆N∗
j ∆NR〉m.c.e. 〈ni〉R + ∑

R,R′
〈∆NR ∆NR′〉m.c.e. 〈ni〉R 〈n j〉R′ . (2.11)

Additional terms in Eq. (2.11) compared to the GCE results [18] are due to the correlations (for
primordial particles) induced by energy and charge conservations in theMCE. The Eq. (2.11) has
the same form in the CE [15] and MCE [16], the difference between these two ensembles appears
because of different microscopic correlators (2.8). The microscopic correlators of the MCE to-
gether with Eq. (2.10) should be used to calculate the correlators〈∆N∗

i ∆N∗
j 〉m.c.e. , 〈∆N∗

i ∆NR〉m.c.e. ,
〈∆N∗

j ∆NR〉m.c.e. , 〈∆NR ∆NR′〉m.c.e. entering in Eq. (2.11) .
The microscopic correlators and the scaled variance are connected with the width of the mul-

tiplicity distribution. It has been shown in Ref. [19] that in statistical models the form of the
multiplicity distribution derived within any ensemble (e.g. GCE, CE and MCE) approaches the
Gauss distribution:

PG(N) =
1

√

2π ω 〈N〉
exp

[

−(N − 〈N〉)2

2 ω 〈N〉

]

(2.12)

in the large volume limit i.e.〈N〉→ ∞. The width of this Gaussian,σ =
√

ω 〈N〉, is determined by
the choice of the statistical ensemble, while from the thermodynamic equivalence of the statistical
ensembles it follows that the expectation value〈N〉 remains the same.
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3. Multiplicity Fluctuations at the Chemical Freeze-out

Once a suitable set of thermodynamical parameters,T,µB,γS, is determined in central nucleus-
nucleus collisions for each collision energy, the scaled variance of negatively, positively, and all
charged particles can be calculated using Eqs. (2.6-2.7). Theω− andω+ in different statistical
ensembles are presented in Fig. 1 for different collision energies. The values of

√
sNN marked in

Fig. 1 correspond to the beam energies at SIS (2A GeV), AGS (11.6A GeV), SPS (20A, 30A, 40A,
80A, and 158A GeV), colliding energies at RHIC (

√
sNN = 62.4 GeV, 130 GeV, and 200 GeV), and

LHC (
√

sNN = 5500 GeV). The mean multiplicities,〈Ni〉, used for calculation of the scaled variance
(see Eq. (2.6)) are given by Eqs. (2.2) and (2.3) and remain the same in all three ensembles. The
variances in Eq. (2.6) are calculated using the corresponding correlators〈∆Ni∆Nj〉 in the GCE, CE,
and MCE. For the calculations of final state correlators the summation in Eq. (2.11) should include
all resonancesR andR′ which have particles of the speciesi and/or j in their decay channels.

Figure 1: The scaled variances for negativelyω− (left) and positivelyω+ (right) charged particles. Both
primordial and finalω± are shown along the chemical freeze-out line for central Pb+Pb (Au+Au) collisions
as the functions of the c.m. energy of the nucleon pair

√
sNN. Different lines present the GCE, CE, and MCE

results. Symbols at the lines for final particles correspondto the specific accelerator collision energies. The
arrows show the effect of resonance decays.

At the chemical freeze-out of heavy-ion collisions, the Bose effect for pions and resonance
decays are important and thus (see also Ref. [15]):ω−

g.c.e.
∼= 1.1 andω+

g.c.e.
∼= 1.2 at the SPS energies.

Note that in the Boltzmann approximation and neglecting the resonance decay effect one finds
ω−

g.c.e. = ω+
g.c.e. = 1.

Some qualitative features of the results should be mentioned. The effect ofBose and Fermi
statistics is seen in primordial values in the GCE. At low temperatures most of positively charged
hadrons are protons, and Fermi statistics dominates,ω+

g.c.e. < 1. On the other hand, in the limit
of high temperature (lowµB/T) most charged hadrons are pions and the effect of Bose statistics
dominates,ω±

g.c.e. > 1. Along the chemical freeze-out line,ω−
g.c.e. is always slightly larger than 1, as

π− mesons dominate at both low and high temperatures. The bump inω+
g.c.e. for final state particles

seen in Fig. 1 at the small collision energies is due to a correlated production of proton andπ+
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meson from∆++ decays. This single resonance contribution dominates inω+
g.c.e. at small collision

energies (small temperatures), but becomes relatively unimportant at the high collision energies.
A minimum inω−

c.e. for final particles is seen in Fig. 1. This is due to two effects. As the num-
ber of negatively charged particles is relatively small,〈N−〉 � 〈N+〉, at the low collision energies,
both the CE suppression and the resonance decay effect are small. With increasing

√
sNN, the CE

effect alone leads to a decrease ofω−
c.e, but the resonance decay effect only leads to an increase

of ω−
c.e. A combination of these two effects, the CE suppression and the resonance enhancement,

leads to a minimum ofω−
c.e.

As expected,ωm.c.e. < ωc.e., as an energy conservation further suppresses the particle number
fluctuations. A new unexpected feature of the MCE is the suppression of the fluctuations after
resonance decays. This is discussed in details in Ref. [16].

4. Comparison with NA49 Data

The scaled variance for the accepted particles is assumed to be equal to (see discussion of this point
in Ref. [16]):

ω ≡ 〈n2〉 − 〈n〉2

〈n〉 = 1 − q +q·ω4π , (4.1)

whereω4π is the scaled variance for the full 4π-acceptance. In the large acceptance limit (q≈ 1)
the distribution of measured particles approaches the distribution in the full acceptance. For a very
small acceptance (q≈ 0) the measured distribution approaches the Poisson one independent ofthe
shape of the distribution in the full acceptance.

Figure 2: The scaled variances for negative (left) and positive (right) hadrons along the chemical freeze-out
line for central Pb+Pb collisions at the SPS energies. The points show the preliminary data of NA49 [17].
Total (statistical+systematic) errors are indicated. Thestatistical model parametersT, µB, andγS at different
SPS collision energies are taken at the chemical freeze-out, i.e. from fitting the hadron yields. Lines show
the GCE, CE, and MCE results. The NA49 experimental acceptance is approximately taken into account
according to Eq. (4.1).

The Fig. 2 presents the scaled variancesω− andω+ calculated with Eq. (4.1). The hadron-
resonance gas calculations in the GCE, CE, and MCE shown in Fig. 1 are used for theω±

4π . The
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NA49 acceptance used for the fluctuation measurements is located in the forward hemisphere
[17]). The acceptance probabilities for positively and negatively charged hadrons are approxi-
mately equal,q+ ≈ q−, and the numerical values at different SPS energies are:q± = 0.038, 0.063,
0.085, 0.131, 0.163 at

√
sNN = 6.27, 7.62, 8.77, 12.3, 17.3 GeV, respectively. Eq. (4.1) has the

following property: ifω4π is smaller or larger than 1, the same inequality remains to be valid for
ω at any value of 0< q≤ 1. Thus one has a strong qualitative difference between the predictions
of the statistical model valid for any freeze-out conditions and experimental acceptances. The CE
and MCE correspond toω±

m.c.e. < ω±
c.e. < 1, and the GCE toω±

g.c.e. > 1.

From Fig. 2 it follows that the NA49 data forω± extracted from 1% of the most central
Pb+Pb collisions at all SPS energies are best described by the results ofthe hadron-resonance
gas model calculated within the MCE. The data reveal even stronger suppression of the particle
number fluctuations. The chemical freeze-out parameters found at fixed collision energy have some
uncertainties. However, the scaled variancesω−

m.c.e. andω+
m.c.e. calculated in the full phase space

within the MCE vary by less than 1% when changing the parameter set. In the NA49 acceptance
the difference is almost completely washed out.

In order to allow for a detailed comparison of the distributions the ratio of the data and the
model distributions to the Poisson one is presented in Fig. 3.

Figure 3: The ratio of the multiplicity distributions to Poisson onesfor negatively (upper panel) and pos-
itively (lower panel) charged hadrons produced in central (1%) Pb+Pb collisions at 20A GeV, 30A GeV,
40A GeV, 80A GeV, and 158A GeV (from left to right) in the NA49 acceptance [17]. The preliminary ex-
perimental data (solid points) of NA49 [17] are compared with the prediction of the hadron-resonance gas
model obtained within different statistical ensembles, the GCE (dotted lines), the CE (dashed-dotted lines),
and the MCE (solid lines).
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The results for negatively and positively charged hadrons at 20A GeV, 30A GeV, 40A GeV,
80A GeV, and 158A GeV are shown in Fig. 3. The convex shape of the data reflects the fact
that the measured distribution is significantly narrower than the Poisson one.This suppression
of fluctuations is observed for both charges, at all five SPS energies and it is consistent with the
results for the scaled variance shown and discussed previously. The GCE hadron-resonance gas
results are broader than the corresponding Poisson distribution. The ratio has a concave shape.
An introduction of the quantum number conservation laws (the CE results) leads to the convex
shape and significantly improves agreement with the data. Further improvement of the agreement
is obtained by the additional introduction of the energy conservation law (theMCE results). The
measured spectra surprisingly well agree with the MCE predictions.

5. Summary and Conclusions

The hadron multiplicity fluctuations in relativistic nucleus-nucleus collisions have been predicted
in the statistical hadron-resonance gas model within the grand canonical, canonical, and micro-
canonical ensembles in the thermodynamical limit. The microscopic correlator method has been
extended to include three conserved charges – baryon number, electriccharge, and strangeness – in
the canonical ensemble, and additionally an energy conservation in the micro-canonical ensemble.
The analytical formulas are used for the resonance decay contributionsto the correlations and
fluctuations. The scaled variances of negatively and positively charged particles for primordial
and final state hadrons have been calculated at the chemical freeze-out in central Pb+Pb (Au+Au)
collisions for different collision energies from SIS to LHC.

The effect of Bose enhancement and Fermi suppression can be seenin the primordial (before
resonance decay) values of the scaled variances. The results presented in Fig. 1 demonstrate that
the effects of quantum statistics are small at the chemical freeze-out. Resonance decays included
into the GCE and CE lead to the enhancement of particle number fluctuations. Animportant feature
of the MCE is the suppression of the fluctuations after resonance decays. This is discussed in details
in Ref. [16].

A comparison of the multiplicity distributions and the scaled variances with the preliminary
NA49 data on Pb+Pb collisions at the SPS energies has been done for the samples of about 1%
of most central collisions selected by the number of projectile participants. This selection allows
to eliminate effect of fluctuations of the number of nucleon participants. The effect of the limited
experimental acceptance was taken into account by use of the uncorrelated particle approximation.
The measured multiplicity distributions are significantly narrower than the Poisson one and allow to
distinguish between model results derived within different statistical ensembles. The data surpris-
ingly well agree with the expectations for the micro-canonical ensemble and exclude the canonical
and grand-canonical ensembles. Thus, this is a first experimental observation of the predicted sup-
pression [14 – 16] of the multiplicity fluctuations in relativistic gases in the thermodynamical limit
due to conservation laws.

A validity of the micro-canonical description is surprising. In fact, significant event-by-event
fluctuations of statistical model parameters may be expected. For instance, only a part of the total
energy is available for the hadronization process. This part should be used in the hadron-resonance
gas calculations while the remaining energy is contained in the collective motion ofmatter. The
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ratio between the hadronization and collective energies may vary from collision to collision and
consequently increase the multiplicity fluctuations. The agreement between thedata and the MCE
predictions is even more surprising when the processes which are beyond the statistical hadron-
resonance gas model are considered. Examples of these are jet and mini-jet production, heavy
cluster formation, effects related to the phase transition or instabilities of the quark-gluon plasma.
Naively all of them are expected to increase multiplicity fluctuations and thus lead to a disagree-
ment between the data and the MCE predictions. A comparison of the data with themodels which
include these processes is obviously needed for significant conclusions.

On the model side there are, however, at least 2 additional effects whichmay lead to a sup-
pression of the multiplicity fluctuations. The first of them follows from improvingthe description
of the effect of the limited experimental acceptance within MCE [20]. The second one follows
from taking into account the finite proper volume of hadrons. As shown in Ref. [21] the excluded
volume effects lead to a reduction of the particle number fluctuations. The quantitative estimates
of these two effects are needed.

More differential data on multiplicity fluctuations and correlations are required for further tests
of the validity of the statistical models and observation of possible signals of thephase transitions.
The experimental resolution in a measurement of the enhanced fluctuations due to the onset of
deconfinement can be increased by increasing acceptance.
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