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Recent results on QCD thermodynamics are presented. The nature of the T>0 transition is de-

termined, which turns out to be an analytic cross-over. The absolute scale for this transition is

calculated. The results were obtained by using a Symanzik improved gauge and stout-link im-

proved fermionic action. In order to approach the continuumlimit four different sets of lattice

spacings were used with temporal extensionsNt=4, 6, 8 and 10 (they correspond to lattice spac-

ingsa∼0.3, 0.2, 0.15 and 0.12 fm). The equation of state is determined onNt=4 and 6 lattices. The

importance of the continuum limit for different results (critical endpoint, colour superconducting

phase) at non-vanishing baryonic densities is discussed.
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Figure 1: Left panel: The phase diagram of QCD on the hypothetical light quark mass versus strange quark
mass plane. Thick lines correspond to second order phase transitions, the purple regions represent first order
phase transitions and the yellow region represents an analytic cross-over. Right panel: The most popular
scenario for theµ–T phase diagram. At low temperatures and low chemical potentials we have the hadronic
phase, which is separated by a cross-over from the low density high temperature quark-gluon plasma phase.
The cross over ends in a critical endpoint (E) after which a first order transition separates the different phases.
The low temperature high density region is conjectured to bea colour superconducting phase.

1. Introduction

The QCD transition at non-vanishing temperatures (T) and/or baryonic chemical potential (µ)
plays an important role in the physics of the early Universe and of heavy ion collisions (most
recently at RHIC at BNL; LHC at CERN and FAIR at GSI will be the next generation of ma-
chines). The main goal of the present summary is to present some selected results of the Budapest-
Wuppertal group on the QCD transition at vanishing and non-vanishing chemical potential. Most
of the T=0 results were obtained at four different sets of lattice spacings and a careful continuum
extrapolation was performed, we consider them as full results.

The standard picture for the QCD phase diagram on the light quark mass (mud) vs. strange
quark mass (ms) plane is shown by the left panel of Figure 1. It contains two regions at small and at
large masses, for which theT > 0 QCD transition is of first order. Between them one finds a cross-
over region, for which the QCD transition is an analytic one.The first order transition regions and
the cross-over region are separated by lines, which correspond to second order phase transitions.

When we analyze the nature and/or the absolute scale of theT > 0 QCD transition for the
physically relevant case two ingredients are quite important.

First of all, one should use physical quark masses. As the left panel of Figure 1 shows the
nature of the transition depends on the quark mass, thus for small or large quark masses it is a
first order phase transition, whereas for intermediate quark masses it is an analytic cross over.
Though in the chirally broken phase chiral perturbation theory provides a controlled technique to
gain information for the quark mass dependence, it can not beapplied for theT > 0 QCD transition
(which deals with the restoration of the chiral symmetry). In principle, the behaviour of different
quantities in the critical region (in the vicinity of the second order phase transition line) might give
some guidance. However, a priori it is not known how large this region is. Thus, the only consistent
way to eliminate uncertainties related to non-physical quark masses is to use physical quark masses
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Figure 2: The ratio f (cont)/ f (Nt) as a function of 1/N2
t (left panel). f (cont) is the continuum extrap-

olated free energy of the staggered fermionic gas in the non-interactive, infinitely high temperature limit.
f (Nt ) is the value obtained on a lattice withNt temporal extension. The black line shows our choice (stout
improvement, only next-neighbour terms in the action), whereas the red and blue lines represent the Naik
and p4 actions, respectively. Masses and taste symmetry violation for different approaches in the literature
(right panel). The smallest, physical quark mass and the smallest taste symmetry violation was reached by
our works (black dot, [8, 9]). Somewhat larger taste symmetry violation and about three times larger quark
masses were reached by the MILC analysis on QCD thermodynamics (red dot, [10]). Even larger taste
symmetry violation and about four times the physical quark masses are the characteristics of the Bielefeld-
Brookhaven-Columbia-Riken result onTc (blue dot, [5]).

(which is, of course, quite CPU demanding).

Secondly, the nature of theT > 0 QCD transition is known to suffer from discretization er-
rors [1, 2, 3]. The three flavour theory with standard action on Nt=4 lattices predicts a critical
pseudoscalar mass of about 300 MeV. This point separates thefirst order and cross-over regions of
Figure 1 (left panel). If we took another discretization, with another discretization error, e.g. the
p4 action andNt=4, the critical pseudoscalar mass turns out to be around 70 MeV (similar effect
is observed if one used stout smearing improvement and/orNt=6). Since the physical pseudoscalar
mass (135 MeV) is just between these two values, the discretization errors in the first case would
lead to a first order transition, whereas in the second case toa cross-over. The only way to resolve
this inconclusive situation is to carry out a careful continuum limit analysis.

Since the nature of the transition influences the absolute scale (Tc) of the transition –its value,
mass dependence, uniqueness etc.– the above comments are valid for the determination ofTc, too.

Thus, we have to answer the question: what happens for physical quark masses, in the con-
tinuum, at whatTc? To get a reliable answer we used physical quark masses onNt=4,6,8 and 10
lattices, which correspond to approximately 0.3, 0.2, 0.15and 0.12 fm lattice spacings, respectively.

It was conjectured that the physical point, for which the quark masses are tuned to their phys-
ical value, is in the yellow, cross-over region. (One tunes the quark masses to their physical value
by tunig the pseudoscalar masses –pion, kaon– to their physical value.) As we will see this conjec-
ture turned out to be true. We show that the continuum extrapolated lattice result with staggered
fermions is indeed a cross-over for physical masses. The existence of a cross-over transition at
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Figure 3: The volume dependence of the susceptibility peaks for pure SU(3) gauge theory (Polyakov-loop
susceptibility, left panel) and for full QCD (chiral susceptibility on Nt=4 and 6 lattices, middle and right
panels, respectively).

vanishing baryonic chemical potential is one important necessary condition for the most popular
µ–T phase diagram scenario (c.f. right panel of Figure 1). In this picture the cross-over region on
theµ–T plane ends in a critical endpoint, after which a first orderphase transition appears.

The only systematic way to get quantitative informations about the above features of the phase
diagram is lattice QCD, which is extremely difficult for non-vanishing chemical potentials. As we
have seen it is of crucial importance to extrapolate to the continuum limit in a controlled manner.

In the presentation [4] published results of the Bielefeld-Brookhaven-Columbia-Riken Col-
laboration [5] fromNt=4 and 6 were shown (and some unpublished figures forNt=8, which were
obtained within the HotQCD Collaboration). Since the CPU requirements for thermodynamics in-
crease as≈ N12

t our Nt=10 simulations need about 50 times more CPU thanNt=6. Do we have 50
times more resources for QCD thermodynamics than our competitors? Of course not (it is almost
the other way around). Instead, reachingNt=10 is a fine balance. It is partly related to the choice of
our action (which will be discussed in the next section), partly to the arrangements of the financial
resources. For instance, asNt increases, one needs more and more statistics. Thus the thermal-
ization can be done only once on a relatively expensive, scalable machine, such as Blue-Gene/L,
whereas a large fraction of the non-vanishing T simulationscan be done on more cost effective
devices such as personal computer [6] graphics cards. A 2 years old model can accommodateNt=6
lattices, on a one-and-a-half year old model you can putNt=8 lattices and the one year old model
can work with quite largeNt=10 lattices. It costs a few hundred dollars and can provide upto 30–
60 Gflops sustained QCD performance. They are not easy to code, adding two numbers needs 3
pages, but recently more efficient programming environments were introduced. Clearly, this type
of hardware provides a very advantageous price–performance ratio for lattice QCD.

2. The choice of the action

The first step is to choose an action, which respects all the needs of a thermodynamic analysis.
T=0 simulations are needed to set the scale and for renormalization. T>0 simulations are needed
to map the behaviour of the system at non-vanishing temperatures. The action should maintain a
balance between these two needs, leading to approximately the same uncertainties for both sectors
(otherwise a large fraction of the CPU-power is used just for“over-killing” one of the two sectors).
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Figure 4: Continuum extrapolated susceptibilitiesT4/(m2∆χ) as a function of 1/(T3
c V). For true phase

transitions the infinite volume extrapolation should be consistent with zero, whereas for an analytic crossover
the infinite volume extrapolation gives a non-vanishing value. The continuum-extrapolated susceptibilities
show no phase-transition-like volume dependence, though the volume changes by a factor of five. The V→∞
extrapolated value is 22(2) which is 11σ away from zero. For illustration, we fit the expected asymptotic
behaviour for first-order and O(4) (second order) phase transitions shown by dotted and dashed lines, which
results in chance probabilities of 10−19 (7×10−13), respectively.

We used Symanzik improved gauge and stout improved 2+1 flavour staggered fermions [7] (due
to the stout improvement we have only next-neighbour terms in the fermionic part of the action).
The simulations were done along the line of constant physics. The parameters were tuned with
a quite high precision, thus at all lattice spacings themK/ fk andmK/mπ ratios were set to their
experimental values with an accuracy better than 2%.

The choice of the action has advantages and disadvantages. As we will see the advantages are
probably more important than the disadvantages. The left panel of Figure 2 shows the continuum
free energy divided by its value at a givenNt . A related plot is usually shown by the Bielefeld-
Brookhaven-Columbia-Riken collaboration as a function ofNt . Since in staggered QCD most
lattice corrections scale witha2, which is proportional to 1/N2

t , it is instructive to show this ratio as a
function of 1/N2

t , for our action, for Naik and for p4. Extrapolations from 4 and 6 always overshoot
or undershoot. Clearly, the Naik and p4 actions reach the continuum value much faster than our
choice, but thea2 scaling appears quite early even for actions with next-neighbour interactions.
Extrapolations fromNt and Nt+2 with our action are approximately as good asNt with the p4
action (which was tailored to be optimal for this quantity, namely for the free energy at infinitely
large temperatures). In practice, it means that our choice with Nt=8,10 gives approximately 2%
error for the free energy. In a balanced analysis you do not need more, because the corresponding
lattice spacings 0.15 and 0.12 fm are most probably not fine enough to set the scale unambiguously
with the same accuracy. (E.g. the asqtad action atNt≈10, which corresponds about a=0.12 fm
lattice spacing, still has≈10% scale difference betweenr1 & fK .) Since the p4 action is almost 20
times more expensive than the stout action, it is not worth topay this price and improve one part of
the calculation, which hinders you to reach a reasonable accuracy in another part of the calculation.

This is the balance one should remember in thermodynamics. Indeed, taste symmetry violation
should be suppressed for many reasons (setting the scale atT = 0, restoring chiral symmetry at
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T > 0 etc.) As it was argued above it is more important to improve on this sector of the calculation
than on the infinitely high temperature behaviour. The left panel of Figure 2 shows the splitting
between the Goldstone and the first non-Goldstone pions for the Bielefeld-Brookhaven- Columbia-
Riken Collaboration (which is far beyond their kaon mass), for MILC and for us. Our small splitting
is partly related to the stout improvement and partly to the cost issues, since smaller lattice spacings
could be used, which resulted in smaller splitting. In addition, the cost issues allowed us to use in
our finite T simulations physical quark masses instead of much larger masses.

3. The nature of the QCD transition

Figure 5: The water-vapor phase diagram.

The next topic to be discussed is the nature of
the QCD transition. Physical quark masses were
used and a continuum extrapolation was carried out
by using four different lattice spacings. The details
of the calculations can be found in [8]. In order
to determine the nature of the transition one should
apply finite size scaling techniques for the chiral
susceptibilityχ = (T/V) · (∂ 2 logZ/∂m2

ud). This
quantity shows a pronounced peak as a function of
the temperature. For a first order phase transition,
such as in the pure gauge theory, the peak of the

analogous Polyakov susceptibility gets more and more singular as we increase the volume (V).
The width scales with 1/V the height scales with volume (see left panel of Figure 3). A second
order transition shows a similar singular behaviour with critical indices. For an analytic transition
(what we call a cross-over) the peak width and height saturates to a constant value. That is what
we observe in full QCD onNt=4 and 6 lattices (middle and right panels of Figure 3). We seean
order of magnitude difference between the volumes, but a volume independent scaling. It is a clear
indication for a cross-over. These results were obtained with physical quark masses for two sets of
lattice spacings. Note, however, that for a final conclusionthe important question remains: do we
get the same volume independent scaling in the continuum; orwe have the unlucky case what we
had in the Introduction for 3 flavour QCD (namely the discretization errors changed the nature of
the transition for the physical pseudoscalar mass case)?

We carried out a finite size scaling analyses with the continuum extrapolated height of the
renormalized susceptibility. The renormalization of the chiral susceptibility can be done by taking
the second derivative of the free energy density (f ) with respect to the renormalized mass (mr).
We apply the usual definition:f/T4 =−N4

t ·[logZ(Ns,Nt)/(NtN3
s )− logZ(Ns0,Nt0)/(Nt0N3

s0)]. This
quantity has a correct continuum limit. The subtraction term is obtained atT=0, for which simula-
tions are carried out on lattices withNs0, Nt0 spatial and temporal extensions (otherwise at the same
parameters of the action). The bare light quark mass (mud) is related tomr by the mass renormaliza-
tion constantmr=Zm·mud. Note thatZm falls out of the combinationm2

r ∂ 2/∂m2
r =m2

ud∂ 2/∂m2
ud. Thus,

m2
ud [χ(Ns,Nt)− χ(Ns0,Nt0)] also has a continuum limit (for its maximum values for different Nt,

and in the continuum limit we use the shorthand notationm2∆χ).
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Figure 6: Melting curves of different natural fats.

In order to carry out the finite volume scaling in the continuum limit we took three different
physical volumes (see Figure 4). The inverses of the volumesare shown in units ofTc. For these
3 physical volumes we calculated the dimensionless combination T4/m2∆χ at 4 different lattice
spacings: 0.3 fm was always off, otherwise the continuum extrapolations could be carried out,
which are shown on Figure 4. Our result is consistent with an approximately constant behaviour,
despite the fact that we had a factor of 5 difference in the volume. The chance probabilities, that
statistical fluctuations changed the dominant behaviour ofthe volume dependence are negligible.
As a conclusion we can say that the staggered QCD transition at mu=0 is a cross-over. (Note, that
an analytic, cross-over like transition appears in other sector of the standard model, namely for the
electroweak transition see e.g. [11] and references therein).

4. The transition temperature

An analytic cross-over, like the QCD transition has no unique Tc. A particularly nice example
for that is the water-vapor transition (c.f. Figure 5). Up toabout 650 K the transition is a first
order one, which ends at a second order critical point. For a first or second order phase transition
the different observables (such as density or heat capacity) have their singularity (a jump or an
infinitly high peak) at the same pressure. However, at even higher temperatures the transition is
an analytic cross-over, for which the most singular points are different. The blue curve shows the
peak of the heat capacity and the red one the inflection point of the density. Clearly, these transition
temperatures are different, which is a characteristic feature of an analytic transition (cross-over).

There is another –even more often experienced– example for broad transitions, namely the
melting of butter. As we know the melting of ice shows a singular behavior. The transition is of
first order, there is only one value of the temperature at which the whole transition takes place at
0oC (for 1 atm. pressure). Melting of butter1 shows analytic behaviour. The transition is a broad
one, it is a cross-over (c.f. Figure 6 for the melting curves of different natural fats).

1Natural fats are mixed triglycerids of fatty acids fromC4 toC24, (saturated or unsaturated of even carbon numbers).
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Figure 7: Temperature dependence of the renormalized chiral susceptibility ( m2∆χψ̄ψ/T4), the strange
quark number susceptibility (χs/T2) and the renormalized Polyakov-loop (PR) in the transition region. The
different symbols show the results forNt = 4,6,8 and 10 lattice spacings (filled and empty boxes forNt = 4
and 6, filled and open circles forNt = 8 and 10). The vertical bands indicate the corresponding transition
temperatures and their uncertainties coming from the T6=0 analyses. This error is given by the number in the
first parenthesis, whereas the error of the overall scale determination is indicated by the number in the second
parenthesis. The orange bands show our continuum limit estimates for the three renormalized quantities as
a function of the temperature with their uncertainties.
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Since we have an analytic cross-over also in QCD, we expect very similar temperature depen-
dence for the quantities relevant in QCD (e.g. chiral condensate, strange quark susceptibility or
Polyakov loop).

In QCD we will study the chiral and the quark number susceptibilities and the Polyakov loop.
Usually they give differentTc values, but there is nothing wrong with it. As it was illustrated
by the water-vapor transition it is a physical ambiguity, related to the analytic behaviour of the
transition. There is another, non-physical, ambiguity. Ifwe used different observables (such as the
string tension,r0, the rho mass or the kaon decay constant), particularly at large lattice spacings
we obtain different overall scales. They lead to differentTc values. This ambiguity disappeares in
the continuum limit. According to our experiences, at finitelattice spacings, the best choice is the
kaon decay constantfk. It is known experimentally (in contrast to the string tension orr0), thus no
intermediate calculation with unknown systematics is involved. Furthermore, it can be measured
on the lattice quite precisely.

Figure 7 shows the results for the chiral susceptibility, for the quark number susceptibility and
for the Polyakov loop. Red, blue, green, and purple indicateNt=4,6,8 and 10 lattices.Nt=4 is
always off, the rest scales nicely. The shaded regions indicate the continuum estimates. There is
a surprising several sigma effect. The remnant of the chiraltransition happens at a quite different
temperature than that of the deconfining transition. It is quite a robust statement, since the Polyakov
transition region is quite off theχ-peak, and theχ-peak is quite far from the inflection point of the
Polyakov loop. This quite large differece is also related tothe fact that the transition is fairly broad.
The widths are around 30-40 MeV.

Due to the broadness of the transition the

Figure 8: Difference between the theTc values ob-
tained by the Polyakov loop and by the chiral con-
densate as a function ofa2.

normalization prescription changesTc, too. It is
easy to imagine why, just multiply a Gaussian
by x2 and the peak is shifted. That means using
χ/T2 gives about 10 MeV higherTc than our
definition, for which aT4 normalization was ap-
plied. (Note, that for the unrenormalizedχ aT2

normalization is natural, whereas for the renor-
malizedχ the natural normalization is done by
T4. This kind of naturalness manifests itself as
possibly small errors of the observable.)

Figure 8 shows the difference between the
Tc values obtained by the Polyakov loop and by the chiral condensate as a function of the lattice
spacing squared. The blue band indicates the difference forthe chiral susceptibility peak position
for the T2 andT4 normalization. Thus using theT2 normalization no difference can be seen for
Nt=4 and 6, a slight difference is observed forNt=8 and a reliable continuum extrapolation needs
Nt=6,8 and 10.

Our result onTc and that of the MILC Collaboration (Tc=169(12)(4) MeV [10]) are consistent
within the (quite sizable) errorbars.

However, our result contradicts the recent Bielefeld-Brookhaven-Columbia-Riken result [5],
which obtained 192(7)(4) MeV from both the chiral susceptibility and Polyakov loop. This value
is about 40 MeV larger than our result for the chiral susceptibility (for the Polyakov loop suscep-
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Figure 9: Possible contributions to the 40 MeV difference between theresults of Refs. [9] and [5].
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Figure 10: Continuum extrapolations based onNt=4 and 6 (left panel: inconsistent continuum limit) and
usingNt=6,8 and 10 (right panel: consistent continuum limit).

tibility the results agree within about 1.5σ ). What are the differences between their analyses and
ours, and how do they contribute to the 40 MeV discrepancy? The most important contributions
to the discrepancy are shown by Figure 9. The first differenceis, that in [5] no renormalization
was carried out, instead they used the unrenormalized quantity χ/T2. Due to the broadness of the
distribution this observable leads to about 10 MeV largerTc than our definition. The overall errors
can be responsible for another 10 MeV. The origin of the remaining 20 MeV is somewhat more
complicated. One possible explanation can be summarized asfollows. In Ref. [5] onlyNt=4 and
6 were used, which correspond to lattice spacings a=0.3 and 0.2 fm, ora−1=700MeV and 1GeV.
These lattices are quite coarse and it seems to be obvious, that no unambiguous scale can be deter-
mined for these lattice spacings. The overall scale in Ref. [5] was set byr0 and no cross-check was
done by any other quantity independent of the static potential (e.g. fk). This choice might lead to
an ambiguity for the transition temperature, which is illustrated for our data on Figure 10. Using
only Nt=4 and 6 the continuum extrapolated transition temperatures are quite different if one took
r0 or fK to determine the overall scale. This inconsistency indicates, that these lattice spacing are
not yet in the scaling region (similar ambiguity is obtainedby using the p4 action of [5]). Having
Nt=4,6,8 and 10 results this ambiguity disappears (as usualNt=4 is off), these lattice spacings are
already in the scaling region (at least within our accuracy). This phenomenon is not surprising
at all. As it was already mentioned e.g. the asqtad action atNt≈10 (which corresponds to about
a=0.12 fm lattice spacing) has≈10% scale difference predicted byr1 or fK .

The ambiguity related to the inconsistent continuum limit is unphysical, and it is resolved as we
approach the continuum limit (c.f. Figure 10). The differences between theTc values for different
observables are physical, it is a consequence of the cross-over nature of the QCD transition.
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5. Equation of state

In the case of the two previous sections (nature of the transition andTc) the full results are
available in the staggered formalism. This is ensured by thefact that results from three lattice
spacings out of four were found to be in the scaling region (c.f. two points are always on a line,
thus the reala2 behaviour can be read off only by having at least three points). This allowed
controlled continuum extrapolations. For the equation of state the situation is not yet satisfactory,
our group have results only for two lattice spacings (see also the contribution of F. Karsch [4] for
results on the equation of state; they also used two lattice spacings with the p4 action).

Our goal is to determine the temperature dependence of the pressure (or energy density, en-
tropy, speed of sound etc.) of QCD with physical pion mass of 135 MeV along the line of constant
physics (LCP). For large homogenous systems the pressure isproportional to the logarithm of the
partition function (p∝log[Z]). All other quantities can be determined by using thepressure. Since
the partition function itself is difficult to determine the usual technique is to calculate its derivatives
and integrate. Thus, for the normalized pressure one obtains

p
T4 = −N4

t

∫

d(β ,ma)

(

∂ (logZ)

∂β
,
∂ (logZ)

∂ (ma)

)

= −N4
t

∫

dβ
[

〈P〉+mu
∂a
∂β

〈ūu〉+ms
∂a
∂β

〈s̄s〉

]

Figure 11 shows the result for the normalized

Figure 11: The normalized pressure as a func-
tion of T/Tc.

pressure as a function ofT/Tc. The two curves
representNt=4 andNt=6. Clearly, these two sets
of lattice spacings are not enough for a controlled
continuum extrapolation. Usually three points in
the scaling region is needed to ensure that. Thus,
in a fortunate case one could obtain the full result
with Nt=4,6 and 8, whereas a somewhat less for-
tunate case would meanNt=6,8 and 10 (as it was
needed for the transition temperature, too). Note,
that Nt=8 needs about 30 times more CPU power
thanNt=6 andNt=10 needs an additional factor of
about 15.

An old and serious problem for QCD thermo-
dynamics is the link between perturbation theory and lattice QCD. While available lattice results
for the equation of state (both for pure gauge theory and for full QCD) end at around 5·Tc, standard
perturbation theory converges only at extremely high temperatures (at 5·Tc, the different pertur-
bative orders can not even tell the sign of the deviation fromthe Stefan-Boltzmann limit). Until
recently no link between the two most systematic methods of QCD, namely perturbation theory
and lattice QCD, existed for bulk thermodynamical quantities. It is of extreme importance to close
the gap between these results (for a recent result on that see[12]).

6. Results at non-vanishing baryonic chemical potential

In the previous three sections results were presented, someof which can be considered as full
ones (the nature of the transition andTc). For these observables three lattice spacings in the scal-
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ing region were used and controlled continuum extrapolations were possible. For another quantity
(equation of state) only two lattice spacings were applied,therefore no controlled continuum ex-
trapolated results are available. The situation is even worse for non-vanishing baryonic chemical
potentials (µ). In this case traditional Monte-Carlo simulations do not work. The determinant of
the Dirac operator turns out to be complex, spoiling any method based on importance sampling.
Five years ago new techniques appeared (starting with the multi-parameter reweighting technique
[13, 14]), which can give predictions also atµ 6=0. Nevertheless, QCD at non-vanishing chemical
potentials is much more CPU demanding than theµ=0 case. Thus, continuum extrapolated results
will be most probably not available in the next one or two years for most observables. (There is at
least one important exception. Using the present methods and technologies one can determine the
continuum curvature for theT–µ phase diagram atµ=0.) In this section a few illustrative examples
of our µ 6=0 results are shown.

According to the most popular scenario a critical point is expected on the temperature versus
baryonic chemical potential plane (for an alternative possibility see Ref. [15] and the talk of O.
Philipsen in these proceedings [16]). Using the multi-parameter reweighting technique [13, 14] we
studied dynamical QCD withnf =2+1 staggered quarks of physical masses onNt=4 lattices [17].
The results are summarized on Figure 12. At vanishing chemical potentials there is an analytic,
cross-over like transition between the hadronic and quark-gluon plasma phases. As we increase
µ the transition temperature decreases. At a baryonic chemical potential around 360 MeV the
cross-over region ends and a second order phase transition is observed. For even larger chemical
potentials the transition is of first order. In order to tell the difference between an analytic cross-
over and a singular transition (first or second order phase transition) a careful finite volume analysis
is needed, similar to that of Section 3. This result is quite adifferent picture than that of Ref. [15].
Note, however that the two results are not at all in contradiction with each other. On the level
they can be directly compared both observe no strengtheningof the transition in leading order of
µ . The strengthening in our result, which is needed for the critical endpoint, appears in much
higher orders. (Note, that the same multi-parameter reweighting can be used e.g. to determine the
equation of state for non-vanishing baryonic chemical potentials [18, 19].)

Another interesting feature of theµ–T phase diagram is the conjectured colour superconduct-
ing phase at largeµ and smallT. The presently available techniques are working well for small to
moderate chemical potentials slightly below and all the wayabove the transition temperature. In
order to extend the applicability range, we used [20] the density of state method.nf = 4 staggered
QCD was studied on 64 and 8·63 lattices. The method is expensive, thus only small latticeswere
used. Nevertheless, these small lattices show an indication for a triple-point connecting three dif-
ferent phases on the phase diagram. The triple point is around µq≈ 300 MeV and T≈ 135 MeV
(the quark chemical potentialµq is one third of the baryon chemical potential). Note, that the tem-
perature will move most probably to smaller values in the continuum limit, since forNt=6 lattices
the smallest T is 73 MeV (ifmρ fixes the scale). The mass dependence was checked, at small T the
position of the transition did not depend on the pion mass.

It is important to emphasize again that results at non-vanishing chemical potentials are ob-
tained on coarse lattices and the most important uncertainty is the systematic error due to large
lattice spacings.
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Figure 12: The phase diagram on the temperature versus baryonic chemical potential plane. Left panel:
locating the critical point onNt=4 lattices. Right panel: application of the density of state method to separate
the three phases innf =4 QCD. In both cases the continuum extrapolation is missing.

7. Conclusion

Some QCD thermodynamics results from the Budapest-Wuppertal group were summarized at
vanishing and at non-vanishing chemical potentials. The necessary balance betweenT = 0 andT >

0 simulations was discussed in detail. As a consequence, Symanzik improved gauge and stout-link
improved staggered fermionic lattice action was used in thesimulations with an exact simulation
algorithm. Physical masses were taken both for the light quarks and for the strange quark. The
parameters were tuned with a quite high precision, thus at all lattice spacings themK/ fk andmK/mπ

ratios were set to their experimental values with an accuracy better than 2%. Up to four sets of
lattice spacings on lattices withNt=4,6,8 and 10 temporal extensions were used (they correspond
to lattice spacinga∼0.3, 0.2, 0.15 and 0.12 fm) to carry out the continuum extrapolation. It turned
out that onlyNt=6,8 and 10 can be used for a controlled extrapolation,Nt=4 is out of the scaling
region.

The nature of the T>0 transition was determined. The renormalized chiral susceptibility was
extrapolated to vanishing lattice spacing for three physical volumes, the smallest and largest of
which differ by a factor of five. This ensures that a true transition should result in a dramatic in-
crease of the susceptibilities. No such behaviour is observed: the finite-size scaling analysis showed
that the finite-temperature QCD transition in the hot early Universe was not a real phase transition,
but an analytic crossover (involving a rapid change, as opposed to a jump, as the temperature var-
ied). As such, it will be difficult to find experimental evidence of this transition from astronomical
observations. Since for present day heavy ion experiments the baryonic chemical potential is also
very small, the above results apply for them, too.

The absolute scale for the T>0 transition was calculated. Since the QCD transition is a non-
singular cross-over there is no uniqueTc. This well-known phenomenon was illustrated on the
water-vapor phase diagram (the broadness of a transition was illustrated by the example of butter).
Different observables led to different numericalTc values in the continuum and thermodynamic
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limit also in QCD. Three observables were used to determine the corresponding transition temper-
atures. The peak of the renormalized chiral susceptibilitypredictedTc=151(3)(3) MeV, whereas
Tc based on the strange quark number susceptibility resulted in 24(4) MeV larger value. Another
quantity, which is related to the deconfining phase transition in the large quark mass limit is the
Polyakov loop. Its behavior predicted a 25(4) MeV larger transition temperature, than that of the
chiral susceptibility. Another consequence of the cross-over are the non-vanishing widths of the
peaks even in the thermodynamic limit, which were also determined. For the chiral susceptibil-
ity, strange quark number susceptibility and Polyakov-loop we obtained widths of 28(5)(1) MeV,
42(4)(1) MeV and 38(5)(1) MeV, respectively.

These features, numbers and functions are attempted to be the full result for theT 6=0 transition,
though other lattice fermion formulations —e.g. Wilson fermions (for ongoing projects see e.g.
[21, 22]) or chiral fermions (for an early dynamical overlaptest see [23], for the domain wall
approach a recent presentation can be found in Ref.[24])— are needed to cross-check the findings
with staggered fermions.

Results for the equation of state on lattices withNt=4 and 6 were presented. Clearly, one should
carry out the calculations on lattices with smaller latticespacings and approach the continuum limit.

Results at non-vanishing chemical potentials are even further from the continuum limit. At one
single lattice spacings we determined the critical endpoint and saw indications for a third phase
on theT–µ plane at large baryonic densities. As we emphasized in the abstract of our critical
endpoint paper [17] „the continuum extrapolation is still missing”. Using the present methods and
technologies one can determine the continuum curvature forthe T–µ phase diagram atµ=0 in
the next few years. Unfortunately, using the present techniques the CPU capacity will be most
probably not enough to carry out a controlled continuum extrapolation for the critical endpoint and
for a conjectured colour superconducting phase in the next few years.
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