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1. Introduction

The existence of a critical end point (CEP) in QCD phase diagram is one of the striking expec-
tations [1, 2], which has been explored based on calculations in effective models and on universality
arguments. The appearance of the CEP in the temperatureT and quark chemical potentialµq plane
was also studied in terms of Lattice Gauge Theory (LGT) [3]. The search for the CEP has re-
cently attracted considerable attention in the context of heavy ion phenomenology [2]. Thus, it is
of particular interest to identify the position of the CEP in the phase diagram and to study generic
properties of thermodynamic quantities in its vicinity. The analysis of fluctuations is a powerful
method for characterizing the thermodynamic properties of a system. Modifications in the magni-
tude of fluctuations or the corresponding susceptibilities have been suggested as a possible signal
for deconfinement and chiral symmetry restoration [4, 2, 5, 6]. In this context, fluctuations related
to conserved charges are of particular interest [7].

In this contribution we briefly summarize the properties of the conserved charge fluctuations
to probe the QCD phase structure. The role of the fluctuations in order to identify the location of
the CEP as well as the phase boundaries is discussed. We also show that the enhanced baron or
electric charge density fluctuations could signal the first order phase transition in the presence of
spinodal decomposition.

2. Fluctuations of conserved charges

In our study of fluctuations we adopt the Nambu–Jona-Lasinio (NJL) model as an effective
chiral model under the mean field approximation [8]. The model describes the chiral phase transi-
tion where the dynamically generated quark massM acts as an order parameter. In Fig.1 we show
the phase diagram of the two-flavored NJL model for an isosymmetric system in the chiral limit.
The position of the phase boundary and the tricritical point (TCP) depends crucially on the model
parameters, like e.g. on the strength of the four-fermion interactions. In the figure we illustrate
the dependence on the scalar-isoscalarGS and vector-isoscalarGV couplings. With increasingGV ,
the phase transition line at fixedT is shifted to largerµq due to strong repulsive forces among
the constituent quarks. Consequently, for sufficiently large value of the vector coupling the TCP
disappears from the phase diagram [9, 10].

The position of the phase boundary and the order of the chiral phase transition can be also iden-
tified through thermodynamic observables, like net baryon number fluctuations which are sensitive
probes of the phase transition [11, 12, 4, 2, 6]. Furthermore, fluctuations of conserved charges
are directly accessible in experiments. Thus, it is of importance to explore the behavior of such
fluctuations in the vicinity of the phase boundary.

The quark number and iso-vector susceptibilities,χq andχI respectively, describe the response
of the net quark densitynq and the isovector densitynI to the change of the corresponding chemical
potentials. Thus,χq andχI are defined as derivatives ofnq andnI with respect toµq andµI ;

χq =
∂nq

∂ µq
, χI =

∂nI

∂ µI
, (2.1)

with µq andµI being the net quark and isovector chemical potential respectively.
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Figure 1: The phase diagram of the NJL model for an isosymmetric system in the chiral limit [10]. The
tricritical point is indicated by a dot.

The temperature dependence ofχq shows characteristic features, which vary rapidly withµq.
The phase boundary is signaled by a discontinuity in the susceptibility. The size of the disconti-
nuity grows with increasingµq up to the TCP, where the susceptibility diverges. Beyond the TCP
the discontinuity is again finite. On the other hand, atµq = 0 the discontinuity vanishes and the
susceptibility shows a weaker non-analytic structure at the transition temperature, resulting in a dis-
continuity of∂ χq/∂T. These critical properties ofχq are consistent with that expected for a second
order phase transition belonging to the universality class ofO(4) spin model in three dimensions
[2, 6, 13].

In Fig. 2 we show the net quark and isovector susceptibilities along the phase boundary. The
singularity ofχq indicates the existence of the TCP. In the absence of a TCP, the net quark suscepti-
bility would be a monotonic function ofT along the phase boundary, as illustrated in the Fig.2-left
by a dashed-dotted line. We note that on the qualitative level the critical behavior of the net quark
number susceptibility can be also obtained in the Landau theory [6, 10]: First, the discontinuity
across the phase boundary vanishes atµq = 0. Second, the singularity ofχq shows up only in the
chirally broken phase, while the susceptibility in the symmetric phase is monotonous along the
phase boundary and shows no singular behavior. The isovector fluctuationsχI , contrary toχq, are
neither singular nor discontinuous at the chiral phase transition for finite chemical potential. We
find a rather smooth increase ofχI with increasingµq along phase boundary line. At the TCP the
χI remains finite. The non-singular behavior ofχI at the TCP is consistent with the observation
that there is no mixing between isovector excitations and the isoscalar sigma field due to isospin
conservation [14]. Recent LGT results [12] also show a smooth change of the isovector fluctua-
tions around deconfinement transition and a fairly weak dependence ofχI on the quark chemical
potentialµq.

The net quark numberχq and the isovectorχI susceptibilities are related with fluctuations of
the electric chargeχQ as

χQ =
1
36

χq +
1
4

χI +
1
6

∂ 2P
∂ µq∂ µI

, (2.2)
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Figure 2: (Left) The net quark number susceptibilityχq along the phase boundary in the chiral limit. The
solid (dashed) line denotesχq in the chirally broken (symmetric) phase. The vertical dotted line indicates
the position of the TCP. (Right) The isovector susceptibility along the phase boundary [10].
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Figure 3: (Left) The quark number susceptibility near the TCP as a function of the reduced temperature.
(Right) The critical region where theχq is enhanced by an order of magnitude compared to the free one [10].

whereP is the thermodynamic pressure. For isospin symmetric system the last term vanishes.
Hence in this case all relevant susceptibilities are linearly dependent. Clearly, sinceχI is finite at
the TCP, the electric charge fluctuationsχQ diverge with the same critical behavior asχq. At finite
µI the properties ofχI at the chiral phase transition change. Then, since the isoscalar sigma field
mixes with the isospin density [14], the isovector susceptibility exhibits a similar structure asχq,
with a singularity at the TCP.

The strength of singularities is governed by the critical exponents whose values are different
depending on paths approaching the phase transition [15]. The mean-field exponents of the TCP
and the CEP can be obtained from Landau theory [10]. In Fig. 3-left we illustrate the critical
behavior ofχq near the O(4) critical line and at the TCP. For paths approaching a TCP asymptot-
ically tangential to the phase boundary, the quark number susceptibility diverges with the critical
exponentγq = 1. On the other hand, approaching the TCP along the first-order transition line, the
pre-factor of the singular contribution to the quark susceptibility is twice as large as that obtained
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when approaching TCP along the O(4) critical line. For other paths the critical exponent isγq = 1
2.

At the O(4) critical line, the susceptibility remains finite. The corresponding critical exponent of
the O(4) universality class isα '−0.2, while in the NJL model under the mean-field approxima-
tion, α = 0. For non-zero quark mass, at the critical endpoint, the mean-field critical exponent
along a path not tangential to the phase boundary is2/3, while along the phase boundary it remains
equal to unity [2]. When quantum fluctuations are included, the first exponent is renormalized to
that of the 3D Ising model universality class [16], i.e. ε = 0.78.

In Fig. 3-right we show the “critical” region, where the susceptibility exceeds its value in the
ideal quark gas by more than an order of magnitude1. The differences in values of the critical
exponents for different "paths" are reflected in the shape of the critical region around TCP. It is
elongated along the phase boundary, where the singularity is strongest.

3. Baryon number susceptibility in the presence of spinodal instabilities

In the previous section we have argued that the enhancement of the baryon number fluctuations
could be a clear indication for the existence of the critical end point in the QCD phase diagram.
However, the finite density fluctuations along the first order transition appear under the assumption
that this transition happen in equilibrium. In non-equilibrium system, a first order phase transition
is intimately linked with the existence of a convex anomaly in the thermodynamic pressure [17].
There is an interval of energy density or baryon number density where the derivative of the pressure,
∂P/∂V > 0, is positive. This anomalous behavior characterizes a region of instability in the (T,nq)-
plane which is bounded by the spinodal lines, where the pressure derivative with respect to volume
vanishes. The derivative taken at constant temperature and that taken at constant entropy,

(
∂P
∂V

)

T
= 0 and

(
∂P
∂V

)

S
= 0, (3.1)

define the isothermal and isentropic spinodal lines respectively.

For finite vale of the quark mass and within large range of parameters the NJL model exhibits
a critical end point (CEP) that separates the cross over from the first order chiral phase transition.
The relevant part of the phase diagram in the(T,nq)–plane is shown in Fig.4. If the first order
phase transition takes place in equilibrium, there is a coexistence region, which ends at the CEP.
However, in a non-equilibrium first order phase transition, the system supercools/superheats and,
if driven sufficiently far from equilibrium, it becomes unstable due to the convex anomaly in the
thermodynamic pressure. In other words, in the coexistence region there is a range of densities and
temperatures, bounded by the spinodal lines, where the spatially uniform system is mechanically
unstable.

In Fig. 5-left we show the evolution of the net quark number fluctuations along a path of fixed
T = 50 MeV in the (T,nq)–plane. When entering the coexistence region, there is a singularity in
χq that appears when crossing the isothermal spinodal lines and where the fluctuations changes
the sign. In between the spinodal lines, the susceptibility is negative. Consequently, this implies

1By “critical” region we mean here the region where the susceptibility is large due to fluctuations and not the region
where the critical exponents deviates from their mean-field values.
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Figure 4: The phase diagram of the NJL model [18]. The filled point indicates the CEP. The full lines
starting at the CEP represent boundary of the coexistence region in equilibrium. The dashed curves are the
isothermal whereas the dotted ones are the isentropic spinodal lines.

instabilities in the baryon number fluctuations when crossing from meta-stable to unstable mixed
phase. The above behavior ofχq is a direct consequence of the thermodynamics relation

(
∂P
∂V

)

T
=−n2

q

V
1
χq

. (3.2)

Along the isothermal spinodals the pressure derivative in Eq. (3.2) vanishes. Thus, for non-
vanishing densitynq, χq must diverge to satisfy (3.2). Furthermore, since the pressure derivative
∂P/∂V|T changes sign when crossing the spinodal line, there must be a corresponding sign change
in χq, as seen in Fig.5-left. Due to the linear relation betweenχq, the isovector susceptibilityχI and
the charge susceptibilityχQ (2.2), the charge fluctuations are also divergent at the isothermal spin-
odals. Thus, in heavy-ion collisions, fluctuations of the baryon number and electric charge could
show enhanced fluctuations across the 1st order transition if the spinodal decomposition appears in
a system.

In Fig. 5-right we show the evolution of the singularities from the spinodal lines when ap-
proaching the CEP. The critical exponent at the isothermal spinodal line is found to beγ = 1/2,
with χq ∼ (µ − µc)−γ , while γ = 2/3 at the CEP [18]. Thus, the singularities at the two spinodal
lines conspire to yield a somewhat stronger divergence as they join at the CEP. The critical region
of enhanced susceptibility around the TCP/CEP is fairly small [16, 10], while in the more realistic
non-equilibrium system one expects fluctuations in a larger region of the phase diagram, i.e., over
a broader range of beam energies, due to the spinodal instabilities.

The rate of change in entropy with respect to temperature at constant pressure gives the specific
heat expressed as

CP = T

(
∂S
∂T

)

P
= TV

[
χTT− 2s

nq
χµT +

(
s
nq

)2

χq

]
. (3.3)

The entropyχTT and mixedχµT susceptibilities exhibit the same behaviors as that ofχq shown in
Fig. 5-left. ThusCP also divergences on the isothermal spinodal lines and becomes negative in the
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Figure 5: (Left) The net quark number susceptibility atT = 50 MeV as a function of the quark number
density across the first order phase transition. (Right) The net quark number susceptibility in the stable and
meta-stable regions [18].

mixed phase2. It was argued that in low energy nuclear collisions the negative specific heat could
be a signal of the liquid-gas phase transition [19]. Its occurrence has recently been reported as the
first experimental evidence for such an anomalous behavior [20].

4. Conclusions

We presented a brief discussion of probing the QCD phase structure. We have especially
discussed the importance of conserved charge fluctuations. It was shown that the net baryon number
susceptibility must yield large contribution around the critical end point (CEP). Consequently, a non
monotonic behavior of these fluctuations as functions of the collision energy in heavy ion collisions
could be considered as an indication of the CEP in the QCD phase diagram.

We have also shown that in the presence of spinodal instabilities the above picture is modified:
The net quark number fluctuations diverge at the isothermal spinodal lines of the first order chiral
phase transition. As the system crosses this line, it becomes unstable with respect to spinodal
decomposition. The unstable region is in principle reachable in non-equilibrium systems that is
most likely created in heavy ion collisions. Consequently, large fluctuations of baryon and electric
charge densities are expected not only at the CEP but also when system crosses a non-equilibrium
first order transition.
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