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Figurel: Left panel: The phase diagram of QCD on the hypotheticat igtark mass versus strange quark
mass plane. Thick lines correspond to second order phasstioas, the purple regions represent first order
phase transitions and the yellow region represents an taahpss-over. Right panel: The most popular
scenario for the:—T phase diagram. At low temperatures and low chemical piatenve have the hadronic
phase, which is separated by a cross-over from the low gemigih temperature quark-gluon plasma phase.
The cross over ends in a critical endpoint (E) after whichsa irder transition separates the different phases.
The low temperature high density region is conjectured ta belour superconducting phase.

1. Introduction

The QCD transition at non-vanishing temperatufesgnd/or baryonic chemical potentiat)
plays an important role in the physics of the early Universd af heavy ion collisions (most
recently at RHIC at BNL; LHC at CERN and FAIR at GSI will be thext generation of ma-
chines). The main goal of the present summary is to presem selected results of the Budapest-
Wuppertal group on the QCD transition at vanishing and ramshing chemical potential. Most
of the T=0 results were obtained at four different sets dgidatspacings and a careful continuum
extrapolation was performed, we consider them as full tesul

The standard picture for the QCD phase diagram on the lightkgonass rfyg) vs. strange
guark massrf) plane is shown by the left panel of Figure 1. It contains tegions at small and at
large masses, for which tfile> 0 QCD transition is of first order. Between them one finds aszros
over region, for which the QCD transition is an analytic ombe first order transition regions and
the cross-over region are separated by lines, which canesip second order phase transitions.

When we analyze the nature and/or the absolute scale df thed QCD transition for the
physically relevant case two ingredients are quite imparta

First of all, one should use physical quark masses. As theéafel of Figure 1 shows the
nature of the transition depends on the quark mass, thusfall er large quark masses it is a
first order phase transition, whereas for intermediate kqu@asses it is an analytic cross over.
Though in the chirally broken phase chiral perturbatiorotiigorovides a controlled technique to
gain information for the quark mass dependence, it can nappked for thel > 0 QCD transition
(which deals with the restoration of the chiral symmetry).ptinciple, the behaviour of different
guantities in the critical region (in the vicinity of the sew order phase transition line) might give
some guidance. However, a priori it is not known how largs thgion is. Thus, the only consistent
way to eliminate uncertainties related to non-physicakkjnaasses is to use physical quark masses
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Figure 2. The ratio f(cont)/f(N;) as a function of IN? (left panel). f(cont) is the continuum extrap-
olated free energy of the staggered fermionic gas in theimi@nactive, infinitely high temperature limit.
f(N;) is the value obtained on a lattice with temporal extension. The black line shows our choice (stout
improvement, only next-neighbour terms in the action), ieas the red and blue lines represent the Naik
and p4 actions, respectively. Masses and taste symmetativio for different approaches in the literature
(right panel). The smallest, physical quark mass and thdlesbhgaste symmetry violation was reached by
our works (black dot, [8, 9]). Somewhat larger taste symyneimlation and about three times larger quark
masses were reached by the MILC analysis on QCD thermodysamad dot, [10]). Even larger taste
symmetry violation and about four times the physical quadsses are the characteristics of the Bielefeld-
Brookhaven-Columbia-Riken result dg (blue dot, [5]).

(which is, of course, quite CPU demanding).

Secondly, the nature of thE > 0 QCD transition is known to suffer from discretization er-
rors [1, 2, 3]. The three flavour theory with standard actionNg=4 lattices predicts a critical
pseudoscalar mass of about 300 MeV. This point separatdissherder and cross-over regions of
Figure 1 (left panel). If we took another discretizationftwanother discretization error, e.g. the
p4 action and\;=4, the critical pseudoscalar mass turns out to be around &\ (gimilar effect
is observed if one used stout smearing improvement amd#d). Since the physical pseudoscalar
mass (135 MeV) is just between these two values, the digatin errors in the first case would
lead to a first order transition, whereas in the second caaetoss-over. The only way to resolve
this inconclusive situation is to carry out a careful coatim limit analysis.

Since the nature of the transition influences the absolatie $&) of the transition —its value,
mass dependence, unigueness etc.— the above commentBdaferthe determination of, too.

Thus, we have to answer the question: what happens for @hygiark masses, in the con-
tinuum, at whafl;? To get a reliable answer we used physical quark masség=h6,8 and 10
lattices, which correspond to approximately 0.3, 0.2, @ri%0.12 fm lattice spacings, respectively.

It was conjectured that the physical point, for which therguaasses are tuned to their phys-
ical value, is in the yellow, cross-over region. (One turiesduark masses to their physical value
by tunig the pseudoscalar masses —pion, kaon— to theirgadiy&lue.) As we will see this conjec-
ture turned out to be true. We show that the continuum extasgd lattice result with staggered
fermions is indeed a cross-over for physical masses. Thatemdie of a cross-over transition at
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Figure3: The volume dependence of the susceptibility peaks for pu@)Syauge theory (Polyakov-loop
susceptibility, left panel) and for full QCD (chiral sustidity on Ni=4 and 6 lattices, middle and right
panels, respectively).

vanishing baryonic chemical potential is one importanteseary condition for the most popular
U—T phase diagram scenario (c.f. right panel of Figure 1)his picture the cross-over region on
the u—T plane ends in a critical endpoint, after which a first onglesise transition appears.

The only systematic way to get quantitative informationsualthe above features of the phase
diagram is lattice QCD, which is extremely difficult for n@anishing chemical potentials. As we
have seen it is of crucial importance to extrapolate to theticoum limit in a controlled manner.

In the presentation [4] published results of the Bielefeldokhaven-Columbia-Riken Col-
laboration [5] fromN;=4 and 6 were shown (and some unpublished figuredlfe8, which were
obtained within the HotQCD Collaboration). Since the CPguieements for thermodynamics in-
crease as- I\lt12 our Ny=10 simulations need about 50 times more CPU tkar6. Do we have 50
times more resources for QCD thermodynamics than our cotort Of course not (it is almost
the other way around). Instead, reachifig10 is a fine balance. It is partly related to the choice of
our action (which will be discussed in the next section)flpdo the arrangements of the financial
resources. For instance, Bsincreases, one needs more and more statistics. Thus tmeather
ization can be done only once on a relatively expensiveabtalmachine, such as Blue-GenelL,
whereas a large fraction of the non-vanishing T simulaticess be done on more cost effective
devices such as personal computer [6] graphics cards. Ar2 gigimodel can accommodatie=6
lattices, on a one-and-a-half year old model you canNpu8 lattices and the one year old model
can work with quite largé\;=10 lattices. It costs a few hundred dollars and can provjte 80—
60 Gflops sustained QCD performance. They are not easy tqQ addang two numbers needs 3
pages, but recently more efficient programming environsiamre introduced. Clearly, this type
of hardware provides a very advantageous price—perforengato for lattice QCD.

2. The choice of the action

The first step is to choose an action, which respects all tedsef a thermodynamic analysis.
T=0 simulations are needed to set the scale and for renaatialn. T>0 simulations are needed
to map the behaviour of the system at non-vanishing temesat The action should maintain a
balance between these two needs, leading to approximéatelsaine uncertainties for both sectors
(otherwise a large fraction of the CPU-power is used justdwer-killing” one of the two sectors).
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Figure 4: Continuum extrapolated susceptibiliti& /(m?Ay) as a function of IT3V). For true phase
transitions the infinite volume extrapolation should begistent with zero, whereas for an analytic crossover
the infinite volume extrapolation gives a non-vanishingiealThe continuum-extrapolated susceptibilities
show no phase-transition-like volume dependence, thcheidlume changes by a factor of five. The\w
extrapolated value is 22(2) which is dlaway from zero. For illustration, we fit the expected asyripto
behaviour for first-order and O(4) (second order) phasssiians shown by dotted and dashed lines, which
results in chance probabilities of 11 (7 x 10-19), respectively.

We used Symanzik improved gauge and stout improved 2+1 ftestaggered fermions [7] (due
to the stout improvement we have only next-neighbour termtke fermionic part of the action).
The simulations were done along the line of constant physidte parameters were tuned with
a quite high precision, thus at all lattice spacings kg’ fx and mg /my; ratios were set to their
experimental values with an accuracy better than 2%.

The choice of the action has advantages and disadvantagege Will see the advantages are
probably more important than the disadvantages. The leilpzf Figure 2 shows the continuum
free energy divided by its value at a givBl A related plot is usually shown by the Bielefeld-
Brookhaven-Columbia-Riken collaboration as a functiorNof Since in staggered QCD most
lattice corrections scale wit?, which is proportional to M?, it is instructive to show this ratio as a
function of 1NZ, for our action, for Naik and for p4. Extrapolations from 4ahalways overshoot
or undershoot. Clearly, the Naik and p4 actions reach thérearmm value much faster than our
choice, but thea? scaling appears quite early even for actions with nexthiggr interactions.
Extrapolations fromN; and N;+2 with our action are approximately as goodMswith the p4
action (which was tailored to be optimal for this quantitgrmmely for the free energy at infinitely
large temperatures). In practice, it means that our choite M=8,10 gives approximately 2%
error for the free energy. In a balanced analysis you do ned meore, because the corresponding
lattice spacings 0.15 and 0.12 fm are most probably not finagimto set the scale unambiguously
with the same accuracy. (E.g. the asqgtad actioN;atl0, which corresponds about a=0.12 fm
lattice spacing, still has:10% scale difference between& fk.) Since the p4 action is almost 20
times more expensive than the stout action, it is not workatothis price and improve one part of
the calculation, which hinders you to reach a reasonablgracg in another part of the calculation.

This is the balance one should remember in thermodynanmdeel, taste symmetry violation
should be suppressed for many reasons (setting the sc@ile-dl, restoring chiral symmetry at
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T > 0 etc.) As it was argued above it is more important to impravéhis sector of the calculation
than on the infinitely high temperature behaviour. The laftgd of Figure 2 shows the splitting
between the Goldstone and the first non-Goldstone pionbédBielefeld-Brookhaven- Columbia-
Riken Collaboration (which is far beyond their kaon mass)MILC and for us. Our small splitting

is partly related to the stout improvement and partly to the&t tssues, since smaller lattice spacings
could be used, which resulted in smaller splitting. In a@dditthe cost issues allowed us to use in
our finite T simulations physical quark masses instead ofmtarger masses.

3. Thenature of the QCD transition

The next topic to be discussed is the nature of
the QCD transition. Physical quark masses were
used and a continuum extrapolation was carried out
by using four different lattice spacings. The details
of the calculations can be found in [8]. In order
to determine the nature of the transition one should
850 ~00 750 apply finite size scaling techniques for the chiral

(K] susceptibility x = (T/V) - (6%logZ/dmé,). This
quantity shows a pronounced peak as a function of
the temperature. For a first order phase transition,
such as in the pure gauge theory, the peak of the
analogous Polyakov susceptibility gets more and more &n@gs we increase the volume (V).
The width scales with 1/V the height scales with volume (&fedanel of Figure 3). A second
order transition shows a similar singular behaviour wittical indices. For an analytic transition
(what we call a cross-over) the peak width and height sasrit a constant value. That is what
we observe in full QCD oM;=4 and 6 lattices (middle and right panels of Figure 3). Weaee
order of magnitude difference between the volumes, but@welindependent scaling. It is a clear
indication for a cross-over. These results were obtaingi physical quark masses for two sets of
lattice spacings. Note, however, that for a final conclusi@important question remains: do we
get the same volume independent scaling in the continuuwedrave the unlucky case what we
had in the Introduction for 3 flavour QCD (namely the dis@ation errors changed the nature of
the transition for the physical pseudoscalar mass case)?

We carried out a finite size scaling analyses with the contmextrapolated height of the
renormalized susceptibility. The renormalization of théal susceptibility can be done by taking
the second derivative of the free energy densitywith respect to the renormalized mass ).

We apply the usual definitionf /T* =—N{-[logZ(Ns, Nt )/ (N(NS) — 109 Z (Neo, Neg) / (NeoNS,)]. This
quantity has a correct continuum limit. The subtractiomtés obtained af =0, for which simula-
tions are carried out on lattices witlyy, N;o spatial and temporal extensions (otherwise at the same
parameters of the action). The bare light quark magg)(is related tan, by the mass renormaliza-
tion constantn=Zn,-myq. Note thaZ, falls out of the combinatiom?d?/om?=m? ,02/0m2 . Thus,

M2y [X (Ns,Nt) — X (Nso, Nio)] @lso has a continuum limit (for its maximum values for diéietN;,

and in the continuum limit we use the shorthand notatidAy).

Figure5: The water-vapor phase diagram.
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Figure6: Melting curves of different natural fats.

In order to carry out the finite volume scaling in the contimulimit we took three different
physical volumes (see Figure 4). The inverses of the volusneshown in units of.. For these
3 physical volumes we calculated the dimensionless cortibin@*/nm?Ay at 4 different lattice
spacings: 0.3 fm was always off, otherwise the continuunaextiations could be carried out,
which are shown on Figure 4. Our result is consistent with@pr@imately constant behaviour,
despite the fact that we had a factor of 5 difference in thema. The chance probabilities, that
statistical fluctuations changed the dominant behaviouh®fvolume dependence are negligible.
As a conclusion we can say that the staggered QCD transitioua0 is a cross-over. (Note, that
an analytic, cross-over like transition appears in othetosef the standard model, namely for the
electroweak transition see e.g. [11] and references therei

4. Thetransition temperature

An analytic cross-over, like the QCD transition has no ugi@iu A particularly nice example
for that is the water-vapor transition (c.f. Figure 5). Upatmout 650 K the transition is a first
order one, which ends at a second order critical point. Fastdi second order phase transition
the different observables (such as density or heat capdwtye their singularity (a jump or an
infinitly high peak) at the same pressure. However, at evghenitemperatures the transition is
an analytic cross-over, for which the most singular poimésdifferent. The blue curve shows the
peak of the heat capacity and the red one the inflection pbthealensity. Clearly, these transition
temperatures are different, which is a characteristiaufeadf an analytic transition (cross-over).

There is another —even more often experienced— examplerdadidransitions, namely the
melting of butter. As we know the melting of ice shows a siaguiehavior. The transition is of
first order, there is only one value of the temperature at lwttie whole transition takes place at
0°C (for 1 atm. pressure). Melting of butteshows analytic behaviour. The transition is a broad
one, itis a cross-over (c.f. Figure 6 for the melting curviedifferent natural fats).

INatural fats are mixed triglycerids of fatty acids fr@nto Cy4, (Saturated or unsaturated of even carbon numbers).



Recent Result in QCD Thermodynamics from the Lattice

140 160 180 200

_I T T | |z ZAl | | | T 17T | I_
C X%ph ]
0.08 [ ! 7 .
B +++ 151(3)(3)]
0.06 [ ! .
YL ENNE
0.04 ET"#‘.HJ 4 co 3
g b ]
0.02 "y 010
- | SRR D
: XS " :
1 - 175(2)(4).~ .
[ et ]
05 - & -4 ]
L .I " @o . 6 n
I =6 ]
(750 @ o ?O ]
‘Fp | KA
L 176(3)(4) 1= v
3 ++ s U
E ++ " 2 <1E
2 ++++ 3 L
A K
-4 e 2 06
- ++ o e © e 8
1 -_# " o° \ o 10 E
_.I |®.| | L1 | L 1A | 111 | |_
140 160 180 200

T[MeV]

Figure 7. Temperature dependence of the renormalized chiral subiiypt( mzAx@,,/T“), the strange
quark number susceptibilityt¢/T?) and the renormalized Polyakov-lod@] in the transition region. The
different symbols show the results fidy = 4,6, 8 and 10 lattice spacings (filled and empty boxedNoe 4

and 6, filled and open circles foi = 8 and 10). The vertical bands indicate the correspondimitian
temperatures and their uncertainties coming from t#@ &nalyses. This error is given by the number in the
first parenthesis, whereas the error of the overall scatzihtation is indicated by the number in the second
parenthesis. The orange bands show our continuum limihests for the three renormalized quantities as
a function of the temperature with their uncertainties.
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Since we have an analytic cross-over also in QCD, we expegtsumilar temperature depen-
dence for the quantities relevant in QCD (e.g. chiral cosdes) strange quark susceptibility or
Polyakov loop).

In QCD we will study the chiral and the quark number suscdjiiés and the Polyakov loop.
Usually they give differenfl; values, but there is nothing wrong with it. As it was illuséa
by the water-vapor transition it is a physical ambiguityated to the analytic behaviour of the
transition. There is another, non-physical, ambiguityvéf used different observables (such as the
string tensionytg, the rho mass or the kaon decay constant), particularlyrge lttice spacings
we obtain different overall scales. They lead to differgnvalues. This ambiguity disappeares in
the continuum limit. According to our experiences, at filtéitice spacings, the best choice is the
kaon decay constarit. It is known experimentally (in contrast to the string temsorrg), thus no
intermediate calculation with unknown systematics is imed. Furthermore, it can be measured
on the lattice quite precisely.

Figure 7 shows the results for the chiral susceptibilitytf@ quark number susceptibility and
for the Polyakov loop. Red, blue, green, and purple indidgte4,6,8 and 10 latticesN;=4 is
always off, the rest scales nicely. The shaded regionsatalithe continuum estimates. There is
a surprising several sigma effect. The remnant of the chizakition happens at a quite different
temperature than that of the deconfining transition. It issguirobust statement, since the Polyakov
transition region is quite off thg-peak, and they-peak is quite far from the inflection point of the
Polyakov loop. This quite large differece is also relatethtofact that the transition is fairly broad.
The widths are around 30-40 MeV.

——— T Due to the broadness of the transition the

30 £ l 3 normalization prescription changés too. Itis
% 20 5 3 easy to imagine why, just multiply a Gaussian
= F 3 by x? and the peak is shifted. That means using
e 10 3 x/T? gives about 10 MeV highef, than our
O 1]  definition, for which ar 4 normalization was ap-

0 0.05 — 011 ' plied. (Note, that for the unrenormalizgda T2
a? [fm?] normalization is natural, whereas for the renor-
malized x the natural normalization is done by
Figure8: Difference between the thii values ob- T4 Thijs kind of naturalness manifests itself as
;ae':zgt?;;h;figgi‘;o;;mp and by the chiral cong o <qip1 small errors of the observable.)
' Figure 8 shows the difference between the
T, values obtained by the Polyakov loop and by the chiral cosatenas a function of the lattice
spacing squared. The blue band indicates the differendidochiral susceptibility peak position
for the T2 and T# normalization. Thus using thE2 normalization no difference can be seen for
N:=4 and 6, a slight difference is observed 48 and a reliable continuum extrapolation needs
N:=6,8 and 10.
Our result onl; and that of the MILC CollaborationT§{=169(12)(4) MeV [10]) are consistent
within the (quite sizable) errorbars.
However, our result contradicts the recent Bielefeld-Bi@myven-Columbia-Riken result [5],
which obtained 192(7)(4) MeV from both the chiral suscaptyband Polyakov loop. This value
is about 40 MeV larger than our result for the chiral sus&@ii (for the Polyakov loop suscep-
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Figure 10: Continuum extrapolations based N4 and 6 (left panel: inconsistent continuum limit) and
usingN;=6,8 and 10 (right panel: consistent continuum limit).

tibility the results agree within about 0%. What are the differences between their analyses and
ours, and how do they contribute to the 40 MeV discrepancy®@ nibst important contributions
to the discrepancy are shown by Figure 9. The first differaacthat in [5] no renormalization
was carried out, instead they used the unrenormalized itwam‘th. Due to the broadness of the
distribution this observable leads to about 10 MeV larGethan our definition. The overall errors
can be responsible for another 10 MeV. The origin of the reingi20 MeV is somewhat more
complicated. One possible explanation can be summarizélews. In Ref. [5] onlyN;=4 and

6 were used, which correspond to lattice spacings a=0.3 @hfihf) ora 1=700MeV and 1GeV.
These lattices are quite coarse and it seems to be obvi@isdlunambiguous scale can be deter-
mined for these lattice spacings. The overall scale in Fgfwhs set byg and no cross-check was
done by any other quantity independent of the static patkfdig. f). This choice might lead to
an ambiguity for the transition temperature, which is itated for our data on Figure 10. Using
only N;=4 and 6 the continuum extrapolated transition temperatare quite different if one took
ro or fx to determine the overall scale. This inconsistency indgathat these lattice spacing are
not yet in the scaling region (similar ambiguity is obtaingdusing the p4 action of [5]). Having
N:=4,6,8 and 10 results this ambiguity disappears (as usu is off), these lattice spacings are
already in the scaling region (at least within our accuracihis phenomenon is not surprising
at all. As it was already mentioned e.g. the asgtad actiosj=al0 (which corresponds to about
a=0.12 fm lattice spacing) hasl0% scale difference predicted byor fk.

The ambiguity related to the inconsistent continuum lisitmphysical, and it is resolved as we
approach the continuum limit (c.f. Figure 10). The diffezes between th&. values for different
observables are physical, it is a consequence of the ck@ssature of the QCD transition.

10
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5. Equation of state

In the case of the two previous sections (nature of the tiansandT.) the full results are
available in the staggered formalism. This is ensured byfabethat results from three lattice
spacings out of four were found to be in the scaling regioh ¢evo points are always on a line,
thus the reab? behaviour can be read off only by having at least three ppintis allowed
controlled continuum extrapolations. For the equationtafesthe situation is not yet satisfactory,
our group have results only for two lattice spacings (see s contribution of F. Karsch [4] for
results on the equation of state; they also used two laftiaeisgs with the p4 action).

Our goal is to determine the temperature dependence of dssyme (or energy density, en-
tropy, speed of sound etc.) of QCD with physical pion mass3&fileV along the line of constant
physics (LCP). For large homogenous systems the presspregsrtional to the logarithm of the
partition function (jJlog[Z]). All other quantities can be determined by using pinessure. Since
the partition function itself is difficult to determine theual technique is to calculate its derivatives
and integrate. Thus, for the normalized pressure one @btain

=N [a(p.ma) (20282) P09 ) ¢ fap (P m 5 @+ me 2 (65

6 T Figure 11 shows the result for the normalized
SB limit —— pressure as a function af/T.. The two curves
represenftN;=4 andN;=6. Clearly, these two sets

4 . .
of lattice spacings are not enough for a controlled
continuum extrapolation. Usually three points in

2 the scaling region is needed to ensure that. Thus,

in a fortunate case one could obtain the full result
with Ny=4,6 and 8, whereas a somewhat less for-
) 15 5 55 3 tunate case would med$=6,8 and 10 (as it was

T/T, needed for the transition temperature, too). Note,
Figure 11: The normalized pressure as a funct-helt N:=8 needs about 30 times m_o_re CPU power
. thanN;=6 andN;=10 needs an additional factor of
tion of T /Te.

about 15.

An old and serious problem for QCD thermo-
dynamics is the link between perturbation theory and t@CD. While available lattice results
for the equation of state (both for pure gauge theory anddb€XCD) end at around 9, standard
perturbation theory converges only at extremely high temipees (at 5T, the different pertur-
bative orders can not even tell the sign of the deviation ftbenStefan-Boltzmann limit). Until
recently no link between the two most systematic methods©@DQnamely perturbation theory
and lattice QCD, existed for bulk thermodynamical quaesitilt is of extreme importance to close
the gap between these results (for a recent result on thfi2pe

p/T*
—_——

6. Resultsat non-vanishing baryonic chemical potential

In the previous three sections results were presented, sbwigich can be considered as full
ones (the nature of the transition af). For these observables three lattice spacings in the scal-

11
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ing region were used and controlled continuum extrapalatiwere possible. For another quantity
(equation of state) only two lattice spacings were appliedrefore no controlled continuum ex-
trapolated results are available. The situation is eversev@r non-vanishing baryonic chemical
potentials (1). In this case traditional Monte-Carlo simulations do natrkv The determinant of
the Dirac operator turns out to be complex, spoiling any wethased on importance sampling.
Five years ago new techniques appeared (starting with thie pawmameter reweighting technique
[13, 14]), which can give predictions also@#0. Nevertheless, QCD at non-vanishing chemical
potentials is much more CPU demanding thangh® case. Thus, continuum extrapolated results
will be most probably not available in the next one or two gdar most observables. (There is at
least one important exception. Using the present methadi$eahnologies one can determine the
continuum curvature for th€—u phase diagram at=0.) In this section a few illustrative examples
of our u=#£0 results are shown.

According to the most popular scenario a critical point ipeoted on the temperature versus
baryonic chemical potential plane (for an alternative folty see Ref. [15] and the talk of O.
Philipsen in these proceedings [16]). Using the multi-pater reweighting technique [13, 14] we
studied dynamical QCD with;=2+1 staggered quarks of physical massedNg# lattices [17].
The results are summarized on Figure 12. At vanishing chempiatentials there is an analytic,
cross-over like transition between the hadronic and ggarkn plasma phases. As we increase
U the transition temperature decreases. At a baryonic claématential around 360 MeV the
cross-over region ends and a second order phase transitabsérved. For even larger chemical
potentials the transition is of first order. In order to téktdifference between an analytic cross-
over and a singular transition (first or second order phasesition) a careful finite volume analysis
is needed, similar to that of Section 3. This result is quitiffarent picture than that of Ref. [15].
Note, however that the two results are not at all in conttamhcwith each other. On the level
they can be directly compared both observe no strengthefitiye transition in leading order of
L. The strengthening in our result, which is needed for thticatiendpoint, appears in much
higher orders. (Note, that the same multi-parameter rdwieig can be used e.g. to determine the
equation of state for non-vanishing baryonic chemical piidés [18, 19].)

Another interesting feature of the-T phase diagram is the conjectured colour superconduct-
ing phase at largg and smallT. The presently available techniques are working well foalsho
moderate chemical potentials slightly below and all the whgve the transition temperature. In
order to extend the applicability range, we used [20] thesifgof state methodns = 4 staggered
QCD was studied on“and 8 6° lattices. The method is expensive, thus only small latticese
used. Nevertheless, these small lattices show an indicédica triple-point connecting three dif-
ferent phases on the phase diagram. The triple point is drpgyas 300 MeV and T~ 135 MeV
(the quark chemical potentiak, is one third of the baryon chemical potential). Note, thattém-
perature will move most probably to smaller values in thetioolm limit, since forN;=6 lattices
the smallest T is 73 MeV (ifn, fixes the scale). The mass dependence was checked, at sinell T t
position of the transition did not depend on the pion mass.

It is important to emphasize again that results at non-tamgschemical potentials are ob-
tained on coarse lattices and the most important unceyta@rnhe systematic error due to large
lattice spacings.
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Figure 12: The phase diagram on the temperature versus baryonic calgmoi@ntial plane. Left panel:
locating the critical point oiN;=4 lattices. Right panel: application of the density ofstaethod to separate
the three phases imy=4 QCD. In both cases the continuum extrapolation is missing

7. Conclusion

Some QCD thermodynamics results from the Budapest-Wugdpgnmaup were summarized at
vanishing and at non-vanishing chemical potentials. Tloessary balance betwe&n= 0 andT >
0 simulations was discussed in detail. As a consequenceai®ikniimproved gauge and stout-link
improved staggered fermionic lattice action was used irstimulations with an exact simulation
algorithm. Physical masses were taken both for the lightkguand for the strange quark. The
parameters were tuned with a quite high precision, thus lattite spacings the / fx andmg /my;
ratios were set to their experimental values with an acgubatter than 2%. Up to four sets of
lattice spacings on lattices witk=4,6,8 and 10 temporal extensions were used (they corrdspon
to lattice spacin@~0.3, 0.2, 0.15 and 0.12 fm) to carry out the continuum exietfmm. It turned
out that onlyN;=6,8 and 10 can be used for a controlled extrapolatdyr4 is out of the scaling
region.

The nature of the %0 transition was determined. The renormalized chiral quidmbty was
extrapolated to vanishing lattice spacing for three plalsiblumes, the smallest and largest of
which differ by a factor of five. This ensures that a true titdms should result in a dramatic in-
crease of the susceptibilities. No such behaviour is olesknthe finite-size scaling analysis showed
that the finite-temperature QCD transition in the hot eamhpgrse was not a real phase transition,
but an analytic crossover (involving a rapid change, as sggpado a jump, as the temperature var-
ied). As such, it will be difficult to find experimental evidemnof this transition from astronomical
observations. Since for present day heavy ion experimbetbdryonic chemical potential is also
very small, the above results apply for them, too.

The absolute scale for the=D transition was calculated. Since the QCD transition ist& no
singular cross-over there is no uniqlie This well-known phenomenon was illustrated on the
water-vapor phase diagram (the broadness of a transitisrllwstrated by the example of butter).
Different observables led to different numeridalvalues in the continuum and thermodynamic
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limit also in QCD. Three observables were used to deternieedrresponding transition temper-
atures. The peak of the renormalized chiral susceptibpigdictedT.=151(3)(3) MeV, whereas

T based on the strange quark number susceptibility resuited (@) MeV larger value. Another

guantity, which is related to the deconfining phase tramsith the large quark mass limit is the
Polyakov loop. Its behavior predicted a 25(4) MeV largensidon temperature, than that of the
chiral susceptibility. Another consequence of the cross-@re the non-vanishing widths of the
peaks even in the thermodynamic limit, which were also deitezd. For the chiral susceptibil-

ity, strange quark number susceptibility and Polyakowplewe obtained widths of 28(5)(1) MeV,

42(4)(1) MeV and 38(5)(1) MeV, respectively.

These features, numbers and functions are attempted te baltresult for theTl 0 transition,
though other lattice fermion formulations —e.g. Wilsonnfgons (for ongoing projects see e.g.
[21, 22]) or chiral fermions (for an early dynamical overlsgst see [23], for the domain wall
approach a recent presentation can be found in Ref.[24]p-h@eded to cross-check the findings
with staggered fermions.

Results for the equation of state on lattices With4 and 6 were presented. Clearly, one should
carry out the calculations on lattices with smaller latdpacings and approach the continuum limit.

Results at non-vanishing chemical potentials are evehduftom the continuum limit. At one
single lattice spacings we determined the critical endpaitd saw indications for a third phase
on theT—u plane at large baryonic densities. As we emphasized in te&aab of our critical
endpoint paper [17] ,the continuum extrapolation is stilkging”. Using the present methods and
technologies one can determine the continuum curvaturéghéof —u phase diagram gi=0 in
the next few years. Unfortunately, using the present tegles the CPU capacity will be most
probably not enough to carry out a controlled continuumagdtation for the critical endpoint and
for a conjectured colour superconducting phase in the mexyfars.
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